Variability in Sequence Stratigraphic Architectures of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development
-
摘要: 针对海相三角洲层序地层研究中的理论和应用问题,选取珠江口盆地恩平凹陷北带下-中中新统(T50-T35)古珠江三角洲为目标开展了精细解剖.在消化吸收“沉积层序”理论最新进展的基础上,结合古珠江三角洲发育特点和井震资料条件,提出了基于层序界面(SB)、最大海退面(MRS)、最大海泛面(MFS)和高频海泛面(FS)等4种类型界面的高频层序划分方案,划分结果具有旋回特征明显、界面特征统一等优点,并揭示了研究区低位体系域较为发育的重要特征.在高精度层序格架约束下,进一步采用地震沉积学技术开展了精细沉积剖析,结果显示研究区低位域以大型交切状辫状水道为主,砂体厚度大且连片分布;相比而言,海侵、高位体系域含砂率明显变低,以弯曲、低能河道或滨岸-沿岸坝体为主,具备更大的岩性圈闭潜力.此外,结合层序构型分类的结果,提出以A型层序构型(高位域占比大)为主的韩江组六段和珠江组一段具备较大的岩性圈闭潜力.相关结论对珠江口盆地和其他海相盆地岩性圈闭勘探具有一定指导意义.Abstract: In view of the theory and application of sequence stratigraphy in the marine deltaic facies, in this paper it selects the Lower-Middle Miocene (T50-T35) acient Pearl River delta in the north of the Enping sag, Pearl River Mouth basin as the target to carry out detailed anatomy. On the basis of digesting and absorbing the latest development of "depositional sequence" theory, combined with the development characteristics of ancient Pearl River delta and well seismic data conditions, a high-frequency sequence stratigraphic scheme is proposed on the basis of four types of surfaces, namely the sequence boundary (SB), maximum regressive surface (MRS), maximum flooding surface (MFS) and high-order flooding surface (FS). The results reveal that the most striking feature of the sequence stratigraphy of this area is the extensive development of the lowstand systems tracts. Constrained by the high-resolution sequence framework, the seismic sedimentology technology is further used to carry out the fine sedimentary analysis. The results show that the lowstand systems tracts in the study area are mainly composed of large intersecting braided channels, with large thickness and continuous distribution of sand bodies. In contrast, the sand content of transgressive and highstand systems tracts is obviously lower, with sinuous, low-energy river channel or shore-parallel bars as the main body, signifying greater lithologic traps potential. In addition, combined with the results of sequence architecture classification, it is proposed that the sixth member of Hanjiang Formation and the first member of Zhujiang Formation, which are dominated by A-type sequence architecture (highstand systems tracts dominated), have great lithologic trap potential. The conclusions of this study have certain guiding significance for the exploration of lithologic traps in the Pearl River Mouth basin and other marine basins.
-
图 2 综合地层柱状图和层序地层划分方案
a.珠江口盆地海平面曲线秦国权(1996),全球氧同位素曲线、全球海平面曲线引自Haq et al. (1987);b.目的层高频层序方案和层序命名
Fig. 2. Comprehensive stratigraphic histogram and sequence stratigraphic division scheme
图 3 层序地层划分的4种主要层序地层界面类型及其识别标志
a. 地层叠置样式;b. 高频层序测井相;c. 高频层序联井图;井位见图 1
Fig. 3. Four main sequence stratigraphic interface types and their identification marks
图 4 典型层序地层界面地震响应特征,部分界面具有明显下切河道发育
界面名称见图 2
Fig. 4. Seismic response characteristics of typical sequence stratigraphic interfaces, some interfaces have obvious undercut channel development
图 7 恩平北部研究区北西-南东向连井层序地层划分剖面
位置见图 1.GR单位为API; DT单位为us/m
Fig. 7. NW-SE stratigraphic correlation between key wells in northern Enping sag
图 8 古珠江三角洲层序地层发育模式和层序构型分类
Fig. 8. Sequence stratigraphic composition and structural classification model of the ancient Pearl River delta
-
[1] Bourget, J., Bruce Ainsworth, R., Thompson, S., 2014. Seismic Stratigraphy and Geomorphology of a Tide or Wave Dominated Shelf-Edge Delta (NW Australia): Process-Based Classification from 3D Seismic Attributes and Implications for the Prediction of Deep-Water Sands. Marine and Petroleum Geology, 57: 359-384. doi: 10.1016/j.marpetgeo.2014.05.021 [2] Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375. [3] Catuneanu, O., Abreu, V., Bhattacharya, J.P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth-Science Review, 92: 1-33. doi: 10.1016/j.earscirev.2008.10.003 [4] Catuneanu, O., Zecchin, M., 2013. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅱ: Controls on Sequence Development. Marine and Petroleum Geology, 39: 26-38. doi: 10.1016/j.marpetgeo.2012.08.010 [5] Darmadi, Y., Willis, B. J., Dorobek, S. L., 2007. Three-Dimensional Seismic Architecture of Fluvial Sequences on the Low-Gradient Sunda Shelf, Offshore Indonesia. Journal of Sedimentary Research, 77(3-4): 225-238. http://adsabs.harvard.edu/abs/2007JSedR..77..225D [6] Embry, A.F., 2009. Practical Sequence Stratigraphy. Canadian Society of Petroleum Geologists, Calgary, 79. [7] Ethridge, F.G., Schumm, S.A., 2007. Fluvial Seismic Geomorphology: A View from the Surface. Geological Society, London, Special Publications, 277(1): 205-222. doi: 10.1144/GSL.SP.2007.277.01.12 [8] Gong, L., Zhu, H.T., Shu, Y., et al., 2014. Distribution of Middle-Deep Lacustrine Source Rocks within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin. Earth Science, 39(5): 546-556 (in Chinese with English abstract). [9] Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156 [10] He, M., Zhu, W.L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract). [11] He, M., Zhuo, H., Chen, W., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022 [12] Jervey, M.T., 1988. Quantitative Geological Modeling of Siliciclastic Rock Sequences and their Seismic Expression. SEPM Special Publication, 42: 47-69. [13] Jones, G.E., Hodgson, D.M., Flint, S.S., 2015. Lateral Variability in Clinoform Trajectory, Process Regime, and Sediment Dispersal Patterns beyond the Shelf-Edge Rollover in Exhumed Basin Margin-Scale Clinothems. Basin Research, 27: 657-680. doi: 10.1111/bre.12092 [14] Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract). [15] Madof, A. S., Harris, A. D., Connell, S. D., 2016. Nearshore Along-Strike Variability: Is the Concept of the Systems Tract Unhinged?. Geology, 44 (4): 315-318. https://doi.org/10.1130/G37613.1 [16] Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86(7): 1201-1216. [17] Miall, A.D., 2014. Fluvial Depositional Systems. Springer, Amsterdam, 316. [18] Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2017. Back to Basics of Sequence Stratigraphy: Early Miocene and Mid-Cretaceous Examples from the New Jersey Paleoshelf. Journal of Sedimentary Research, 8(1): 148-176. https://doi.org/10.2110/jsr.2017.73 [19] Neal, J., Abreu, V., 2009. Sequence Stratigraphy Hierarchy and the Accommodation Succession Method. Geology, 37(9): 779-782. doi: 10.1130/G25722A.1 [20] Neal, J. E., Abreu, V., Bohacs, K. M., et al., 2016. Accommodation Succession (δA/δS) Sequence Stratigraphy: Observational Method, Utility and Insights into Sequence Boundary Formation. Journal of the Geological Society, 173(5): 803-816. https://doi.org/10.1144/jgs2015-165 [21] Payton, C.E., 1977. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 516. http://lib-phds1.weizmann.ac.il/vufind/Record/000066987 [22] Posamentier, H.W., Allen, G.P., 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts, Sedimentology, Paleontology, 7: 210. [23] Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367 [24] Qin, G.Q., 1996. Application of Micropaleontology to the Sequence Stratigraphic Studies of Late Cenozoic in the Zhujiang River Mouth Basin. Marine Geology & Quaternary Geology, 16(4): 1-18 (in Chinese with English abstract). [25] Reijenstein, H.M., Posamentier, H.W., Bhattacharya, J.P., 2011. Seismic Geomorphology and High-Resolution Seismic Stratigraphy of Inner-Shelf Fluvial, Estuarine, Deltaic, and Marine Sequences, Gulf of Thailand. American Association of Petroleum Geologists Bulletin, 95: 1959-1990. doi: 10.1306/03151110134 [26] Sun, Z., Zhong, Z., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. J. Asian Earth Sci., 34: 544-556. doi: 10.1016/j.jseaes.2008.09.002 [27] Wagoner, J.C., Mitchum, R.M., Campion, K., et al., 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Core, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. American Association of Petroleum Geologists Methods in Exploration Series, 7: 55. [28] Wilgus, C.K., Hastings, B.S., Posamentier, H., et al., 1988. Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 42: 407. http://adsabs.harvard.edu/abs/1986Geo....14..535R [29] Xiong, W.L., Zhu, J.Z., Yang, X.Y., et al., 2020. Study on the Genetic and Accumulation Process of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65 (in Chinese with English abstract). [30] Zecchin, M., 2007. The Architectural Variability of Small-Scale Cycles in Shelf and Ramp Clastic Systems: The Controlling Factors. Earth-Science Reviews, 84: 21-55. doi: 10.1016/j.earscirev.2007.05.003 [31] Zecchin, M., Catuneanu, O., 2017. High-Resolution Sequence Stratigraphy of Clastic Shelves Ⅵ: Mixed Siliciclastic-Carbonate Systems. Marine and Petroleum Geology, 88: 712-723. doi: 10.1016/j.marpetgeo.2017.09.012 [32] Zeng, H., Hentz, T.F., 2004. High-Frequency Sequence Stratigraphy from Seismic Sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana. American Association of Petroleum Geologists Bulletin, 88: 153-174. doi: 10.1306/10060303018 [33] Zeng, H., Zhu, X., Liu, Q., et al., 2020. An Alternative, Seismic-Assisted Method of Fluvial Architectural- Element Analysis in the Subsurface: Neogene, Shaleitian Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 87: 118. https://doi.org/10.1016/j.marpetgeo.2020.104435 [34] Zhang, Y.Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx201902020 [35] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract). [36] Zhu, H.T., Yang, X.H., Shu, Y., et al., 2012. The Sequence Stratigraphic Architecture of Continental Lake Basin and Its Significance on Lithofacies Prediction: Taking Huizhou Sag in Zhujiangkou Basin as an Example. Earth Science Frontiers, 19(1): 32-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201006.htm [37] Zhu, X.M., Dong, Y.L., Zeng, H.L., et al., 2019. New Development Trend of Sedimentary Geology: Seismic Sedimentology. Journal of Palaeogeography, 21(2): 189-201 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201902001.htm [38] Zhuo, H., Wang, Y., Shi, H., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012 [39] Zhuo, H., Wang, Y., Sun, Z., et al., 2019. Along-Strike Variability in Shelf-Margin Morphology and Accretion Pattern: An Example from the Northern Margin of the South China Sea. Basin Research, 31: 431-460. doi: 10.1111/bre.12329 [40] 龚丽, 朱红涛, 舒誉, 等, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546-556. doi: 10.3799/dqkx.2014.052 [41] 何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20. [42] 梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩-碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174 [43] 秦国权, 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用. 海洋地质与第四纪地质, 16(4): 1-18. [44] 熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北带隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65. [45] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542 [46] 朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906 [47] 朱红涛, 杨香华, 舒誉, 等, 2012. 陆相湖盆层序构型及其岩性预测意义——以珠江口盆地惠州凹陷为例. 地学前缘, 19(1): 32-39. [48] 朱筱敏, 董艳蕾, 曾洪流, 等, 2019. 沉积地质学发展新航程——地震沉积学. 古地理学报, 21(2): 189-201.