• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩溶裂隙含水层中石油类有机物的自然衰减机制

    郭永丽 章程 吴庆 全洗强

    郭永丽, 章程, 吴庆, 全洗强, 2021. 岩溶裂隙含水层中石油类有机物的自然衰减机制. 地球科学, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
    引用本文: 郭永丽, 章程, 吴庆, 全洗强, 2021. 岩溶裂隙含水层中石油类有机物的自然衰减机制. 地球科学, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
    Guo Yongli, Zhang Cheng, Wu Qing, Quan Xiqiang, 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
    Citation: Guo Yongli, Zhang Cheng, Wu Qing, Quan Xiqiang, 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020

    岩溶裂隙含水层中石油类有机物的自然衰减机制

    doi: 10.3799/dqkx.2021.020
    基金项目: 

    国家自然科学基金项目 41702277

    中国地质科学院基本科研业务费项目 2020004

    对发展中国家科技援助项目 KY201802009

    国家重点研发计划项目 2020YFE0204700

    广西自然科学基金项目 2018GXNSFDA050002

    详细信息
      作者简介:

      郭永丽(1989-), 女, 助理研究员, 主要从事岩溶水环境方面的研究.ORCID: 0000-0003-4360-2944.E-mail: ylguo89@163.com

      通讯作者:

      章程, E-mail: zhangcheng@mail.cgs.gov.cn

    • 中图分类号: P641.69

    Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer

    • 摘要: 石油类有机物污染是地下水环境领域亟须解决的关键课题.本次研究耦合数值模拟和水文地球化学技术模拟岩溶裂隙含水层中石油类有机物的自然衰减过程并定量计算其自然衰减机制.基于BIOSCREEN模型的模拟计算可知,近30年对流、弥散、稀释等物理过程和生物降解过程对石油类有机物衰减贡献率的平均值分别为31.53%和68.47%,生物降解作用是岩溶裂隙含水层自然修复能力的主要机制.利用质量守恒定律分析水化学(HCO3-、NO3-)和同位素(δ15NNO3、δ18ONO3和δ13CDIC)之间的相关关系可知石油类有机物生物降解贡献地下水HCO3-的平均值为33.93%;石油类有机物生物降解消耗主要电子受体NO3-贡献地下水δ13CDIC的百分率为30.77%且其占总生物降解的90.69%.

       

    • 图  1  研究区水文地质简图

      1.松散岩类孔隙水, < 100 m3/d2.松散岩类孔隙水,100~1 000 m3/d; 3.松散岩类孔隙水, > 1 000 m3/d; 4.碳酸盐岩类裂隙岩溶水, < 100 m3/d; 5.碳酸盐岩类裂隙岩溶水,100~1 000 m3/d; 6.碳酸盐岩类裂隙岩溶水,1 000~5 000 m3/d; 7.碳酸盐岩类裂隙岩溶水, > 5 000 m3/d; 8.裸露碎屑岩裂隙水、层间岩溶裂隙水, < 100 m3/d; 9.裸露碎屑岩裂隙水、层间岩溶裂隙水,100~1 000 m3/d; 10.取样点; 11.断层;12.富水线;13.石化厂区;14.径流方向

      Fig.  1.  The schematic hydrogeological map of the study area

      图  2  模拟结果

      a.1994—1999年;b.1999—2009年;c.2009—2019年

      Fig.  2.  Simulation results

      图  3  水化学离子和同位素间相关关系

      Fig.  3.  Graphs of correlations among hydrochemical ions and isotopes

      a.NO3-15NNO3; b.NO3-18ONO3; c.δ15NNO318ONO3; d.HCO3--NO3-; e.HCO3-13CDIC; f.NO3-13CDIC; g.HCO3-15NNO3; h.δ15NNO313CDIC; i.δ18ONO313CDIC

      表  1  模型输入值

      Table  1.   Parameter values for the model

      序号 参数 取值 序号 参数 取值
      1 模拟面积长度(m) 18 000 9 土壤密度(g/m3)(刘姝媛,2016) 2.43
      2 模拟面积宽度(m) 7 000 10 分配系数(mL/g)(刘姝媛,2016) 0.12
      3 污染源宽度(m) 2 000 11 一级衰减系数(d-1)(Guo et al., 2010) 3.76×10-3
      4 污染源深度(m)(刘新华等,1996) 20 12 ΔNO3-(mg/L) (a):14.86;(b):44.97;(c):10.06
      5 纵向弥散度(m) 5 13 ΔSO4-(mg/L) (a):50.13;(b):9.89;(c):1.97
      6 横向弥散度(m) 0.5 14 UFNO3 (Guo et al., 2020) 4.81
      7 垂向弥散度(m) 0.05 15 UFso4 (Guo et al., 2020) 4.65
      8 渗透速度(m/d)(Zhu et al., 2000) 152.70 16 CO(mg/L) (a):51.86;(b):10.26;(c):3.52
      下载: 导出CSV

      表  2  不同时期石油类有机物实测浓度值

      Table  2.   The measured concentrations of petroleum hydrocarbons in different periods

      年份(a) 石油类有机物浓度(mg/L)
      D4 D5 D7 D12 D13
      1999 14.60 12.40 7.56 6.70 1.20
      2009 1.577 0.361 0.018 0.008 0.004
      2019 - 0.356 0.011 0.005 0.001
      下载: 导出CSV

      表  3  一级衰减过程和生物降解过程贡献率汇总

      Table  3.   The summary of contribution rates of first-decay processes and mixing reaction processes

      贡献率 1994—1999年平均值 1999—2009年平均值 2009—2019年平均值 总平均值
      一级衰减过程(%) 47.15 22.02 25.43 31.53
      生物降解过程(%) 52.85 77.98 74.57 68.47
      下载: 导出CSV

      表  4  3种NO3-来源的同位素变化范围及其来源比例统计

      Table  4.   Isotopic variation ranges and contribution rates of three sources for NO3-

      类型 同位素变化范围(‰) 来源比例(%)
      δ15NNO3 δ18ONO3 最小值 平均值 最大值
      铵肥 -7.08~5.09 -5.42~14.79 10.44 37.50 48.62
      土壤氮 -2.31~8.30 -5.42~14.79 16.78 42.13 66.87
      污废水 0~24.72 -5.42~14.79 16.45 20.37 22.70
      下载: 导出CSV
    • [1] Atteia, O., Höhener, P., 2012. Fast Semi-Analytical Approach to Approximate Plumes of Dissolved Redox-Reactive Pollutants in Heterogeneous Aquifers. 1. BTEX. Advances in Water Resources, 46: 63-73. https://doi.org/10.1016/j.advwatres.2011.10.003
      [2] Chiu, H.Y., Verpoort, F., Liu, J.K., et al., 2017. Using Intrinsic Bioremediation for Petroleum-Hydrocarbon Contaminated Groundwater Cleanup and Migration Containment: Effectiveness and Mechanism Evaluation. Journal of the Taiwan Institute of Chemical Engineers, 72: 53-61. https://doi.org/10.1016/j.jtice.2017.01.002
      [3] Gao, Z.J., Sun, J.F., Lu, T.M., et al., 2019. Types and Assessment of Organic Pollutants in Groundwater of Dawu Source Area in Zibo. Journal of Shandong University of Science and Technology (Natural Science), 38(4): 1-9(in Chinese with English abstract).
      [4] Guo, Y.L., Quan, X.Q., Wang, Q.G., et al., 2020. Hydrochemical Characteristics of Groundwater and Its Influencing Factors in Dawu Karst Water Source. South-to-North Water Transfers and Water Science & Technology, 18(4): 130-140(in Chinese with English abstract).
      [5] Guo, Y.L., Wen, Z., Zhang, C., et al., 2020. Contamination and Natural Attenuation Characteristics of Petroleum Hydrocarbons in a Fractured Karst Aquifer, North China. Environmental Science and Pollution Research International, 27(18): 22780-22794. https://doi.org/10.1007/s11356-020-08723-2
      [6] Guo, Y.L., Wu, Q., Zhai, Y.Z., et al., 2018. Characteristics of Typical Organic Pollutant in a Groundwater Source. Yellow River, 40(10): 61-65, 81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RMHH201810014.htm
      [7] Jiang, W.N., 2020. Study on Identification of Natural Attenuation of Pollutants in Groundwater in Petrochemical Contaminated Site (Dissertation). Jilin University, Changchun, 58(in Chinese with English abstract).
      [8] Jin, B., Rolle, M., Li, T., et al., 2014. Diffusive Fractionation of BTEX and Chlorinated Ethenes in Aqueous Solution: Quantification of Spatial Isotope Gradients. Environmental Science and Technology, 48(11): 6141-6150. https://doi.org/10.1021/es4046956
      [9] Karanovic, M., Neville, C.J., Andrews, C.B., 2007. BIOSCREEN-AT: BIOSCREEN with an Exact Analytical Solution. Groundwater, 45(2): 242-245. https://doi.org/10.1111/j.1745-6584.2006.00296.x
      [10] Kendall, C., 1998. Tracing Nitrogen Source and Cycling in Catchments. In: Kendal, C., McDonee, J.J., eds., Isotope Traces in Catchment Hydrology. Elsevier Science B.V., The Netherland, Amsterdam, 519-576.
      [11] Lee, T.H., Cao, W.Z., Tsang, D.C.W., et al., 2019. Emulsified Polycolloid Substrate Biobarrier for Benzene and Petroleum-Hydrocarbon Plume Containment and Migration Control: A Field-Scale Study. Science of the Total Environment, 666: 839-848. https://doi.org/10.1016/j.scitotenv.2019.02.160
      [12] Li, M.R., Wang, W.S., Ren, S.J., et al., 2014. Screening Typical Pollutants by Modified Comprehensive Evaluation Method: A Case Study of Typical Pollutants Screening in Groundwater of Dawu Water Source. Environmental Pollution & Control, 36(11): 72-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJWR201411015.htm
      [13] Li, P.Y., 2016. Groundwater Environment under Human Intervention and the Methodological System for Research in This Field. South-to-North Water Transfers and Water Science & Technology, 14(1): 18-24(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201601003.htm
      [14] Liu, S.Y., 2016. Dynamic Assessment on Pollution Risk of Groundwater Source in Dawu (Dissertation). Beijing Normal University, Beijing, 80-94(in Chinese with English abstract).
      [15] Liu, X.H., Fu, J.M., Shen, Z.L., et al., 1996. Hydrogeochemical Change Induced by Oil Sewage Leakage: A Case of the Groundwater Source in Zibo City, Shandong Province, China. Geochimica, 25(4): 331-338(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX604.003.htm
      [16] Lü, H., Su, X.S., Wang, Y., et al., 2018. Effectiveness and Mechanism of Natural Attenuation at a Petroleum-Hydrocarbon Contaminated Site. Chemosphere, 206: 293-301. https://doi.org/10.1016/j.chemosphere.2018.04.171
      [17] Lü, H., Wang, Y., Wang, H., 2019. Determination of Major Pollutant and Biogeochemical Processes in an Oil-Contaminated Aquifer Using Human Health Risk Assessment and Multivariate Statistical Analysis. Human and Ecological Risk Assessment: An International Journal, 25(3): 505-526. https://doi.org/10.1080/10807039.2018.1449099
      [18] Marić, N., Matić, I., Papić, P., et al., 2018. Natural Attenuation of Petroleum Hydrocarbons: A Study of Biodegradation Effects in Groundwater (Vitanovac, Serbia). Environmental Monitoring and Assessment, 190: 89. https://doi.org/10.1007/s10661-018-6462-4
      [19] Müller, J.B., Ramos, D.T., Larose, C., et al., 2017. Combined Iron and Sulfate Reduction Biostimulation as a Novel Approach to Enhance BTEX and PAH Source-Zone Biodegradation in Biodiesel Blend-Contaminated Groundwater. Journal of Hazardous Materials, 326: 229-236. https://doi.org/10.1016/j.jhazmat.2016.12.005
      [20] Parker, S.R., Gammons, C.H., Smith, M.G., et al., 2012. Behavior of Stable Isotopes of Dissolved Oxygen, Dissolved Inorganic Carbon and Nitrate in Groundwater at a Former Wood Treatment Facility Containing Hydrocarbon Contamination. Applied Geochemistry, 27(6): 1101-1110. https://doi.org/10.1016/j.apgeochem.2012.02.035
      [21] Pavlovskiy, I., Selle, B., 2015. Integrating Hydrogeochemical, Hydrogeological, and Environmental Tracer Data to Understand Groundwater Flow for a Karstified Aquifer System. Groundwater, 53(Suppl. 1): 156-165. https://doi.org/10.1111/gwat.12262
      [22] Shang, Y.N., 2013. Study on Karst Water Level Dynamic Change for Many Years of Dawu Water Resource Area in Zibo City. Shangdong Land and Resources, 29(9): 44-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SDDI201309010.htm
      [23] Sookhak Lari, K., Davis, G.B., Rayner, J.L., et al., 2019. Natural Source Zone Depletion of LNAPL: A Critical Review Supporting Modelling Approaches. Water Research, 157: 630-646. https://doi.org/10.1016/j.watres.2019.04.001
      [24] Sperfeld, M., Rauschenbach, C., Diekert, G., et al., 2018. Microbial Community of a Gasworks Aquifer and Identification of Nitrate-Reducing Azoarcus and Georgfuchsia as Key Players in BTEX Degradation. Water Research, 132: 146-157. https://doi.org/10.1016/j.watres.2017.12.040
      [25] Su, C.L., Zhang, Y., Ma, Y.H., et al., 2019. Hydrochemical Evolution Processes of Karst Groundwater in Guiyang City: Evidences from Hydrochemistry and 87Sr/86Sr Ratios. Earth Science, 44(9): 2829-2838(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909002.htm
      [26] Varjani, S.J., Upasani, V.N., 2017. A New Look on Factors Affecting Microbial Degradation of Petroleum Hydrocarbon Pollutants. International Biodeterioration & Biodegradation, 120: 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006
      [27] Wang, Z.J., Zhou, H., Qi, L.X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523(in Chinese with English abstract).
      [28] Zhang, X.M., Zhou, J., Xiong, X.F., et al., 2019. Evaluation of Contaminant Transport Modeling Software for Groundwater Environmental Impact Assessment. Research of Environmental Sciences, 32(1): 10-16(in Chinese with English abstract). http://www.researchgate.net/publication/332712851_Evaluation_of_Contaminant_Transport_Modeling_Software_for_Groundwater_Environmental_Impact_Assessment
      [29] Zhu, X.Y., Liu, J.L., Zhu, J.J., et al., 2000. Characteristics of Distribution and Transport of Petroleum Contaminants in Fracture-Karst Water in Zibo Area, Shandong Province, China. Science in China: Earth Sciences, 43(2): 141-150. doi: 10.1007/BF02878143
      [30] 高宗军, 孙金凤, 鲁统民, 等, 2019. 淄博市大武水源地地下水有机污染物种类与分析评价. 山东科技大学学报(自然科学版), 38(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201904001.htm
      [31] 郭永丽, 全洗强, 王奇岗, 等, 2020. 大武岩溶水源地地下水水化学特征及其影响因素. 南水北调与水利科技(中英文), 18(4): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202004013.htm
      [32] 郭永丽, 吴庆, 翟远征, 等, 2018. 某水源地地下水中石油类有机污染特征. 人民黄河, 40(10): 61-65, 81. doi: 10.3969/j.issn.1000-1379.2018.10.013
      [33] 姜伟男, 2020. 某石油化工污染场地地下水中污染物自然衰减识别研究(硕士学位论文). 长春: 吉林大学, 58.
      [34] 李沫蕊, 王韦舒, 任姝娟, 等, 2014. 运用改进综合评分法筛选典型污染物的研究——以大武水源地地下水典型污染物筛选为例. 环境污染与防治, 36(11): 72-77. doi: 10.3969/j.issn.1001-3865.2014.11.014
      [35] 李培月, 2016. 人类活动影响下的地下水环境及其研究的方法体系. 南水北调与水利科技, 14(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201601003.htm
      [36] 刘姝媛, 2016. 大武地下水水源地污染风险动态评价研究(硕士学位论文). 北京: 北京师范大学, 80-94.
      [37] 刘新华, 傅家谟, 沈照理, 等, 1996. 油类污染过程中地下水地球化学环境的变化——以山东省淄博市某地下水水源地为例. 地球化学, 25(4): 331-338. doi: 10.3321/j.issn:0379-1726.1996.04.004
      [38] 尚宇宁, 2013. 淄博市大武水源地岩溶水水位多年动态变化分析研究. 山东国土资源, 29(9): 44-47. doi: 10.3969/j.issn.1672-6979.2013.09.010
      [39] 苏春利, 张雅, 马燕华, 等, 2019. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据. 地球科学, 44(9): 2829-2838. doi: 10.3799/dqkx.2019.214
      [40] 王泽君, 周宏, 齐凌轩, 等, 2020. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
      [41] 张小茅, 周俊, 熊小锋, 等, 2019. 地下水环境影响评价中污染物运移模拟软件的适宜性评估. 环境科学研究, 32(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201901002.htm
    • 加载中
    图(3) / 表(4)
    计量
    • 文章访问数:  622
    • HTML全文浏览量:  214
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-25
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回