Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton
-
摘要: 云中山地体位于华北克拉通中部造山带中部,是衔接吕梁地体和五台-恒山地体的关键位置.确定云中山地体的变质作用演化历史可为深入理解吕梁-云中山-五台-恒山地区的整体地质过程提供重要限定.对云中山石榴斜长角闪岩开展了详细的岩石学、相平衡模拟和锆石年代学研究.两个代表性样品均具有顺时针变质P-T-t轨迹,峰期阶段位于金红石稳定域,温压条件分别为0.96±0.11 GPa/720±8.0℃(L1903)和1.26±0.08 GPa/756±14.0℃(L1906);峰期后发生降压作用,金红石转变成钛铁矿,石榴石边部生长斜长石(+普通角闪石)冠状边,普通角闪石转变成镁铁闪石;晚期阶段以冷却为主,石榴石的边部出现少量绿泥石交代.对两个样品的岩石组构和化学成分对比表明,石榴斜长角闪岩的部分熔融受全岩成分影响,岩石贫硅钠而富铁镁钛时难熔,反之则易熔.样品变质锆石的U-Pb定年结果为1 928~1 806 Ma.这些锆石相对富集重稀土,利用锆石Ti温度计计算的结晶温度为520~680℃,与岩石的冷却温度相近,因此所获年龄应代表退变冷却时代.吕梁-云中山-五台-恒山地区的整体地质特征对比表明,云中山地体的岩石-地层组成和变质作用演化与五台-恒山地体非常相似,记录了古元古代晚期的碰撞造山事件.Abstract: The Yunzhongshan terrane is situated in the middle segment of the Trans-North China Orogen, a key position connecting the Lüliang and Wutai-Hengshan terranes. Addressing its metamorphic evolution is of great importance in understanding the tectonic process of the Lüliang-Yunzhongshan-Wutai-Hengshan areas. Detailed studies of petrology, phase modelling and geochronology were carried out on garnet amphibolite from the Yunzhongshan terrane. Both samples exhibit clockwise P-T-t paths, which are characterized by rutile-bearing peak stages with P-T conditions of 0.96±0.11 GPa/720±8.0℃(L1903) and 1.26±0.08 GPa/756±14.0℃(L1906), respectively. The post-peak stages are dominated by decompression, accompanied by transition of rutile by ilmenite, growth of plagioclase (+hornblende) coronae surrounding garnet and transition of hornblende by cummingtonite. The late stages are dominated by cooling, with local metasomatism of garnet by chlorite. By comparing petrographical features and chemical compositions of the two samples, it can be concluded that the partial melting of garnet amphibolite is affected by the bulk-rock compositions. The rock is refractory when it is rich in Fe, Mg and Ti and poor in Si and Na. Zircon U-Pb dating yields metamorphic ages of 1 928-1 806 Ma, interpreted to represent the cooling stage of metamorphism. This is supported by high concentration of HREE in zircon grains and low crystallization temperatures of 520-680℃ calculated by Ti-in-zircon thermometer. Comparison of the overall geological characteristics of the Lüliang-Yunzhongshan-Wutai-Hengshan areas shows that the lithostratigraphic units and metamorphism evolution in the Yunzhongshan terrane are very similar to those in the Wutai-Hengshan terranes, which record the Late Paleoproterozoic collision orogeny.
-
Key words:
- North China Craton /
- Yunzhongshan terrane /
- garnet amphibolite /
- P-T-t path /
- tectonic implication /
- petrology
-
图 1 华北克拉通中部造山带构造简图(a)和吕梁‒云中山地区地质图(b)
a.据Zhao et al.(2007);b.据Zhao et al.(2008)和王惠初等(2020)修改. 图a中变质杂岩体缩写:HS.恒山;WF.五台;FP.阜平
Fig. 1. Simplified tectonic map of the Trans-North China Orogen (a) and geological map of the Lüliang-Yunzhongshan area (b)
图 3 云中山地体石榴斜长角闪岩样品的岩相学照片
a.(L1903)石榴石变斑晶包裹普通角闪石、金红石、钛铁矿和石英,“包裹体”型斜长石生长于裂隙,长红线表示石榴石成分环带的位置;b.(L1903)石榴石变斑晶包裹普通角闪石、钛铁矿和石英,“包裹体”型斜长石生长于裂隙;石榴石边部可见绿泥石交代,普通角闪石可见镁铁闪石边;c.(L1903)基质矿物主要为普通角闪石、斜长石、钛铁矿、镁铁闪石和石英;d.(L1906)石榴石变斑晶被斜长石(+普通角闪石)冠状边结构包围.斜长石的An值从冠状边向基质逐渐降低;e.(L1906)石榴石含有钛铁矿和石英包裹体;f.(L1906)基质矿物组成主要为普通角闪石、斜长石、钛铁矿和石英
Fig. 3. Photomicrographs of garnet amphibolite samples from the Yunzhongshan terrane
图 6 云中山地体石榴斜长角闪岩样品的P-T和T-XH2O视剖面图
a. NCFMASHTO体系下L1903样品的P-T视剖面图,石英和水设为过量;b. L1903样品主要矿物的成分等值线,石榴石的镁铝榴石py(=Mg/(Fe2++Mg+Ca))、钙铝榴石gr(=Ca/(Fe2++Mg+Ca)),斜长石An(=Ca/(Ca+Na)),普通角闪石Ti和M2位Al;c. NCKFMASHTO体系下L1906的T-XH2O视剖面图,压力为0.95 GPa,石英设为过量.垂直虚线表示图 6d中的水含量;d. L1906样品的P-T视剖面图,矿物成分等值线包括斜长石An(=Ca/(Ca+Na+K))、石榴石的镁铝榴石py(=Mg/(Fe2++Mg+Ca))、普通角闪石Ti和M2位Al.全岩成分通过XRF测试得到,摩尔百分比归一化后结果见表 1
Fig. 6. The P-T and T-XH2O pseudosection of garnet amphibolite samples from the Yunzhongshan terrane
图 7 云中山地体石榴斜长角闪岩样品的锆石阴极发光图像及U-Pb年龄谐和图
a,c. 样品L1903和L1906的锆石阴极发光图像,红圈表示LA-ICP-MS分析点位,标注的编号、207Pb/206Pb年龄(Ma)及Th/U比值分别与表 3对应;b. L1903样品的年龄谐和图,蓝圈旁注明207Pb/206Pb年龄和Th/U比值;d. L1906样品的年龄谐和图,蓝圈为Ⅰ型锆石测点结果,且计算得到加权平均年龄;灰圈表示Ⅱ型锆石测点结果,Pb丢失明显
Fig. 7. Cathodoluminescence images of zircon and concordia diagrams of U-Pb dating results of garnet amphibolite samples from the Yunzhongshan terrane
图 9 吕梁‒云中山‒五台‒恒山地区代表性变质P-T轨迹
1.五台石榴斜长角闪岩(Qian and Wei, 2016);2.南恒山石榴斜长角闪岩(Qian and Wei, 2016);3.北恒山高压麻粒岩(Zhang et al., 2013);4.吕梁变泥质岩(于津海等,2004);5.吕梁石榴斜长角闪岩(Zhao et al., 2010);6.吕梁基性麻粒岩(Xiao et al., 2017);7.吕梁泥质片麻岩(Zhao et al., 2017);8.云中山石榴斜长角闪岩L1903(本文);9.云中山石榴斜长角闪岩L1906(本文).虚线ru(L1903)表示L1903样品金红石的出现线.变质相的划分引自Wei and Duan(2018)
Fig. 9. The representative P-T paths for metamorphic rocks from the Lüliang-Yunzhongshan-Wutai-Hengshan areas
图 10 吕梁‒云中山‒五台‒恒山地区代表性变质年龄的直方图
年龄资料引自Kröner et al.(2006);Zhao et al.(2008);Qian et al.(2013, 2015, 2017, 2019, 2021);Zhang et al.(2013, 2018);Qian and Wei(2016);Xiao et al.(2017, 2019);Zhao et al.(2017);米广尧等(2018);Liu et al.(2020)和本文数据
Fig. 10. Histogram of representative metamorphic ages from the Lüliang-Yunzhongshan-Wutai-Hengshan areas
表 1 云中山地体石榴斜长角闪岩样品的全岩成分及标准化摩尔比
Table 1. Bulk-rock compositions and their normalized mole-proportions of garnet amphibolite samples from the Yunzhongshan terrane
质量百分比(wt.%) SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 LOI XMg L1903 48.31 2.27 14.06 17.41 0.23 5.89 9.61 0.81 0.40 0.38 0.30 0.40 L1906-01 60.60 0.68 17.24 7.32 0.12 2.32 5.81 4.43 0.60 0.13 0.52 0.39 L1906-02 61.96 0.67 16.98 6.60 0.10 2.09 6.13 4.22 0.40 0.12 0.35 0.39 摩尔比(%) H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O XMg L1903 52.80 9.06 10.66 9.59 14.32 0.85 1.86 0.85 0.40 图 7a、7b L1906-02 0.00 67.58 10.91 6.98 3.40 5.41 0.28 4.46 0.55 0.43 0.39 图 7c L1906-02 5.00 64.20 10.37 6.63 3.23 5.14 0.26 4.24 0.52 0.40 0.39 图 7c L1906-02 1.68 66.45 10.73 6.86 3.34 5.32 0.27 4.38 0.54 0.42 0.39 图 7d 注:XMg=Mg/(Mg+Fe) (mol%);Fe2O3T代表全铁;L1906-01和L1906-02表示采自同一块岩石样品,进行主量成分平行对比测试,其中L1906-02用于下文相平衡模拟. 表 2 云中山地体石榴斜长角闪岩L1903和L1906样品的电子探针分析结果
Table 2. Microprobe analyses for garnet amphibolite samples L1903 and L1906 from the Yunzhongshan terrane
样品 L1903 L1906 矿物 g-C g-R1 g-R2 pl-包体 pl-基质 hb-包体 hb-基质1 hb-基质2 chl cumm ilm g-C g-R1 g-R2 hb-冠状边 hb-基质1 hb-基质2 pl-冠状边 pl-基质 chl ilm SiO2 36.71 37.87 36.89 45.56 43.85 43.24 42.51 42.59 27.95 52.40 0.04 34.97 35.72 36.61 41.20 41.20 42.34 54.80 58.41 21.95 0.01 TiO2 0.11 0.00 0.06 0.02 0.67 0.84 0.70 0.83 1.35 0.05 54.04 0.04 0.02 0.00 0.73 0.64 0.49 0.02 0.02 0.02 51.06 Al2O3 20.83 20.74 20.38 34.70 12.02 13.23 12.54 14.10 16.48 0.70 0.01 20.54 20.50 20.52 13.40 13.07 13.26 23.83 23.71 19.78 0.00 Cr2O3 0.08 0.06 0.01 0.03 0.03 0.07 0.04 0.06 0.05 0.00 0.07 0.02 0.00 0.05 0.05 0.00 0.02 0.00 0.02 0.03 0.02 Fe2O3 2.79 1.01 1.58 0.14 21.48 0.88 3.57 2.28 0.00 0.08 0.00 3.00 1.82 0.87 5.28 4.56 2.88 0.71 0.00 0.00 1.52 FeO 25.83 29.10 29.53 0.00 0.00 15.33 14.65 15.85 27.02 29.70 46.63 29.51 30.25 32.05 14.67 14.43 14.97 0.00 0.00 37.80 45.31 MnO 1.61 1.39 2.10 0.00 0.07 0.11 0.09 0.14 0.04 0.49 0.59 1.24 1.65 2.01 0.12 0.22 0.19 0.06 0.00 0.65 0.53 MgO 2.38 2.33 1.87 0.00 8.37 8.74 8.47 7.98 12.06 13.23 0.25 3.39 2.67 2.10 7.75 8.11 8.10 0.04 0.00 4.00 0.02 CaO 9.50 8.18 7.09 19.29 11.46 11.80 11.24 11.49 0.44 0.80 0.07 3.86 4.61 4.53 10.79 11.06 11.08 9.39 5.60 0.07 0.00 Na2O 0.02 0.03 0.02 1.02 0.87 1.00 0.87 1.04 0.10 0.01 0.03 0.02 0.03 0.03 1.14 1.21 1.01 7.10 8.24 0.06 0.01 K2O 0.01 0.00 0.00 0.00 0.34 0.43 0.36 0.44 0.57 0.01 0.00 0.00 0.00 0.00 0.32 0.35 0.26 0.05 0.17 0.00 0.00 Totals 99.87 100.71 99.53 100.76 99.16 95.67 95.04 96.80 86.06 97.47 101.73 96.59 97.27 98.77 95.45 94.85 94.60 96.00 96.17 84.36 98.48 Oxygens 12.00 12.00 12.00 8.00 8.00 23.00 23.00 23.00 14.00 23.00 3.00 12.00 12.00 12.00 23.00 23.00 23.00 8.00 8.00 14.00 3.00 Si 2.93 3.00 2.98 2.09 2.19 6.54 6.50 6.41 3.04 7.93 0.00 2.90 2.95 2.99 6.32 6.35 6.50 2.58 2.70 2.62 0.00 Ti 0.01 0.00 0.00 0.00 0.03 0.10 0.08 0.09 0.11 0.01 1.00 0.00 0.00 0.00 0.08 0.07 0.06 0.00 0.00 0.00 0.99 Al 1.96 1.94 1.94 1.88 0.71 2.36 2.26 2.50 2.11 0.13 0.00 2.01 1.99 1.98 2.42 2.38 2.40 1.33 1.29 2.79 0.00 Cr 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Fe3+ 0.17 0.06 0.10 0.01 0.81 0.10 0.41 0.26 0.00 0.01 0.00 0.19 0.11 0.05 0.61 0.53 0.33 0.03 0.00 0.00 0.03 Fe2+ 1.72 1.93 1.99 0.00 0.00 1.94 1.87 1.99 2.46 3.76 0.96 2.05 2.09 2.19 1.88 1.86 1.92 0.00 0.00 3.78 0.97 Mn 0.11 0.09 0.14 0.00 0.00 0.01 0.01 0.02 0.00 0.06 0.01 0.09 0.12 0.14 0.02 0.03 0.03 0.00 0.00 0.07 0.01 Mg 0.28 0.28 0.23 0.00 0.62 1.97 1.93 1.79 1.96 2.98 0.01 0.42 0.33 0.26 1.77 1.86 1.85 0.00 0.00 0.71 0.00 Ca 0.81 0.70 0.61 0.95 0.61 1.91 1.84 1.85 0.05 0.13 0.00 0.34 0.41 0.40 1.77 1.83 1.82 0.47 0.28 0.01 0.00 Na 0.00 0.01 0.00 0.09 0.08 0.29 0.26 0.30 0.02 0.00 0.00 0.00 0.01 0.01 0.34 0.36 0.30 0.65 0.74 0.01 0.00 K 0.00 0.00 0.00 0.00 0.02 0.08 0.07 0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.06 0.07 0.05 0.00 0.01 0.00 0.00 X(矿物) 0.10 0.09 0.08 0.91 0.88 0.90 0.76 0.91 0.44 0.15 0.12 0.09 0.74 0.73 0.89 0.42 0.27 0.16 Y(矿物) 0.29 0.24 0.22 0.10 0.08 0.09 0.12 0.14 0.14 0.08 0.07 0.06 注:X(g)=Xpy=Mg/(Fe2++Mg+Ca);Y(g)=Xgr=Ca/(Fe2++Mg+Ca);X(hb)=角闪石M2位的Al;Y(hb)=角闪石的Ti含量;X(pl)=Ca/(Ca+Na)(L1903),X(pl)=Ca/(Ca+Na+K)(L1906);X(chl)=Mg/(Mg+Fe2+);g-C、g-R1、g-R2对应 图 3 的编号;矿物化学式的计算运用AX软件完成(https://filedn.com/lU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html).表 3 云中山地体石榴斜长角闪岩样品的锆石U-Pb定年结果
Table 3. Zircon U-Pb analytical results of garnet amphibolite samples from the Yunzhongshan terrane
测点号 Th(10-6) U(10-6) Th/ U 同位素比值 年龄(Ma) 207Pb/ 206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/ 206Pb 1σ 206Pb/ 238U 1σ L1903 1 0.22 32 0.007 0.113 5 0.004 6 5.144 0 0.215 5 0.327 9 0.004 6 1 857 74 1 828 22 2 2.01 158 0.013 0.111 9 0.002 5 4.917 7 0.111 4 0.317 0 0.003 0 1 831 42 1 775 15 3 0.95 144 0.007 0.110 4 0.002 9 4.917 0 0.131 1 0.320 3 0.003 4 1 806 44 1 791 17 4 4.81 267 0.018 0.114 5 0.002 4 5.603 0 0.119 0 0.352 5 0.003 6 1 873 35 1 947 17 L1906 5 2.57 101 0.025 0.118 7 0.003 3 5.747 0 0.158 6 0.347 2 0.004 8 1 936 50 1 921 23 6 0.44 86 0.005 0.114 2 0.003 1 5.703 4 0.175 8 0.357 1 0.005 5 1 933 50 1 968 26 7 1.09 69 0.016 0.123 8 0.003 8 5.949 7 0.178 6 0.345 9 0.004 7 2 013 49 1 915 22 8 2.43 195 0.012 0.122 5 0.003 2 5.598 9 0.144 0 0.328 3 0.003 5 1 994 46 1 830 17 9 0.12 82 0.001 0.125 6 0.003 7 5.975 8 0.168 1 0.342 4 0.003 9 2 039 52 1 898 19 10 0.08 41 0.002 0.116 7 0.004 0 5.635 8 0.194 7 0.347 5 0.004 3 1 907 62 1 923 21 11 0.79 252 0.003 0.128 3 0.003 0 6.210 7 0.153 8 0.347 9 0.004 4 2 076 41 1 924 21 12 0.50 69 0.007 0.120 9 0.003 3 5.715 4 0.149 9 0.340 9 0.003 2 1 970 48 1 891 15 -
[1] Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193-234. https://doi.org/10.2747/0020-6814.49.3.193 [2] Diener, J.F.A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131-142. https://doi.org/10.1111/j.1525-1314.2011.00959.x [3] Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleo-Proterozoic Trans-North China Belt: New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004 [4] Ferry, J.M., Waston, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154: 429-437. https://doi.org/10.1007/s00410-007-0201-0 [5] Geng, Y.S., Yang, C.H., Wan, Y.S., 2006. Paleoproterozoic Granitic Magmatism in the Lüliang Area, North China Craton: Constraint from Isotopic Geochronology. Acta Petrologica Sinica, 22(2): 305-314 (in Chinese with English abstract). http://www.researchgate.net/publication/280020221_Paleoproterozoic_granitic_magmatism_in_the_Luliang_area_North_China_Craton_Constraint_from_isotopic_geochronology [6] Green, E.C.R., White, R.W., Diener, J.F.A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845-869. https://doi.org/10.1111/jmg.12211 [7] Guiraud, M., Powell, R., Rebay, G., 2001. H2O in Metamorphism and Unexpected Behaviour in the Preservation of Metamorphic Mineral Assemblages. Journal of Metamorphic Geology, 19(4): 445-454. https://doi.org/10.1046/j.0263-4929.2001.00320.x [8] He, Q.C., 2019. Geological Evolution of Early Precambrian in Yunzhongshan Area: Studies of Petrography, Chronology and Geochemistry (Dissertation). Taiyuan University of Technology, Taiyuan (in Chinese with English abstract). [9] Holland, T.J.B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x [10] Holland, T.J.B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492-501. https://doi.org/10.1007/s00410-003-0464-z [11] Holland, T.J.B., Powell, R., 2011. An Improved and Extended Internally-Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x [12] Kang, J.L., Wang, H.C., Xiao, Z.B., et al., 2017. Neoarchean Crustal Accretion of the North China Craton: Evidence from the TTG Gneisses and Monzogranitic Gneisses in Yunzhong Mountain Area, Shanxi. Acta Petrologica Sinica, 33(9): 2881-2898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201709015.htm [13] Korhonen, F.J., Powell, R., Stout, J.H., 2012. Stability of Sapphirine+Quartz in the Oxidised Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21-36. https://doi.org/10.1111/j.1525-1314.2011.00954.x [14] Kröner, A., Wilde, S.A., Zhao, G.C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1): 45-67. https://doi.org/10.1016/j.precamres.2006.01.008 [15] Kusky, T.M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004 [16] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246. https://doi.org/10.1180/minmag.1997.061.405.13 [17] Liao, Y., Wei, C.J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010 [18] Liu, C.H., Zhao, G.C., Liu, F.L., et al., 2020. Tectonic Switching of the Trans-North China Orogen in the Middle Paleoproterozoic: Insights from Mafic Magmatism in the Lüliang Complex. Tectonics, 39(11): 1-27. https://doi.org/10.1029/2020TC006253 [19] Liu, P.H., Tian, Z.H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract). [20] Liu, S.W., Li, Q.G., Zhang, L., 2009. Geology, Geochemistry of Metamorphic Volcanic Rock Suite in Precambrian Yejishan Group, Lüliang Mountains and Its Tectonic Implications. Acta Petrologica Sinica, 25(3): 547-560 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903008.htm [21] Liu, S.W., Zhang, L.F., Li, Q.G., et al., 2012. Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190. https://doi.org/10.1016/j.precamres.2011.07.006 [22] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51: 537-571. https://doi.org/10.1093/petrology/egp082 [23] Ludwig, K.R., 2012. Isoplot/Ex Version 4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [24] Mi, G.Y., Mi, R., Mao, Y.D., 2018. The Age and Significance of Single-Grain Zircons in Jiehekou Gr. in the Yunzhong Mountain Area. Acta Mineralogica Sinica, 38(2): 176-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201802006.htm [25] Qian, J.H., Wei, C.J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423-446. https://doi.org/10.1111/jmg.12186 [26] Qian, J.H., Wei, C.J., Clarke, L.G., et al., 2015. Metamorphic Evolution and Zircon Ages of Garnet-Orthoamphibole Rocks in Southern Hengshan, North China Craton: Insights into the Regional Paleoproterozoic P-T-t History. Precambrian Research, 256: 223-240. https://doi.org/10.1016/j.precamres.2014.11.013 [27] Qian, J.H., Wei, C.J., Yin, C.Q., 2017. Paleoproterozoic P-T-t Evolution in the Hengshan-Wutai-Fuping Area, North China Craton: Evidence from Petrological and Geochronological Data. Precambrian Research, 303: 91-104. https://doi.org/10.1016/j.precamres.2017.02.016 [28] Qian, J.H., Wei, C.J., Zhou, X.W., et al., 2013. Metamorphic P-T Paths and New Zircon U-Pb Age Data for Garnet-Mica Schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. https://doi.org/10.1016/j.precamres.2013.05.012 [29] Qian, J.H., Yin, C.Q., Li, S., et al., 2021. Metamorphic P-T-t Evolution of Amphibolite in the North Hengshan Terrane, North China Craton: Insights into the Late Paleoproterozoic Tectonic Processes from Initial Collision to Final Exhumation. Geological Society of America Bulletin. https://doi.org/10.1130/B35810.1 [30] Qian, J.H., Yin, C.Q., Wei, C.J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330-331: 35-54. https://doi.org/10.1016/j.lithos.2019.02.001 [31] Qian, J.H., Yin, C.Q., Zhang, J., et al., 2018. High-Pressure Granulites in the Fuping Complex of the Central North China Craton: Metamorphic P-T-t Evolution and Tectonic Implications. Journal of Asian Earth Sciences, 154: 255-270. https://doi.org/10.1016/j.jseaes.2017.12.027 [32] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. The Geological Society, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [33] Wan, Y.S., Song, B., Liu, D.Y., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton: Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149: 249-271. https://doi.org/10.1016/j.precamres.2006.06.006 [34] Wang, H.C., Kang, J.L., Xiao, Z.B., et al., 2018. Neoarchean Subduction in North China Craton: New Evidence from the Metamorphic High-Mg Igneous Assemblage in Yunzhongshan Area, Shanxi Province. Acta Petrologica Sinica, 34(4): 1099-1118 (in Chinese with English abstract). http://www.researchgate.net/publication/330637181_Neoarchean_subduction_in_North_China_Craton_New_evidence_from_the_metamorphic_high-Mg_igneous_assemblage_in_Yunzhognshan_area_Shanxi_Province [35] Wang, H.C., Miao, P.S., Kang, J.L., et al., 2020. New Evidence for the Formation Age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313-2330 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.03 [36] Wang, H.Z., Zhang, H.F., Zhai, M.G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126-151. https://doi.org/10.1016/j.precamres.2016.09.012 [37] Wang, X., Zheng, Y.F., Zhu, W.B., 2019. Geochemical Evidence for Reworking of the Juvenile Crust in the Neoarchean for Felsic Magmatism in the Yunzhongshan Area, the North China Craton. Precambrian Research, 335: 105493. https://doi.org/10.1016/j.precamres.2019.105493. [38] Wang, X., Zhu, W.B., Liu, Y., et al., 2017. Revisiting the Yejishan Group of the Lüliang Complex, North China: Implications for a Paleoproterozoic Active Continental Marginal Basin in the Trans-North China Orogen. Precambrian Research, 292: 93-114. https://doi.org/10.1016/j.precamres.2017.02.002 [39] Wei, C.J., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (Ⅱ): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 32(6): 1625-1643 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201606004.htm [40] Wei, C.J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). [41] Wei, C.J., Duan, Z.Z., 2018. Phase Relations in Metabasic Rocks: Constraints from the Results of Experiments, Phase Modelling and ACF Analysis. Geological Society, London, Special Publications, 474: 25-45. https://doi.org/10.1144/SP474.10 [42] Wei, C.J., Guan, X., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33(5): 1381-1404 (in Chinese with English abstract). http://www.researchgate.net/publication/317975280_HT-UHT_metamorphism_of_metabasites_and_the_petrogenesis_of_TTGs [43] Wei, C.J., Qian, J.H., Zhou, X.W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008 [44] White, R.W., Powell, R., Clarke, G.L., 2002. The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia: Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO -Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20(1): 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x [45] White, R.W., Powell, R., Holland, T.J.B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x [46] White, R.W., Powell, R., Holland, T.J.B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x [47] White, R.W., Powell, R., Holland, T.J.B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261-286. https://doi.org/10.1111/jmg.12071 [48] Wu, C.M., 2018. Current Problems in Metamorphic Geology. Acta Petrologica Sinica, 34(4): 873-894 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201804004.htm [49] Wu, J.L., Zhang, H.F., Zhai, M.G., et al., 2017. Paleoproterozoic High-Pressure-High-Temperature Pelitic Granulites from Datong in the North China Craton and Their Geological Implications: Constraints from Petrology and Phase Equilibrium Modeling. Precambrian Research, 303: 727-748. https://doi.org/10.1016/j.precamres.2017.09.011 [50] Wu, Y.B., Zheng, Y.F., 2004. Mineralogical Studies of Zircon Origin and Constraints on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [51] Xiao, L.L., Clarke, G., Liu, F.L., et al., 2017. Discovery of Mafic Granulite in the Guandishan Area of the Lüliang Complex, North China Craton: Age and Metamorphic Evolution. Precambrian Research, 303: 604-625. https://doi.org/10.1016/j.precamres.2017.08.020 [52] Xiao, L.L., Clarke, G., Liu, F.L., et al., 2019. Metamorphic Records in the Lüliang Metapelites of the Jiehekou Group: Implications for the Tectonic Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 332. https://doi.org/10.1016/j.precamres.2019.105415 [53] Yang, C.H., Du, L.L., Song, H.X., et al., 2018. Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4): 1019-1057 (in Chinese with English abstract). http://www.researchgate.net/publication/330637994_Stratigraphic_division_and_correlation_of_the_Pleoproterozoic_strata_in_the_North_China_Craton_A_review [54] Yu, J.H., Wang, D.Z., Wang, C.Y., et al., 2004. Paleoproterozoic Granitic Magmatism and Metamorphism in Middle Part of Lüliang Range, Shanxi Province. Geological Journal of China Universities, 10(4): 500-513 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gxdx200404002.htm [55] Zhai, M.G., Santosh, M., 2011. The Early Precambrian Odyssey of North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 [56] Zhang, H.F., Wang, H.Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004. [57] Zhang, Y.H., Wei, C.J., Lu, M.J., et al., 2018. P-T-t Evolution of the High-Pressure Mafic Granulites from Northern Hengshan, North China Craton: Insights from Phase Equilibria and Geochronology. Precambrian Research, 312: 1-15. https://doi.org/10.1016/j.precamres.2018.04.022 [58] Zhang, Y.H., Wei, C.J., Tian, W., et al., 2013. Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton. Chinese Science Bulletin, 58(34): 4300-4307. doi: 10.1007/s11434-013-5993-x [59] Zhao, G.C., Cawood, P.A., Li, S.Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [60] Zhao, G.C., Kröner, A., Wilde, S.A., et al., 2007. Lithotectonic Elements and Geological Events in the Hengshan-Wutai-Fuping Belt: A Synthesis and Implications for the Evolution of the Trans-North China Orogen. Geological Magazine, 144(5): 753-775. https://doi.org/10.1017/S0016756807003561 [61] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [62] Zhao, G.C., Wilde, S.A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Lüliang Complex: Implications for the Accretion and Evolution of the Trans-North China Orogen. Precambrian Research, 160: 213-226. https://doi.org/10.1016/j.precamres.2007.07.004 [63] Zhao, G.C., Yin, C.Q., Guo, J.H., et al., 2010. Metamorphism of the Lüliang Amphibolite: Implications for the Tectonic Evolution of the North China Craton. American Journal of Science, 310(10): 1480-1502. https://doi.org/10.2475/10.2010.10 [64] Zhao, J., Gou, L.L., Zhang, C.L., et al., 2017. P-T-t Path and Tectonic Significance of Pelitic Migmatites from the Lüliang Complex in Xiyupi Area of Trans-North China Orogen, North China Craton. Precambrian Research, 303: 573-589. https://doi.org/10.1016/j.precamres.2017.07.010 [65] Zhao, J., Zhang, C.L., Liu, X.Y., et al. 2020. Middle Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen, North China Craton: Constraint from the Intermediate-Acid Magmatism in the Lüliang Area. Lithos, 378-379: 105804. https://doi.org/10.1016/j.lithos.2020.105804S [66] Zhu, H.Z., Tian, Z.H., Wang, Z.L., et al., 2020. (Garnet Bearing) Plagioclase Amphibolite P-T Evolution Path and Its Geological Implications in Rushan Region, Sulu Tectonic Complex: Constraints by Petrology, Mineral Chemistry and Phase Equilibria Modeling. Earth Science, 45(9): 3420-3435 (in Chinese with English abstract). [67] 耿元生, 杨崇辉, 万渝生, 2006. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据. 岩石学报, 22(2): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602005.htm [68] 何晴州, 2019. 云中山地区早前寒武纪地质演化——岩相学、年代学及地球化学研究(硕士学位论文). 太原: 太原理工大学. [69] 康健丽, 王惠初, 肖志斌, 等, 2017. 华北克拉通新太古代地壳增生: 来自山西云中山地区TTG片麻岩和二长花岗片麻岩的证据. 岩石学报, 33(9): 2881-2898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709015.htm [70] 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228 [71] 刘树文, 李秋根, 张立, 2009. 吕梁山前寒武纪野鸡山群火山岩的地质学、地球化学及其构造意义. 岩石学报, 25(3): 547-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903008.htm [72] 米广尧, 米然, 毛永栋, 2018. 云中山区界河口岩群单颗粒锆石年龄及地质意义. 矿物学报, 38(2): 176-184. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201802006.htm [73] 王惠初, 康健丽, 肖志斌, 等, 2018. 华北克拉通新太古代板块俯冲作用: 来自山西云中山地区变质高镁火成岩组合的证据. 岩石学报, 34(4): 1099-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804015.htm [74] 王惠初, 苗培森, 康健丽, 等, 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008004.htm [75] 魏春景, 2016. 麻粒岩相变质作用与花岗岩成因Ⅱ: 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606004.htm [76] 魏春景, 2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化. 地球科学, 43(1): 24-43. doi: 10.3969/j.issn.1672-6561.2018.01.005 [77] 魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm [78] 吴春明, 2018. 变质地质学研究中的一些困难问题. 岩石学报, 34(4): 873-894. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804004.htm [79] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [80] 杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804012.htm [81] 于津海, 王德滋, 王赐银, 等, 2004. 山西吕梁山中段元古代花岗质岩浆活动和变质作用. 高校地质学报, 10(4): 500-513. doi: 10.3969/j.issn.1006-7493.2004.04.003 [82] 朱浩忠, 田忠华, 王泽利, 等, 2020. 苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩P-T演化轨迹及其地质意义——来自岩石学、矿物化学及相平衡模拟的约束. 地球科学, 45(9): 3420-3435. doi: 10.3799/dqkx.2020.244