Heavy Metal Pollution Evaluation and Species Analysis of Waste Rock Piles in Shuikoushan, Hunan Province
-
摘要: 湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.Abstract: The Shuikoushan area in Hunan Province is one of the seriously heavy metal pollution areas in Hunan Province. The Longwangshan gold deposit is an important gold deposit in this area. To investigate the pollution source characteristics, pollution pathways, heavy metal mobility, and potential hazards of the waste rock pile of this deposit, a 24 m shallow drilling system was conducted to evaluate the waste rock pile of FS17, and the acidic wastewater from the waste rock pile was collected to analyze the total amount of heavy metals. The single factor index and Nemerow comprehensive pollution index suggest that the FS17 contains large amounts of heavy metals (Cd, Cu, Pb, As, Zn, Ni, and Cr) with an unevenly vertical distribution; the natural leaching water samples have high heavy metal contents. The migration index implies that the FS17 has heavy metal potential migration order of Cd > Ni≈ Zn > Cu > Pb > As > Cr > Fe in shallow layer, and of Cd > Zn > Cu > Ni > Cr > Pb > As > Fe in deep layer. The mobility of heavy metal elements in the shallow layer is greater than that in the deep layer. Thus, in this paper it argues that the FS17 is the main pollution source of heavy metals in this area, and acidic wastewater is the main way to release pollution elements. The heavy metals of Cd, Cu, Zn, and Ni have stronger mobility and are main polluting elements for the surrounding environment. The mobility of Pb, Ni, As is significantly reduced in the deep layer, and its mobility can be weakened by deep burying, and Cr will not pollute the surrounding environment.
-
表 1 FS17废石堆重金属元素含量
Table 1. Heavy metal contents of waste rock pile FS17
样品编号 深度(m) pH 重金属元素含量(10‒6) Zn Pb Cu Cd As Cr Ni U Co Mo Sb Th Tl ZK3‒1 0 543 2 020 330 3.02 101 31 12.4 4.6 50.0 6.49 75.1 10.15 1.41 ZK3‒2 ‒0.2 315 800 802 7.50 112 28 16.8 3.9 43.5 4.35 183 6.81 1.20 ZK3‒3 ‒0.4 989 1 345 380 11.7 498 59 54.8 6.8 36.3 6.98 257 14.90 3.08 ZK3‒4 ‒0.6 1 240 284 536 19.85 214 34 50.3 5.6 39.1 5.12 268 16.55 2.30 ZK3‒5 ‒0.8 682 715 275 11.3 193.5 45 28.8 5.3 40.1 6.25 106 11.40 1.51 ZK3‒6 ‒1.0 492 1 210 241 3.35 128.5 47 69.0 8.2 96.0 10.75 63.9 8.09 0.96 ZK3‒7 ‒1.2 391 1 005 255 6.51 128.5 39 28.4 4.9 30.5 6.57 58.1 6.67 0.86 ZK3‒8 ‒1.7 453 1 145 244 5.24 159 44 27.9 5.1 28.5 7.24 64.7 9.26 1.25 ZK3‒9 ‒2.7 1 240 806 435 11.3 165 36 43.0 6.1 30.3 7.15 113.5 14.70 1.90 ZK3‒10 ‒3.7 3.95 874 767 429 11.95 173.5 38 40.3 5.8 34.1 7.59 145 13.00 1.77 ZK3‒11 ‒4.7 490 957 313 4.60 146 42 30.7 5.4 27.1 5.61 83.3 10.55 1.21 ZK3‒12 ‒5.7 1 740 4 010 267 8.33 1 780 160 40.1 10 28.2 22.0 408 11.60 1.77 ZK3‒13 ‒6.7 805 1 565 328 7.52 101.5 63 22.1 5.8 33.8 6.89 71.9 13.85 1.83 ZK3‒14 ‒7.7 713 1 245 325 5.04 121 46 23.9 6.0 37.8 12.15 53.7 15.55 1.42 ZK3‒15 ‒8.7 1 280 1 360 392 20.0 191 53 103 15.3 41.9 8.03 76.3 9.43 1.29 ZK3‒16 ‒9.7 1 030 728 160 10.15 114.5 64 29.9 5.5 29.6 10.9 35.2 17.00 1.31 ZK3‒17 ‒10.7 1 240 2 200 346 10.45 907 144 118 21.5 31.0 14.65 291 11.45 1.91 ZK3‒18 ‒11.7 162 246 88.1 2.62 40.0 172 166.5 51.8 38.8 4.11 13.35 16.05 0.73 ZK3‒19 ‒12.7 376 382 189 9.63 56.9 137 356 51.2 140.5 5.66 37.4 9.39 1.08 ZK3‒20 ‒13.7 404 243 127.5 3.76 130 240 374 65.6 75.5 10.65 23.9 13.25 1.41 ZK3‒21 ‒14.7 444 338 140.5 6.99 73.2 154 250 63.7 59.0 6.76 26.1 10.75 0.67 ZK3‒22 ‒15.7 255 240 193 7.87 76.3 145 341 46.8 40.6 16.25 12.6 23.00 1.47 ZK3‒23 ‒16.7 4.98 231 269 89.2 3.99 74.7 297 304 61.6 28.8 11.55 12.75 12.85 0.85 ZK3‒24 ‒17.7 355 210 86.5 6.34 64.3 288 378 51.7 53.1 9.03 17.3 10.40 0.64 ZK3‒25 ‒18.7 273 164.5 96.1 5.42 69.0 311 330 46.4 50.0 10.8 20.3 10.20 0.72 ZK3‒26 ‒19.7 332 366 122 4.30 77.1 290 328 49.7 30.9 9.04 19.3 13.90 0.97 ZK3‒27 ‒20.7 261 242 98.7 4.19 53.4 195 313 44.4 30.2 8.66 18.75 10.70 0.90 ZK3‒28 ‒21.7 211 240 123.5 4.46 53.2 170 243 95.0 44.8 5.78 20.2 12.20 0.75 ZK3‒29 ‒22.7 1 000 248 339 19.65 216 20.0 36.5 4.6 48.6 3.07 35.7 7.87 2.87 ZK3‒30 ‒23.7 601 204 80.5 2.74 234 281 416 72.6 34.7 28.5 27.2 6.17 0.85 表 2 FS17废石堆重金属元素污染超标率
Table 2. Pollution exceeding standard rate of heavy metals in waste rock pile FS17
项目 Zn Pb Cu Cd As Cr Ni U Co 堆内最大值(10‒6) 1 740 4 010 802 20 1 780 311 416 95 728 堆内最小值(10‒6) 29.9 10.9 64.0 2.62 40.0 20.0 12.4 3.9 27.1 平均值(10‒6) 614.06 827.91 257.85 7.99 215.07 121.29 156.85 61.80 67.72 标准差 415.07 834.6 164.35 4.93 338.83 98.67 142.47 27.70 126.87 变异系数 0.68 1.01 0.64 0.62 1.58 0.81 0.91 0.98 1.87 风险筛选值(10‒6) 200 70 50 0.3 40 150 60 ‒ ‒ 超标倍数范围 0.15~8.70 0.16~57.29 1.28~16.04 8.73~66.67 1.00~44.50 0.13~2.07 0.21~6.93 ‒ ‒ 超标率(%) 93.33 96.67 100 100 96.67 36.67 53.33 ‒ ‒ 湖南省土壤背景值(魏复盛等, 1991)(10‒6) 95 27 27 0.08 14 67 33 2.72 15 超标倍数范围 0.31~6.46 0.40~30.66 2.37~9.55 33.16~101.17 2.86~15.36 0.30~1.81 0.38~4.75 1.43~34.93 1.81~4.51 超标率(%) 97.67 96.67 100 100 100 46.67 73.33 100 100 表 3 单因子污染指数评价结果
Table 3. Results of the single factor pollution index
深度(m) 编号 单因子污染指数Pi 综合污染指数 As Cd Cr Cu Ni Pb Zn 0 ZK3‒1 2.53 10.07 0.21 6.60 0.21 28.86 2.72 21.05 ‒0.2 ZK3‒2 2.80 25.00 0.19 16.04 0.28 11.43 1.58 18.60 ‒0.4 ZK3‒3 12.45 39.00 0.39 7.60 0.91 19.21 4.95 28.87 ‒0.6 ZK3‒4 5.35 66.17 0.23 10.72 0.84 4.06 6.20 47.73 ‒0.8 ZK3‒5 4.84 37.67 0.30 5.50 0.48 10.21 3.41 27.37 ‒1.0 ZK3‒6 3.21 11.17 0.31 4.82 1.15 17.29 2.46 12.89 ‒1.2 ZK3‒7 3.21 21.70 0.26 5.10 0.47 14.36 1.96 16.06 ‒1.7 ZK3‒8 3.98 17.47 0.29 4.88 0.47 16.36 2.27 13.19 ‒2.7 ZK3‒9 4.13 37.67 0.24 8.70 0.72 11.51 6.20 27.54 ‒3.7 ZK3‒10 4.34 39.83 0.25 8.58 0.67 10.96 4.37 29.02 ‒4.7 ZK3‒11 3.65 15.33 0.28 6.26 0.51 13.67 2.45 11.65 ‒5.7 ZK3‒12 44.50 27.77 1.07 5.34 0.67 57.29 8.70 43.09 ‒6.7 ZK3‒13 2.54 25.07 0.42 6.56 0.37 22.36 4.03 18.78 ‒7.7 ZK3‒14 3.03 16.80 0.31 6.50 0.40 17.79 3.57 13.49 ‒8.7 ZK3‒15 4.78 66.67 0.35 7.84 1.72 19.43 6.40 48.37 ‒9.7 ZK3‒16 2.86 33.83 0.20 1.28 2.67 0.16 0.15 24.28 ‒10.7 ZK3‒17 22.68 34.83 0.96 6.92 1.97 31.43 6.20 26.82 ‒11.7 ZK3‒18 1.00 8.73 1.15 1.76 2.78 3.51 0.81 6.49 ‒12.7 ZK3‒19 1.42 32.10 0.91 3.78 5.93 5.46 1.88 23.29 ‒13.7 ZK3‒20 3.25 12.53 1.60 2.55 6.23 3.47 2.02 9.42 ‒14.7 ZK3‒21 1.83 23.30 1.03 2.81 4.17 4.83 2.22 16.97 ‒15.7 ZK3‒22 1.91 26.23 0.97 3.86 5.68 3.43 1.28 19.06 ‒16.7 ZK3‒23 1.87 13.30 1.98 1.78 5.07 3.84 1.16 9.85 ‒17.7 ZK3‒24 1.61 21.13 1.92 1.73 6.30 3.00 1.78 15.42 ‒18.7 ZK3‒25 1.73 18.07 2.07 1.92 5.50 2.35 1.37 13.20 ‒19.7 ZK3‒26 1.93 14.33 1.93 2.44 5.47 5.23 1.66 10.67 ‒20.7 ZK3‒27 1.34 13.97 1.30 1.97 5.22 3.46 1.31 10.29 ‒21.7 ZK3‒28 1.33 14.87 1.13 2.47 4.05 3.43 1.06 10.89 ‒22.7 ZK3‒29 5.40 65.50 0.13 6.78 0.61 3.54 5.00 47.14 ‒23.7 ZK3‒30 5.85 9.13 1.87 1.61 6.93 2.91 3.01 7.19 平均值 5.38 26.64 0.81 5.16 2.61 11.83 3.07 19.65 表 4 FS17废石堆样品BCR分级提取结果
Table 4. The results of BCR fractional extraction from waste rock pile
元素 编号 深度(m) T1态 T2态 T3态 T4态 回收率(%) MI值(%) Pb(10‒6) ZK3‒3 0.4~0.6 8.72 230.62 29.97 985.09 92.92 0.70 ZK3‒13 6.7~7.7 131.51 634.84 200.45 540.79 96.02 8.72 ZK3‒24 17.7~18.7 0.11 43.29 19.09 132.53 88.24 0.06 ZK3‒26 19.7~20.7 0.26 66.36 19.56 250.61 97.06 0.08 Zn(10‒6) ZK3‒3 0.4~0.6 288.29 114.99 170.78 479.71 108.08 27.36 ZK3‒13 6.7~7.7 248.37 174.76 108.46 388.81 106.04 26.99 ZK3‒24 17.7~18.7 19.90 102.32 51.47 212.04 111.16 5.16 ZK3‒26 19.7~20.7 22.63 62.99 41.36 227.16 112.07 6.39 Cd(10‒6) ZK3‒3 0.4~0.6 5.46 1.84 1.28 1.56 84.85 53.88 ZK3‒13 6.7~7.7 2.85 1.27 1.09 0.46 83.85 50.24 ZK3‒24 17.7~18.7 0.52 4.24 0.41 0.58 87.50 9.02 ZK3‒26 19.7~20.7 0.63 2.06 0.31 0.63 85.07 17.34 Cu(10‒6) ZK3‒3 0.4~0.6 54.49 35.83 133.69 102.09 91.09 16.71 ZK3‒13 6.7~7.7 55.90 54.94 95.03 93.80 95.74 18.65 ZK3‒24 17.7~18.7 3.60 27.59 17.53 30.55 92.06 4.54 ZK3‒26 19.7~20.7 4.79 28.23 20.91 55.68 92.10 4.37 As(10‒6) ZK3‒3 0.4~0.6 2.29 48.25 136.87 338.25 96.98 0.44 ZK3‒13 6.7~7.7 0.18 5.00 23.76 80.33 102.12 0.17 ZK3‒24 17.7~18.7 0.03 0.13 3.22 58.84 98.91 0.05 ZK3‒26 19.7~20.7 0.00 0.29 2.68 68.85 100.44 0.00 Cr(10‒6) ZK3‒3 0.4~0.6 0.15 1.51 4.19 69.17 127.15 0.20 ZK3‒13 6.7~7.7 0.15 1.02 1.98 61.79 101.47 0.24 ZK3‒24 17.7~18.7 1.04 2.42 17.00 316.99 116.77 0.31 ZK3‒26 19.7~20.7 0.67 3.84 16.58 295.53 112.27 0.21 Ni(10‒6) ZK3‒3 0.4~0.6 12.96 4.74 18.95 10.86 91.55 27.28 ZK3‒13 6.7~7.7 5.75 3.84 3.74 7.42 88.31 27.71 ZK3‒24 17.7~18.7 3.75 101.20 62.78 162.22 92.68 1.14 ZK3‒26 19.7~20.7 2.93 38.33 33.08 203.87 92.12 1.05 Fe(10‒6) ZK3‒3 0.4~0.6 73.08 1 953.52 20 976.63 36 805.02 90.21 0.12 ZK3‒13 6.7~7.7 11.56 1 856.99 9 756.69 31 785.99 90.25 0.03 ZK3‒24 17.7~18.7 0.00 5 574.37 3 440.65 54 728.33 95.00 0.00 ZK3‒26 19.7~20.7 0.00 5 741.02 3 620.16 48 843.46 94.18 0.00 表 5 FS17废石堆淋滤水分析结果
Table 5. Analysis results of leached water from waste rock pile
水样编号 pH Pb Zn Cd Cu As Cr Ni Fe 等级 地表水Ⅴ类标准 6~9 0.05 1.0 0.005 1.0 0.05 0.05 0.02 1.0 FS17废石堆淋滤水样 2.57 0.035 251 4.29 49.4 0.04 0.06 13.15 804 不达标 超标倍数(含量/标准) ‒ ‒ 251 858 49.4 ‒ 1.2 657.5 8.42 注:浓度单位均为mg∙L-1,pH单位为1;“‒”表示未超标. -
[1] Bao, Z., Bain, J., Holland, S.P., et al., 2020. Faro Waste Rock Project: Characterizing Geochemical Heterogeneity in Sulfide- and Carbonate-Rich Waste Rock. Applied Geochemistry, 121: 104691. https://doi.org/10.1016/j.apgeochem.2020.104691 [2] Chai, L., Li, H., Yang, Z., et al., 2017. Heavy Metals and Metalloids in the Surface Sediments of the Xiangjiang River, Hunan, China: Distribution, Contamination, and Ecological Risk Assessment. Environmental Science and Pollution Research, 24(1): 874-885. https://doi.org/10.1007/s11356-016-7872-x [3] Chen, H.M., 2010. Environmental Soil Science. Science Press, Beijing, 54-58 (in Chinese). [4] Chen, T.H., Feng, J.H., Xu, X. C., et al., 2002. Simulation Experiments on Weathering and Oxidation of Sulfide Minerals in Mine Tailings. Acta Petrologica et Mineralogica, (3): 298-302 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200203012.htm [5] Fang, X., Peng, B., Wang, X., et al., 2019. Distribution, Contamination and Source Identification of Heavy Metals in Bed Sediments from the Lower Reaches of the Xiangjiang River in Hunan Province, China. Science of the Total Environment, 689: 557-570. https://doi.org/10.1016/j.scitotenv.2019.06.330 [6] Gieré, R., Sidenko, N.V., Lazareva, E.V., 2003. The Role of Secondary Minerals in Controlling the Migration of Arsenic and Metals from High-Sulfide Wastes (Berikul Gold Mine, Siberia). Applied Geochemistry, 18(9): 1347-1359. https://doi.org/10.1016/S0883-2927(03)00055-6 [7] Gong, X., Chen, Z., Luo, Z., 2014. Spatial Distribution, Temporal Variation, and Sources of Heavy Metal Pollution in Groundwater of a Century-Old Nonferrous Metal Mining and Smelting Area in China. Environmental Monitoring and Assessment, 186(12): 9101-9116. https://doi.org/10.1007/s10661-014-4069-y [8] Jallad, K. N., 2015. Heavy Metal Exposure from Ingesting Rice and Its Related Potential Hazardous Health Risks to Humans. Environmental Science and Pollution Research, 22(20): 15449-15458. https://doi.org/10.1007/s11356-015-4753-7 [9] Kumar, S., Prasad, S., Yadav, K. K., et al., 2019. Hazardous Heavy Metals Contamination of Vegetables and Food Chain: Role of Sustainable Remediation Approaches-A Review. Environmental Research, 179: 108792. https://doi.org/10.1016/j.envres.2019.108792 [10] Lei, L.Q., Luo, Y.H., Song, C.A., et al., 2013. Evaluation and Prediction of Combined Pollution of Heavy Metals from Sulfide Tailing in a Mining Area in Northern Guangxi. Earth Science, 38(5): 1107-1115 (in Chinese with English abstract). [11] Lei, L. Q., Mo, B.J., Fu, W., et al., 2014. Occurrence of Heavy Metals in Carbonate Sulfide Tailings in Bari. Earth and Environment, 42(5): 604-610 (in Chinese with English abstract). [12] Li, G., Tong, F.P., Liu, Z.H., 2012. Analysis of Heavy Metal Pollution in Shuikou Mountain Lead and Zinc Mine in Hengyang. Journal of Central South University of Forestry and Technology, 32(7): 105-109 (in Chinese with English abstract). [13] Li, G., Tong, F.P., Liu, Z.H., 2014. Study on Plant Investigate and Species Diversity of Shuikoushan Pb-Zn Mining Area in Hengyang. Chinese Agricultural Science Bulletin, 30(13): 66-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNTB201413014.htm [14] Liu, B., Li, T.Y., Cai, Y.Y., 2018. A Brief Introduction of Current Situation, Harm and Repair Methods of "Cadmium Rice". Modern Food, (21): 86-89 (in Chinese with English abstract). [15] Lu, Y.J., 2020. The Study of Prospecting Direction and Ore-Controlling Factor of Longwangshan Gold Deposit in Hunan Province. Mineral Resources and Geology, 34(3): 408-414 (in Chinese with English abstract). [16] Lü, J.R., Wang, Z.W., Liu, Y. M., et al., 2019. Migration of Heavy Metals in Alkaline Saline Surface Soil during Wet-Dry Alternating Process. Journal of Tianjin Normal University (Natural Science Edition), 39(5): 57-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TJSD201905010.htm [17] Nieva, N.E., Borgnino, L., García, M.G., 2018. Long Term Metal Release and Acid Generation in Abandoned Mine Wastes Containing Metal-Sulphides. Environmental Pollution, 242: 264-276. https://doi.org/10.1016/j.envpol.2018.06.067 [18] Peng, B., Tang, X.Y., Yu, C.X., et al., 2011. Heavy Metal Contamination of Inlet Sediments of the Xiangjiang River and Pb Isotopic Geochemical Implication. Acta Geologica Sinica, 85(2): 282-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102015.htm [19] Smuda, J., Dold, B., Friese, K., et al., 2007. Mineralogical and Geochemical Study of Element Mobility at the Sulfide-Rich Excelsior Waste Rock Dump from the Polymetallic Zn-Pb-(Ag-Bi-Cu) Deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92(2-3): 97-110. https://doi.org/10.1016/j.gexplo.2006.08.001 [20] St-Arnault, M., Vriens, B., Blaskovich, R., et al., 2020. Geochemical and Mineralogical Assessment of Reactivity in a Full-Scale Heterogeneous Waste-Rock Pile. Minerals Engineering, 145: 106089. https://doi.org/10.1016/j.mineng.2019.106089 [21] Sun, X., Ning, P., Tang, X., et al., 2012. Heavy Metals Migration in Soil in Tailing Dam Region of Shuikoushan, Hunan Province, China. Procedia Environmental Sciences, 16: 758-763. https://doi.org/10.1016/j.proenv.2012.10.103 [22] Vriens, B., Peterson, H., Laurenzi, L., et al., 2019. Long-Term Monitoring of Waste-Rock Weathering at the Antamina Mine, Peru. Chemosphere, 215: 858-869. https://doi.org/10.1016/j.chemosphere.2018.10.105 [23] Wang, J.Y., Lai, J.Q., 2019. Geological Characteristics and Prospecting Criteria of Longwangshan Gold Deposit in Shuikou Mountain Orefield, Hunan Province. Southern Metals, (4): 8-13 (in Chinese with English abstract). [24] Wei, C.W., Wang, C., Yang, L.S., 2009. Characterizing Spatial Distribution and Sources of Heavy Metals in the Soils from Mining-Smelting Activities in Shuikoushan, Hunan Province, China. Journal of Environmental Science, 21(9): 1230-1236. https://doi.org/10.1016/s1001-0742(08)62409-2 [25] Wei, F.S., Chen, J.S., Wu, Y.Y., et al., 1991. Research on the Background Value of Soil Environment in China. Environmental Science, 12(4): 12-19, 94 (in Chinese with English abstract). [26] Wen, D.G., Lin, L.J., Sun, J.C., et al., 2012. Groundwater Quality and Contamination Assessment in the Main Plains of Eastern China. Earth Science, 37(2): 220-228 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201202005.htm [27] Wu, K.Z., Gao, Z.G., Liu, J.L., 2009. Geological Characteristics and Prospecting Prediction of Longwangshan Gold Deposit. West-China Exploration Engineering, 21(9): 105-108 (in Chinese). [28] Yan, Y.Q., 2019. Analysis on the Status Quo of Water Pollution Control in Xiangjiang River Basin. China Resources Comprehensive Utilization, 37(12): 36-38 (in Chinese with English abstract). [29] Yang, H. J., Xu, Y. H., Liu, Y. B., et al., 2018. Environmental Health Risk Assessment of Shuikou Mountain Section of Hengyang in Xiangjiang River Basin. Environmental Chemistry, 37(9): 2060-2070 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJHX201809021.htm [30] Yin, J.Z., Wang, M.C., 1993. Geological Characteristics and Genesis of Longwangshan Gold Deposit in Shuikou Mountain Orefield, Hunan Province. Gold Geology, (3): 46-50 (in Chinese). [31] Zhang, L., Zhao, G., 1996. The Species and Geochemical Characteristics of Heavy Metals in the Sediments of Kangjiaxi River in the Shuikoushan Mine Area, China. Applied Geochemistry, 11(1): 217-222. https://doi.org/10.1016/0883-2927(95)00096-8 [32] Zhu, Y. M., Feng, R. W., Wei, C.Y., 2012. The Effectiveness of Arsenic in Paddy Soil and Vegetable Soil of Shuikou Mountain. Journal of Ecology, 31(10): 2657-2661 (in Chinese with English abstract). [33] 陈怀满, 2010. 环境土壤学. 北京: 科学出版社, 54-58. [34] 陈天虎, 冯军会, 徐晓春, 等, 2002. 尾矿中硫化物风化氧化模拟实验研究. 岩石矿物学杂志, 21(3): 298-302. doi: 10.3969/j.issn.1000-6524.2002.03.013 [35] 雷良奇, 罗远红, 宋慈安, 等, 2013. 桂北某矿区硫化物尾矿重金属复合污染评价预测. 地球科学, 38(5): 1107-1115. doi: 10.3799/dqkx.2013.109 [36] 雷良奇, 莫斌吉, 付伟, 等, 2014. 巴里富碳酸盐硫化物尾矿中重金属的赋存状态. 地球与环境, 42(5): 604-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201405004.htm [37] 李贵, 童方平, 刘振华, 2012. 衡阳水口山铅锌矿区重金属污染现状的分析. 中南林业科技大学学报, 32(7): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201207023.htm [38] 李贵, 童方平, 刘振华, 等, 2014. 衡阳水口山铅锌矿区植被调查及物种多样性分析. 中国农学通报, 30(13): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201413014.htm [39] 刘斌, 黎天勇, 蔡扬尧, 2018. "镉大米"的现状、危害及修复方法简述. 现代食品, (21): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SPXD201821031.htm [40] 卢玉杰, 2020. 湖南龙王山金矿床控矿因素及找矿方向探讨. 矿产与地质, 34(3): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202003002.htm [41] 吕佳芮, 王祖伟, 刘雅明, 等, 2019. 干湿交替过程中重金属在碱性盐化表层土壤中的迁移特征. 天津师范大学学报(自然科学版), 39(5): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TJSD201905010.htm [42] 彭渤, 唐晓燕, 余昌训, 等, 2011. 湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪. 地质学报, 85(2): 282-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102015.htm [43] 王金艳, 赖健清, 2019. 湖南省水口山矿田龙王山金矿床地质特征及找矿标志. 南方金属, (4): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NFGT201904004.htm [44] 魏复盛, 陈静生, 吴燕玉, 等, 1991. 中国土壤环境背景值研究. 环境科学, 12(4): 12-19, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ199104006.htm [45] 文冬光, 林良俊, 孙继朝, 等, 2012. 中国东部主要平原地下水质量与污染评价. 地球科学, 37(2): 220-228. doi: 10.3799/dqkx.2012.022 [46] 吴康忠, 高中贵, 柳佳良, 2009. 龙王山金矿床地质特征及找矿预测. 西部探矿工程, 21(9): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200909044.htm [47] 严艺琪, 2019. 浅析湘江流域水污染的治理现状. 中国资源综合利用, 37(12): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201912010.htm [48] 杨海君, 许云海, 刘亚宾, 等, 2018. 湘江流域衡阳水口山段水环境健康风险评估. 环境化学, 37(9): 2060-2070. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201809021.htm [49] 银剑钊, 王敏初, 1993. 湖南省水口山矿田龙王山金矿床地质特征及成因. 黄金地质科技, (3): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199303008.htm [50] 朱雁鸣, 冯人伟, 韦朝阳, 2012. 水口山水稻土与菜地土中砷的有效性. 生态学杂志, 31(10): 2657-2661. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201210036.htm