• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义

    陈家驹 徐先兵 梁承华 徐亚东

    陈家驹, 徐先兵, 梁承华, 徐亚东, 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义. 地球科学, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
    引用本文: 陈家驹, 徐先兵, 梁承华, 徐亚东, 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义. 地球科学, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
    Chen Jiaju, Xu Xianbing, Liang Chenghua, Xu Yadong, 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
    Citation: Chen Jiaju, Xu Xianbing, Liang Chenghua, Xu Yadong, 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022

    湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义

    doi: 10.3799/dqkx.2021.022
    基金项目: 

    中国地质调查局项目 DD20190811

    详细信息
      作者简介:

      陈家驹(1997-), 男, 硕士研究生, 主要从事构造地质学的研究.ORCID: 0000-0003-2692-364X.E-mail: 1173287116@qq.com

      通讯作者:

      徐先兵, ORCID: 0000-0002-5341-9492.E-mail: xbxu2011@cug.edu.cn

    • 中图分类号: P597

    Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China

    • 摘要:

      早古生代江南隆起的形成与剥蚀作用可以用来制约华南广西期造山作用及其动力学机制.通过对江南隆起南侧湘东南南湾地区中泥盆统跳马涧组石英砂砾岩的碎屑锆石U-Pb年代学、锆石微量元素地球化学以及全岩地球化学的分析,讨论了其物源及其大地构造意义.4件样品的270颗有效碎屑锆石U-Pb年龄谱由430~440 Ma主峰与800~1 100 Ma、1 700~2 000 Ma和2 400~2 600 Ma次峰组成.锆石CL图像、Th/U比值以及稀土元素配分图指示碎屑锆石以岩浆锆石为主,仅有少量变质锆石和热液锆石.矿物形态、组成以及成熟度指示其源区为近源,沉积于滨海环境.综合源区分析表明,湘东南中泥盆统跳马涧组石英砂砾岩的物源来自其北侧的江南隆起.江南隆起形成于广西期陆内造山作用.早古生代岩浆锆石的微量元素地球化学特征表明其为大陆型锆石,形成于大陆弧构造环境.结合区域地质特征,华南广西期造山作用是其南侧大洋俯冲作用的产物,与冈瓦纳大陆的聚合有关.

       

    • 图  1  湘东南南湾地区地质简图和构造剖面图(据柏道远等,2007修改)

      Fig.  1.  Sketch geological map and cross section of Nanwan area, southeast Hunan Province(modified after Bai et al., 2007)

      图  2  湘东南南湾地区碎屑岩宏观和显微照片

      a.灰白色石英砂岩;b.石英砂岩(正交偏光);c.灰黑色石英砂岩;d,.石英砂岩(正交偏光);e.灰白色石英砾岩;f.石英砂岩(正交偏光). 矿物缩写:Q.石英;Bi.黑云母;Srt.绢云母;Pl.斜长石

      Fig.  2.  Macroscopic and microscopic photographs of clastic rocks in Nanwan area

      图  3  南湾地区碎屑锆石年龄与Th/U图

      Fig.  3.  Age and Th-U of detrital zircon from Nanwan area

      图  4  南湾碎屑锆石谐和年龄曲线图(a~d)和年龄分布直方图(e~h)

      Fig.  4.  U-Pb harmonic diagram (a-d) and age histogram (e-h) of detrital zircon from Nanwan area

      图  5  南湾地区碎屑锆石稀土元素球粒陨石标准化配分图(据Taylor and McLennan, 1985修改)

      Fig.  5.  REE model of detrital zircon from Nanwan aera(after Taylor and McLennan, 1985)

      图  6  南湾地区碎屑锆石年龄谱及其占比

      Fig.  6.  Age profile and proportion of detrital zircons from Nanwan area

      图  7  沉积岩矿物组分的沉积物源判别图和变砂岩的Zr/Sc-Th/Sc图解(据Dickinson and Suczek, 1979McLennan et al., 1993

      Fig.  7.  Sediment source identification map for mineral components of sedimentary rocks and Zr /Sc-Th /Sc diagram for the metas and stones(from Dickinson and Suczek, 1979; McLennan et al., 1993)

      图  8  湘桂地区中泥盆世早期岩相古地理图(据马力等,2004修改)

      Fig.  8.  Lithofacies palaeogeography map of the Early Middle Devonian in Hunan and Guangxi (modified after Ma et al., 2004)

      图  9  南湾地区碎屑锆石Nb/Yb-U/Yb构造背景判别图(据Grimes et al., 2015

      CA.大陆弧;OI.大洋岛弧;MOR.大洋中脊;Mantle-zircon array.地幔锆石

      Fig.  9.  Nb/Yb-U/Yb detrital zircons in Nanwan area(from Grimes et al., 2015)

    • [1] Bai, D.Y., Wang, Y.Q., Wang, X.H., et al., 2007. Geochemistry, Petrogenesis and Tectonic Setting of the Early Yanshanian Peraluminous Granites in the Chuankou Region, Hengyang, Hunan. Sedimentary Geology and Tethyan Geology, 27(2): 49-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200702007.htm
      [2] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [3] Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology(Boulder), 40(10): 875-878. https://doi.org/10.1130/g32945.1
      [4] Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      [5] Chen, D.Z., Chen, Q.Y., 1994. Devonian Sedimentary Evolution and transgression-Regression Patterns in South China. Chinese Journal of Geology, 29(3): 246-255(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZKX403.004&dbcode=CJFD&year=1994&dflag=pdfdown
      [6] Chu, Y., Lin, W., 2014. Phanerozoic Polyorogenic Deformation in Southern Jiuling Massif, Northern South China Block: Constraints from Structural Analysis and Geochronology. Journal of Asian Earth Sciences, 86(1): 117-130. https://doi.org/10.1016/j.jseaes.2013.05.019
      [7] Dickinson, W. R., Suczek, C.A., 1979. Plate Tectonics and Sandstone Compositions 1. AAPG Bulletin, 63(12): 2164-2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D
      [8] Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360-368. https://doi.org/10.1111/j.1365-3121.2009.00888.x
      [9] Ge, Y. P., Li, L. M., Zhao, X. L., et al., 2020. Early Palaeozoic Oceanic Island-Seamount Assemblage in Northern Fujian, South China: Implications for Pre-Devonian Tectonic Evolution of the Wuyi Orogenic Belt. Geological Journal, 55(4): 3208-3228. https://doi.org/10.1002/gj.3573
      [10] Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5/6): 1-26. https://doi.org/10.1007/s00410-015-1199-3
      [11] Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      [12] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
      [13] Hsü, K. J., Sun, S., Li, J.L., et al., 1988. Mesozoic Overthrust Tectonics in South China. Geology, 16(5): 418. https://doi.org/10.1130/0091-7613(1988)0160418: motisc>2.3.co;2 doi: 10.1130/0091-7613(1988)0160418:motisc>2.3.co;2
      [14] Hu, X.M., Xue, W.W., Lai, W., et al., 2021. Sedimentary Basinsin Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158(in Chinese with English abstract).
      [15] Hu, Z. C., Zhang, W., Liu, Y. S., Gao, S., et al., 2015. "Wave" SignalSmoothing and MercuryRemoving Device for Laser Ablation Quadrupole and Multiple Collector ICP-MS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      [16] Li, J. H., Dong, S. W., Zhang, Y. Q., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080. https://doi.org/10.1002/2015jb012778
      [17] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      [18] Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at Ca. 825 Ma?. Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/S0301-9268(02)00207-3
      [19] Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202-1215. https://doi.org/10.1016/j.gr.2014.01.003
      [20] Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. GeologicalSocietyofAmerica Bulletin, 122(5/6): 772-793. https://doi.org/10.1130/b30021.1
      [21] Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      [22] Lin, W., Faure, M., Sun, Y., et al., 2001. Compression to Extension Switch during the Middle Triassic Orogeny of Eastern China: The Case Study of the Jiulingshan Massif in the Southern Foreland of the Dabieshan. Journal of Asian Earth Sciences, 20(1): 31-43. https://doi.org/10.1016/S1367-9120(01)00020-7
      [23] Liu, S. F., Peng, S. B., Kusky, T., et al., 2018. Origin and Tectonic Implications of an Early Paleozoic (460-440 Ma) Subduction-Accretion Shear Zone in the Northwestern Yunkai Domain, South China. Lithos, 322: 104-128. https://doi.org/10.1016/j.lithos.2018.10.006
      [24] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      [25] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [26] Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.
      [27] Ma, W.P., Qiu, Y.X., He, F.S., 1995. Lower Paleozoic Omission Zone in Jiangnan Uplift: A Sign of Caledonian Foreland Fold Thrust Belt. Geoscience-Journal of Graduate School, China University of Geosciences, 9(3): 320-324(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ503.006.htm
      [28] Ma, X.P., Zong, P., 2010. Assemblage of Brachiopods, Sea Level Rise and Fall, and Paleogeographic Evolution in Middle and Late Devonian Devonian Hunan Province. Scientia Sinica Terrae, 40(9): 1204-1218 (in Chinese). doi: 10.1360/zd-2010-40-9-1204
      [29] Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Tectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing(in Chinese).
      [30] McLennan, S.M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21-40 https://doi.org/10.1130/SPE284-p21
      [31] Mou, C. L., Zhou, B. K., Chen, X. W., et al., 2016. Lithofacies Palaeogeography Atlas of China: Ediacaran-Silurian. Geological Publishing House, Beijing(in Chinese).
      [32] Peng, S.B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      [33] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292(in Chinese with English abstract). http://www.researchgate.net/publication/282071585_The_reconfirmation_of_age_and_tectonic_setting_of_the_volcanic_rocks_of_Yingyangguan_group_in_the_eastern_Guangxi_Constraints_on_the_structural_pattern_of_the_southwestern_segment_of_Qinzhou-Hangzhou_
      [34] Shu, L. S., Deng, P., Yu, J.H., et al., 2008. The Age and Tectonic Environment of the Rhyolitic Rocks on the Western Side of Wuyi Mountain, South China. Science in China Series D: Earth Sciences, 51(8): 1053-1063. https://doi.org/10.1007/s11430-008-0078-4
      [35] Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3/4): 263-276. https://doi.org/10.1016/j.precamres.2011.03.003
      [36] Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05
      [37] Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835
      [38] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
      [39] Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      [40] Wang, W., Cawood, P. A., Pandit, M. K., et al., 2020. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/G48308.1
      [41] Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222/223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      [42] Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      [43] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013a. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [44] Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      [45] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      [46] Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010tc002750
      [47] Wang, Y. J., Zhang, Y. Z., Cawood, P. A., et al., 2019. Early Neoproterozoic Assembly and Subsequent Rifting in South China: Revealed from Mafic and Ultramafic Rocks, Central Jiangnan Orogen. Precambrian Research, 331: 105367. https://doi.org/10.1016/j.precamres.2019.105367
      [48] Xia, Y., Xu, X.S., Zhu, K.Y., 2012. Paleoproterozoic S- and A-Type Granites in Southwestern Zhejiang: Magmatism, Metamorphism and Implications for the Crustal Evolution of the Cathaysia Basement. Precambrian Research, 216/217/218/219: 177-207. https://doi.org/10.1016/j.precamres.2012.07.001
      [49] Xu, X. B., Li, Y., Tang, S., et al., 2015. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block: Constraints from Structural Analysis and 40Ar/39Ar Geochronology. Journal of Asian Earth Sciences, 98: 141-151. https://doi.org/10.1016/j.jseaes.2014.11.015
      [50] Xu, X. B., Xue, D. J., Li, Y., et al., 2014. Neoproterozoic Sequences along the Dexing-Huangshan Fault Zone in the Eastern Jiangnan Orogen, South China: Geochronological and Geochemical Constrains. Gondwana Research, 25(1): 368-382. https://doi.org/10.1016/j.gr.2013.03.020
      [51] Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150(in Chinese with English abstract).
      [52] Xu, X.B., Zhang, Y.Q., Shu, L.S., et al., 2009. Zircon LA-ICP-MS U-Pb Dating of the Weipu Granitic Pluton in Southwest Fujian and the Changpu Migmatite in South Jiangxi: Constrains to the Timing of Caledonian Movement in Wuyi Mountains. Geological Review, 55(2): 277-285(in Chinese with English abstract).
      [53] Xu, Y. J., Cawood, P. A., Du, Y. S, 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329-362. https://doi.org/10.2475/04.2016.02
      [54] Xu, Y. J., Du, Y. S., Cawood, P. A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63-72. https://doi.org/10.1016/j.sedgeo.2012.05.009
      [55] Xu, Y. J., Du, Y. S., 2018. From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2): 333-353(in Chinese with English abstract).
      [56] Xu, X. B., Li, Q. M., Gui, L., et al., 2018. Detrital Zircon U-Pb Geochronology and Geochemistry of Early Neoproterozoic Sedimentary Rocks from the Northwestern Zhejiang Basin, South China. Marine and Petroleum Geology, 98: 607-621. https://doi.org/10.1016/j.marpetgeo.2018.09.015
      [57] Yan, Y., Lin, G., Li, Z.A., 2003. Provenance Tracing of Sediments by Means of Synthetic Study of Shape, Composition and Chronology of Zircon. Geotectonica et Metallogenia, 27(2): 184-190(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200302011&dbcode=CJFD&year=2003&dflag=pdfdown
      [58] Yang, C., Li, X. H., Li, Z. X., et al., 2020. Provenance Evolution of Age-Calibrated Strata Reveals when and how South China Block Collided with Gondwana. Geophysical Research Letters, 47(19): e2020GL090282. https://doi.org/10.1029/2020gl090282
      [59] Yang, R.C., Li, J.B., Fan, A.P., et al., 2013. Research Progress and Development Tendency of Provenance Analysis on Terrigenous Sedimentary Rocks. Acta Sedimentologica Sinica, 31(1): 99-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301012.htm
      [60] Yang, S.F., Chen, H.L., Gong, G.H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905008.htm
      [61] Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      [62] Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt: Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262: 84-100. https://doi.org/10.1016/j.precamres.2015.02.021
      [63] Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012
      [64] Yu, J. H., O'Reilly, S.Y., Zhou, M. F., et al., 2012. U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block. Precambrian Research, 222/223: 424-449. https://doi.org/10.1016/j.precamres.2011.07.014
      [65] Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      [66] Yu, W. C., Du, Y. S., Cawood, P. A., et al., 2015. Detrital Zircon Evidence for the Reactivation of an Early Paleozoic Syn-Orogenic Basin along the North Gondwana Margin in South China. Gondwana Research, 28(2): 769-780. https://doi.org/10.1016/j.gr.2014.07.014
      [67] Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      [68] Zhao, L., Zhai, M. G., Zhou, X. W., et al., 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236/237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      [69] Zhao, X. L., Jiang, Y., Xing, G. F., et al., 2020. The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province: Implication of the Yangtze-Cathaysia Amalgamation. Geological Journal, 55(2): 1148-1162. https://doi.org/10.1002/gj.3480
      [70] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      [71] Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292: 57-74. https://doi.org/10.1016/j.precamres.2017.02.005
      [72] Zhou, Y., Liang, X. Q., Liang, X. R., et al., 2015. U-Pb Geochronology and Hf-Isotopes on Detrital Zircons of Lower Paleozoic Strata from Hainan Island: New Clues for the Early Crustal Evolution of Southeastern South China. Gondwana Research, 27(4): 1586-1598. https://doi.org/10.1016/j.gr.2014.01.015
      [73] Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2010. In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite: Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China. Chemical Geology, 269(3/4): 237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021
      [74] 柏道远, 汪永清, 王先辉, 等, 2007. 湖南衡阳燕山早期川口过铝花岗岩地球化学特征、成因与构造环境. 沉积与特提斯地质, 27(2): 49-59. doi: 10.3969/j.issn.1009-3850.2007.02.008
      [75] 陈代钊, 陈其英, 1994. 华南泥盆纪沉积演化及海水进退规程. 地质科学, 29(3): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX403.004.htm
      [76] 胡修棉, 薛伟伟, 赖文, 等, 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101011.htm
      [77] 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社.
      [78] 马文璞, 丘元禧, 何丰盛, 1995. 江南隆起上的下古生界缺失带: 华南加里东前陆褶冲带的标志. 现代地质, 9(3): 320-324. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ503.006.htm
      [79] 马学平, 宗普, 2010. 湖南中-晚泥盆世腕足动物组合、海平面升降及古地理演变. 中国科学: 地球科学, 40(9): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201009011.htm
      [80] 牟传龙, 周恳恳, 陈小炜, 等, 2016. 中国岩相古地理图集: 埃迪卡拉纪-志留纪. 北京: 地质出版社.
      [81] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [82] 覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm
      [83] 徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      [84] 徐先兵, 张岳桥, 舒良树, 等, 2009. 闽西南玮埔岩体和赣南菖蒲混合岩锆石LA-ICPMS U-Pb年代学: 对武夷山加里东运动时代的制约. 地质论评, 55(2): 277-285. doi: 10.3321/j.issn:0371-5736.2009.02.013
      [85] 徐亚军, 杜远生, 2018. 从板缘碰撞到陆内造山: 华南东南缘早古生代造山作用演化. 地球科学, 43(2): 333-353. doi: 10.3799/dqkx.2017.582
      [86] 闫义, 林舸, 李自安, 2003. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究. 大地构造与成矿学, 27(2): 184-190. doi: 10.3969/j.issn.1001-1552.2003.02.012
      [87] 杨仁超, 李进步, 樊爱萍, 等, 2013. 陆源沉积岩物源分析研究进展与发展趋势. 沉积学报, 31(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301012.htm
      [88] 杨树锋, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973
    • dqkxzx-46-10-3421-附表1-3.doc
    • 加载中
    图(9)
    计量
    • 文章访问数:  581
    • HTML全文浏览量:  229
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-01
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回