• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    抽水组数和先验信息对估算三维非均质含水层渗透系数的影响

    黄康 孙蓉琳 袁淑卿 杨艺娇 蒋立群

    黄康, 孙蓉琳, 袁淑卿, 杨艺娇, 蒋立群, 2022. 抽水组数和先验信息对估算三维非均质含水层渗透系数的影响. 地球科学, 47(2): 689-699. doi: 10.3799/dqkx.2021.013
    引用本文: 黄康, 孙蓉琳, 袁淑卿, 杨艺娇, 蒋立群, 2022. 抽水组数和先验信息对估算三维非均质含水层渗透系数的影响. 地球科学, 47(2): 689-699. doi: 10.3799/dqkx.2021.013
    Huang Kang, Sun Ronglin, Yuan Shuqing, Yang Yijiao, Jiang Liqun, 2022. Effect of Number of Pumping Tests and Prior Information on Hydraulic Conductivity Estimation of Three-Dimensional Heterogeneous Aquifer. Earth Science, 47(2): 689-699. doi: 10.3799/dqkx.2021.013
    Citation: Huang Kang, Sun Ronglin, Yuan Shuqing, Yang Yijiao, Jiang Liqun, 2022. Effect of Number of Pumping Tests and Prior Information on Hydraulic Conductivity Estimation of Three-Dimensional Heterogeneous Aquifer. Earth Science, 47(2): 689-699. doi: 10.3799/dqkx.2021.013

    抽水组数和先验信息对估算三维非均质含水层渗透系数的影响

    doi: 10.3799/dqkx.2021.013
    基金项目: 

    国家自然科学基金项目 41772268

    国家自然科学基金项目 41102155

    详细信息
      作者简介:

      黄康(1995-), 男, 硕士研究生, 主要从事水文地质参数反演研究.E-mail: huangkang0@qq.com.ORCID: 0000-0001-5161-7201

      通讯作者:

      孙蓉琳, E-mail: sunronglin@cug.edu.cn.ORCID: 0000-0001-5523-198X

    • 中图分类号: P641

    Effect of Number of Pumping Tests and Prior Information on Hydraulic Conductivity Estimation of Three-Dimensional Heterogeneous Aquifer

    • 摘要: 水力层析抽水实验可以高精度刻画非均质含水层渗透系数分布,但野外成本高,需要对抽水试验进行优化.通过构建三维非均质含水层砂箱,开展水力层析抽水实验,探讨不同抽水组数和先验信息对刻画渗透系数的影响.分别利用不同抽水组数和融入42个井段岩心渗透系数作为先验信息,对渗透系数场进行估算,并用以预测独立抽水实验过程,对比估算结果优劣.随着抽水组数增加,估算结果逐渐提升,再增加到8组,估算结果没有明显提升;融入先验信息后,2组抽水实验估算精度可达到无先验信息8组抽水实验估算的精度.在水力层析野外实践中,融入钻孔岩心渗透系数等先验信息,可减少抽水组数,降低试验成本.

       

    • 图  1  实验砂箱和非均质含水层

      a. 砂箱概化图及井段编号;b. 三维非均质含水层砂箱实物图;c. 砂箱“真实”渗透系数分区图;d. 含水层井位俯视图

      Fig.  1.  Laboratory sandbox and the synthetic heterogeneous aquifer

      图  2  “真实”渗透系数场和不同抽水组数估算渗透系数场

      a. 砂箱“真实”渗透系数场;b. 2组抽水;c. 4组抽水;d. 6组抽水;e. 8组抽水;f. 10组抽水;g. 12组抽水

      Fig.  2.  The true K and estimated K fields using different number of pumping tests

      图  3  “真实”渗透系数场和有先验信息的不同抽水组数估算渗透系数场

      a. 砂箱“真实”渗透系数场;b. 2组抽水;c. 4组抽水;d. 6组抽水;e. 8组抽水;f. 10组抽水;g. 12组抽水

      Fig.  3.  The true K and estimate K fields using different number of pumping tests with prior information

      图  4  不同抽水组数估算的渗透系数场的模拟水位与实测水位散点图

      a. 2组抽水;b. 4组抽水;c. 6组抽水;d. 8组抽水;e. 10组抽水;f. 12组抽水

      Fig.  4.  Scatter plots of simulated and measured hydraulic head using K field estimated by different pumping tests

      图  5  有先验信息不同抽水组数估算的渗透系数场的模拟水位与实测水位散点图

      a. 2组抽水;b. 4组抽水;c. 6组抽水;d. 8组抽水;e. 10组抽水;f. 12组抽水

      Fig.  5.  Scatter plots of simulated and measured hydraulic head using K field estimated by different pumping tests with prior information

      图  6  不同评价指标随抽水组数变化曲线

      a. R2随抽水组数变化曲线;b. L1随抽水组数变化曲线;c. L2随抽水组数变化曲线

      Fig.  6.  The curve of different evaluation indicators with the number of pumping tests

      表  1  不同抽水组数反演方案

      Table  1.   Inverse cases of different pumping tests for hydraulic tomography

      抽水组数 抽水井段编号 观测水位总个数
      2 26,39 82
      4 9,26,34,39 164
      6 9,12,26,34,36,39 246
      8 4、9、12、17、26、34、36、39 328
      10 4、9、12、17、20、26、31、34、36、39 410
      12 4、9、12、17、20、23、26、31、34、35、36、39 492
      下载: 导出CSV
    • [1] Berg, S. J., Illman, W. A., 2015. Comparison of Hydraulic Tomography with Traditional Methods at a Highly Heterogeneous Site. Groundwater, 53(1): 71-89. https://doi.org/10.1111/gwat.12159
      [2] Bruggeman, G. A., 1972. The Reciprocity Principle in Flow Through Heterogeneous Porous Media. Developments in Soil Science, 2(2): 135-149. https://doi.org/10.1016/S0166-2481(08)70535-X
      [3] Chen, C., Wen, Z., Liang, X., et al., 2017. Estimation of Hydrogeological Parameters for Representative Aquifers in Jianghan Plain. Earth Science, 42(5): 727-733 (in Chinese with English abstract). http://www.researchgate.net/publication/318835563_Estimation_of_Hydrogeological_Parameters_for_Representative_Aquifers_in_Jianghan_Plain
      [4] Chen, C. X., Lin, M., Cheng, J. M., 2011. Groundwater Dynamics. China University of Geosciences Press, Wuhan (in Chinese with English abstract).
      [5] Chen, X. L., Wen, Z., Hu, J. S., et al., 2016. Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations. Earth Science, 41(4): 701-710 (in Chinese with English abstract).
      [6] Falade, G. K., 1981. Analysis of the Reciprocity Concept in a Porous Medium. Water Resources Research, 17(4): 918-920. https://doi.org/10.1029/WR017i004p00918
      [7] Gottlieb, J., Dietrich, P., 1995. Identification of the Permeability Distribution in Soil by Hydraulic Homography. Inverse Problems, 11(2): 353-360. https://doi.org/10.1088/0266-5611/11/2/005
      [8] Hao, Y. H., Yeh, T.C., Han, B. P., et al., 2008, Imaging Fracture Connectivity Using Hydraulic Tomography. Hydrogeology and Engineering Geology, 35(6): 6-11 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-swdg200806007.htm
      [9] Illman, W. A., Craig, A. J., Liu X., 2008. Practical Issues in Imaging Hydraulic Conductivity Through Hydraulic Tomography. Groundwater, 46(1): 120-132. https://doi.org/10.1111/j.1745-6584.2007.00374.x
      [10] Illman, W. A., Liu, X. Y., Takeuchi, S., et al., 2009. Hydraulic Tomography in Fractured Granite: Mizunami Underground Research Site, Japan. Water Resources Research, 45(1): W01406. https://doi.org/10.1029/2007WR006715
      [11] Jiang, L. Q., Sun, R. L., Wang, W. M., et al., 2017. Comparison of Hydraulic Tomography and Kriging for Estimating Hydraulic Conductivity of a Heterogeneous Aquifer. Earth Science, 42(2): 307-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702012.htm
      [12] Jiang, L. Q., Sun, R. L., Liang, X., 2020. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
      [13] Liu, S. Y., Yeh, T.C., Gardiner, R., 2002. Effectiveness of Hydraulic Tomography: Sandbox Experiment. Water Resources Research, 38(4): 1034. https://doi.org/10.1029/2001WR000338
      [14] Renshaw, C. E., 1996. Estimation of Fracture Zone Geometry from Steady-State Hydraulic Head Data Using Iterative Sequential Cokriging. Geophysical Research Letters, 23(19): 2685-2688, https://doi.org/10.1029/96GL02415
      [15] Tsang, C. F., 2000. Simulation of Groundwater Flow and Solute Transport in Heterogeneous Media-Problems and Challenges. Earth Science, 25(5): 443-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005000.htm
      [16] Wang, J. S., 2013. The Effect of Model Uncertainty on the Characterization of Hydraulic Parameters Using Hydraulic Tomography(Dissertation), China University of Geosciences, Wuhan (in Chinese with English abstract).
      [17] Wang, W. M., Sun, R. L., 2015. Optimal Design of Sampling Time Using Hydraulic Tomography to Characterize the Heterogeneous Aquifer Hydraulic Conductivity and Storage Coefficient, Geological Science and Technology Information, 34(3): 165-170 (in Chinese with English abstract).
      [18] Wang, W. M., 2013. The Optimal Design of Hydraulic Tomography Pump Test to Characterize the Heterogeneous Aquifer(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [19] Wen, J. C., Chen, J. L., Yeh, T.C., et al., 2019. Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography. Groundwater, 58(1): 79-92. https://doi.org/10.1111/gwat.12879
      [20] Wu, C. M., Yeh, T. C., Zhu, J., et al., 2005. Traditional Analysis of Aquifer Tests: Comparing Apples to Oranges?. Water Resources Research, 41(9): 1-15. https://doi.org/10.1029/2004WR003717
      [21] Xiang, J. W., Yeh, T.C., Lee, C.H., et al., 2009. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resources Research, 45(2): W02432. https://doi.org/10.1029/2008WR007180
      [22] Yeh, T.C., Jin, M., Samuel, H. A., 1996. Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields. Water Resources Research, 32(1): 85-92. https://doi.org/10.1029/95WR02869
      [23] Yeh, T.C., Liu, S. Y., 2000. Hydraulic tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
      [24] Zha, Y. Y., Yeh, T.C., Mao, D. Q., et al., 2014. Usefulness of Flux Measurements during Hydraulic Tomographic Survey for Mapping Hydraulic Conductivity Distribution in a Fractured Medium. Advances in water Resources, 71(9): 162-176. https://doi.org/10.1016/j.advwatres.2014.06.008
      [25] Zha, Y. Y., Yeh, T, C., Illman, W. A., et al., 2016. An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan. Groundwater, 54(6): 793-804. https://doi.org/10.1111/gwat.12421
      [26] Zha, Y. Y., Yeh, T.C., Illman, W. A., et al., 2017. Incorporating Geologic Information into Hydraulic Tomography: A General Framework Based on Geostatistical Approach. Water Resources Research, 53(4): 2850-2876. https://doi.org/10.1002/2016WR019185
      [27] Zhao, R. J., Mao, D. Q., Liu, Z. B., et al., 2020. Analysis of Sequential Water Releasing Tests of Confined Aquifers in a Coal Mine Based on Hydraulic Tomography. Hydrogeology and Engineering Geology. 48(1): 1-9 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0022169420308106
      [28] Zhao, Z., Illman, W. A., Yeh, T.C., et al., 2015. Validation of Hydraulic Tomography in an Unconfined Aquifer: A Controlled Sandbox Study. Water Resources Research, 51(6): 4137-4155. https://doi.org/10.1002/2015WR016910
      [29] Zhao, Z., Illman, W. A., Berg, S. J., 2016. On the Importance of Geological Data for Hydraulic Tomography Analysis: Laboratory Sandbox Study. Journal of Hydrology, 542: 156-171. https://doi.org/10.1016/j.jhydrol.2016.08.061
      [30] Zhu, J., Yeh, T.C., 2005. Characterization of Aquifer Heterogeneity Using Transient Hydraulic Tomography. Water Resources Research, 41: W07028. https://doi.org/10.1029/2004WR003790
      [31] 陈晨, 文章, 梁杏, 等, 2017. 江汉平原典型含水层水文地质参数反演. 地球科学, 42(5): 727-733. doi: 10.3799/dqkx.2017.060
      [32] 陈崇希, 林敏, 成建梅, 2011. 地下水动力学. 武汉: 中国地质大学出版社.
      [33] 陈晓恋, 文章, 胡金山, 等, 2016. 解析法与数值法在水电站防渗墙效果评价中的运用. 地球科学, 41(4): 701-710. doi: 10.3799/dqkx.2016.059
      [34] 郝永红, 叶天齐, 韩宝平, 等, 2008. 运用水力层析法对含水层裂隙带成像. 水文地质工程地质, 35(6): 6-11. doi: 10.3969/j.issn.1000-3665.2008.06.003
      [35] 蒋立群, 孙蓉琳, 王文梅, 等, 2017. 水力层析法与克立金法估算非均质含水层渗透系数场比较. 地球科学, 42(2): 307-314. doi: 10.3799/dqkx.2017.023
      [36] 蒋立群, 孙蓉琳, 梁杏, 2020. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
      [37] Tsang, C. F., 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学, 25(5): 443-450. doi: 10.3321/j.issn:1000-2383.2000.05.001
      [38] 王江思, 2013. 模型不确定性对水力层析法刻画含水层非均质性的影响研究(硕士学位论文). 武汉: 中国地质大学.
      [39] 王文梅, 2013. 基于水力层析刻画含水层非均质性的抽水试验优化设计(硕士学位论文). 武汉: 中国地质大学.
      [40] 王文梅, 孙蓉琳, 2015. 水力层析法刻画非均质含水层K与S采样时间优化设计. 地质科技情报, 34(3): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503023.htm
      [41] 赵瑞珏, 毛德强, 刘再斌, 等, 2021. 基于水力层析法的某煤矿承压含水层叠加放水试验分析. 水文地质工程地质, 48(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202101001.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  386
    • HTML全文浏览量:  87
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-16
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回