Development Characteristics of Nido Carbonate Platform and Its Tectonic Controls in the Southeast of South China Sea Margin
-
摘要: 南海东南部陆缘发育一套晚渐新世-早中新世碳酸盐岩(Nido灰岩)与南海海底扩张历史吻合.为系统了解Nido灰岩构造控制因素,基于大量钻井、拖网和地震资料,刻画碳酸盐岩沉积相特征和时空分布规律,分析构造变形对其控制作用.结果显示:Nido灰岩呈大规模连片分布在研究区东北至西南部.以乌鲁根断裂为界,东北部灰岩呈北西倾向,与早渐新世岩石圈破裂形成的断块高点和扩张阶段较弱的构造活动有关;西南部灰岩呈东南倾向,受晚渐新世伸展断陷形成的构造高点和早中中新世南沙地块板片挠曲形成的构造前隆迁移作用控制.碳酸盐岩台地主要发育期与海底扩张时间吻合,具有区带性,反映南海穿时破裂过程和南部陆缘俯冲-碰撞过程的横向差异和不均一性.Abstract: The development characteristics of the carbonate platform and its tectonic controls in the southeast of South China Sea margin are still in debate. Based on wells, dragnets, and large number of 2D seismic data, we interpreted structural and stratigraphic data of the seismic profiles and described the development characteristics and temporal and spatial distribution of carbonate platform. Then the tectonic deformation, subsidence history, and fault activity with the developments of different carbonate platforms were analyzed. The results show that the large-scale contiguous Nido carbonate platform is mainly developed on the tectonic high points of the tilting fault block and the tectonic front uplift, distributed in the northeast to southwest of the study area. Bounded by the Ulugan fault, the Nido platform in the northeast is northwest trending, which is mainly controlled by factors such as the height of the tilting fault block formed by the extensional fault depression, the weak tectonic activity in the expansion stage, and the lack of sediments supply. The Nido platform in the southwest of the Ulugan fault trends to southeast, and it is mainly the structural high point formed by the extensional fault depression in the Late Oligocene, and the relative uplift caused by the flexural forebulge in the Late Oligocene-Early Miocene is related to the migration of the pre-tectonic uplift and sea level changes. The main development period of the carbonate platform coincides with the expansion time of the seafloor and has obvious banding. This feature is related to the pre-existing tectonic background and evolution process at different tectonic locations, reflecting the diachronous breakup of the South China Sea and discordant subduction-collision process.
-
图 1 南海东南部海域构造单元、地震测线、钻井和拖网分布(a)及地层系统柱状图(b)
图a中海底地形地貌图据杨胜雄等(2015),钻井位置据Schlüter et al.(1996),拖网资料据Kudrass et al.(1986);灰色测线为本文进行地层界面解释和识别碳酸盐岩所使用的地震测网;图b中NWPB为西北巴拉望盆地,SWPB为西南巴拉望盆地,RB为礼乐滩,LYB为礼乐盆地,JZB为九章盆地,ADBB为安渡北盆地
Fig. 1. Regional tectonic framework, locations of seismic lines, wells, and dragnets (a) and stratigraphic column (b) in the southeast of South China Sea margin.
图 2 Nido灰岩发育构造背景及其地震相特征
Cadlao-1和Malapaya-1钻井地层及岩性信息引自Steuer et al. (2014)和Fournier et al. (2004),Reed Bank B-1来源于东盟地质协会收集;图a、b、e和f地震剖面分别根据Fournier et al. (2004)、Aurelio et al. (2014a)、王利杰等(2019b)和丁巍伟等(2011)修改;剖面位置见图 1
Fig. 2. Seismic characters of the Nido carbonate platforms and their growth tectonic settings
图 3 穿越南海东南部主要盆地NW-SE向地质结构剖面
剖面位置见图 1
Fig. 3. Three NW-SE trending geological structure transections across the main basins in eastern Nansha block
图 4 南沙海域裂陷结束不整合面深度构造图(a)和碳酸盐岩时空分布(b)
碳酸盐岩分布主要参考了Steuer et al. (2014)、Williams (1997)和Rehm (2003),并根据Nido灰岩反射特征结合研究区多道地震资料,对礼乐东北部半地堑、礼乐盆地南部凹陷、安渡北盆地和南沙海槽盆地Nido灰岩范围进行了修改,红色实线为与Steuer et al. (2014)识别的灰岩范围不一致的区域
Fig. 4. Depth geometry of the base Nido platform and corresponding surface and distribution of Oligocene-Miocene carbonate platform and the position of reefs in the southeast of South China Sea margin.
图 5 过南沙海槽盆地ns95-8测线构造‒地层解释剖面及局部构造与不同时期碳酸盐岩发育特征
剖面位置见图 1
Fig. 5. Interpreted seismic profile ns95-8 across the Nansha trough basin and carbonate ending their development at different times at different local tectonic settings
图 6 礼乐盆地东北半地堑ly306测线局部构造和断裂活动特征
剖面位置见图 3a
Fig. 6. Typical tectonic feature of the half-graben in the northeast Liyue basin and its fault activities
图 7 礼乐盆地南部凹陷ly178测线局部构造特征和断裂活动性分析
测线位置见图 3b
Fig. 7. Typical tectonic feature of the southern graben of the Liyue basin and its fault activities
图 8 安渡北盆地和南沙海槽盆地构造特征和断层活动性分析
剖面位置见图 3c
Fig. 8. Typical tectonic features of the Andubei and Nansha trough basins and their fault activities
图 11 研究区东北部Nido灰岩演化过程
该图对应于过礼乐盆地东北半地堑和西北巴拉望盆地图 3a演化示意图
Fig. 11. Schematic development of the Nido platform in the northeastof the study area.
-
[1] Aurelio, M. A., Taguibao, K. J. L., Caalim, M., et al., 2014a. North Palawan Geology Field Trip Guide. Palawan Oil and Gas International Conference, Manila. [2] Aurelio, M. A., Forbes, M. T., Taguibao, K. J. L., et al., 2014b. Middle to Late Cenozoic Tectonic Events in South and Central Palawan (Philippines) and Their Implications to the Evolution of the South-Eastern Margin of South China Sea: Evidence from Onshore Structural and Offshore Seismic Data. Marine and Petroleum Geology, 58: 658-673. https://doi.org/10.1016/j.marpetgeo.2013.12.002 [3] Briais, A. P., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280 [4] Cullen, A. B., 2010. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo: Refining the Model of Borneo's Tectonic Evolution. Petroleum Geoscience, 16(1): 3-29. https://doi.org/10.1144/1354-079309-828 [5] Ding, W. W., Li, J. B., Dong, C. Z., et al., 2015. Oligocene-Miocene Carbonates in the Reed Bank Area, South China Sea, and Their Tectono-Sedimentary Evolution. Marine Geophysical Research, 36(2-3): 149-165. https://doi.org/10.1007/s11001-014-9237-5 [6] Ding, W. W., Li, J. B., Li, M. B., 2011. Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea: Evidence from NH973-2 Multichannel Seismic Profile. Earth Science, 36(5): 895-904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201112008.htm [7] Fang, P. G., Ding, W. W., Fang, Y. X., et al., 2015. Development of Carbonate Platform and Its response to Cenozoic Tectonic in Reed Bank Area, the South China Sea. Earth Science, 40(12): 2052-2066 (in Chinese with English abstract). http://www.researchgate.net/publication/290495656_Development_of_carbonate_platform_and_its_response_to_cenozoic_tectonic_in_reed_bank_area_the_south_china_sea [8] Fournier, F., Montaggioni, L., Borgomano, J., 2004. Paleoenvironments and High-Frequency Cyclicity from Cenozoic South-East Asian Shallow-Water Carbonates: A Case Study from the Oligo-Miocene Buildups of Malampaya (Offshore Palawan, Philippines). Marine and Petroleum Geology, 21(1): 1-21. https://doi.org/10.1016/j.marpetgeo.2003.11.012 [9] Franke, D., Barckhausen, U., Baristeas, N., et al., 2011. The Continent-Ocean Transition at the Southeastern Margin of the South China Sea. Marine and Petroleum Geology, 28(6): 1187-1204. https://doi.org/10.1016/j.marpetgeo.2011.01.004 [10] Hinz, K., Schlüter, H. U., 1985. Geology of the Dangerous Grounds, South China Sea, and the Continental Margin off Southwest Palawan: Results of SONNE Cruises SO-23 and SO-27. Energy, 10(3-4): 297-315. https://doi.org/10.1016/0360-5442(85)90048-9 [11] Holloway, N. H., 1982., The North Palawan Block, Philippines: Its Relation to the Asian Mainland and Its Role in the Evolution of the South China Sea. Bulletin of the Geological Society of Malaysia, 14: 19-58. https://doi.org/10.7186/bgsm14198102 [12] Ilao, K. A., Morley, C. K., Aurelio, M. A., 2018. 3D Seismic Investigation of the Structural and Stratigraphic Characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and Their Tectonic Implications. Journal of Asian Earth Sciences, 154: 213-237. https://doi.org/10.1016/j.jseaes.2017.12.017 [13] Jian, Z. M., Jin, H. Y., Kaminski, M. A., et al., 2019. Discovery of the Marine Eocene in the Northern South China Sea. National Science Review, 6(5): 881-886. https://doi.org/10.1093/nsr/nwz084 [14] Jin, Q. H., Li, T. G., 2000. Regional Geologic Tectonics of the Nansha Sea Area. Marine Geology & Quaternary Geology, 20(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200001000.htm [15] Kudrass, H. R., Wiedicke, M., Cepek, P., et al., 1986. Mesozoic and Cainozoic Rocks Dredged from the South China Sea (Reed Bank Area) and Sulu Sea and Their Significance for Plate-Tectonic Reconstructions. Marine and Petroleum Geology, 3(1): 19-30. https://doi.org/10.1016/0264-8172(86)90053-X [16] Li, C. F., Li, J. B., Ding, W. W., et al., 2015. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686 [17] Liu, H. L., Yan, P., Sun, Y., et al., 2002. Layer-Block Tectonics of the Nansha Microplate. Geology in China, 29(4): 374-381 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200204007.htm [18] Qiu, N., Yao, Y. J., Zhang, J. Y., et al., 2019. Characteristics of the Crustal Structure and Its Tectonic Significance of the Continental Margin of SE South China Sea. Chinese Journal of Geophysics, 62(7): 2607-2621 (in Chinese with English abstract). http://www.researchgate.net/publication/334413303_Characteristics_of_the_crustal_structure_and_its_tectonic_significance_of_the_continental_margin_of_SE_South_China_Sea [19] Rehm, S. K., 2003. The Miocene Carbonates in Time and Space on- and Offshore SW Palawan, Philippines (Dissertation). Christian-Albrechts-University, Kiel. http://www.researchgate.net/publication/35173284_The_miocene_carbonates_in_time_and_space_on-_and_offshore_SW_Palawan_Philippines [20] Rimando, P. M., Manuel, G. A, 1997. Depth Conversion in Geologically Complex Structures: Case Study in Offshore Southwest Palawan. Journal of Asian Earth Sciences, 15(2-3): 241-250. https://doi.org/10.1016/S0743-9547(97)00010-X [21] Sales, A. O., Jacobsen, E. C., Morado, A. A. Jr., et al., 1997. The Petroleum Potential of Deep-Water Northwest Palawan Block GSEC 66. Journal of Asian Earth Sciences, 15(2-3): 217-240. https://doi.org/10.1016/S0743-9547(97)00009-3 [22] Schlüter, H. U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2): 39-78. https://doi.org/10.1016/0025-3227(95)00137-9 [23] Steckler, M. S., Watts, A. B., 1978. Subsidence of the Atlantic-Type Continental Margin off New York. Earth and Planetary Science Letters, 41(1): 1-13. https://doi.org/10.1016/0012-821X(78)90036-5 [24] Steuer, S., Franke, D., Meresse, F., et al., 2013. Time Constraints on the Evolution of Southern Palawan Island, Philippines from Onshore and Offshore Correlation of Miocene Limestones. Journal of Asian Earth Sciences, 76: 412-427. https://doi.org/10.1016/j.jseaes.2013.01.007 [25] Steuer, S., Franke, D., Meresse, F., et al., 2014. Oligocene-Miocene Carbonates and Their Role for Constraining the Rifting and Collision History of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 58: 644-657. https://doi.org/10.1016/j.marpetgeo.2013.12.010 [26] Sun, Z., Zhao, Z. X., Li, J. B., et al., 2011. Tectonic Analysis of the Breakup and Collision Unconformities in the Nansha. Chinese Journal of Geophysics, 54(12): 3196-3209 (in Chinese with English abstract). doi: 10.1002/cjg2.1685/full [27] Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gm027p0023 [28] Wang, L. J., Yao, Y. J., Li, X. J., et al., 2019a. Temporal and Spatial Migration of Rift-Terminate Unconformity Surfaces and Their Tectonic Significance in the Eastern Part of Nansha Block. Chinese Journal of Geophysics, 62(12): 4766-4781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201912022.htm [29] Wang, L. J., Yao, Y. J., Sun, Z., et al., 2019b. Characteristics of Interface S3 (the End of Middle Miocene) on the southeast South China Sea margin and Its Geological Implications. Marine Geology & Quaternary Geology, 39(4): 76-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201904008.htm [30] Wang, L. J., Yao, Y. J., Sun, Z., et al., 2020. The Discrimination of Mesozoic Sequence and Its Tectonic Attribute in the Southeastern South China Sea. Geology in China, 47(5): 1337-1354 (in Chinese with English abstract). [31] Williams, H. H., 1997. Play Concepts Northwest Palawan, Philippines. Journal of Asian Earth Sciences, 15(2-3): 251-273. https://doi.org/10.1016/S0743-9547(97)00011-1 [32] Wu, S. G., Zhao, X. Y., Dong, D. D., et al., 2011. Seismic Response and Development of Carbonate Platform in Liyue Basin, Nansha Sea Area. Earth Science, 36(5): 807-814 (in Chinese with English abstract). http://www.researchgate.net/publication/287593575_Seismic_response_and_development_of_carbonate_platform_in_Liyue_basin_Nansha_Sea_Area [33] Xu, D. H., Wang, L. J., Yao, Y. J., et al., 2018. Spatial and Temporal Distribution Characteristics of Carbonates in Liyue Basin and Their Tectonic Implications. Journal of Tropical Oceanography, 37(6): 49-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RDHY201806006.htm [34] Yang, S. X., Qiu, Y., Zhu, B. D., 2015. Atlas of Geology and Geophysics of the South China Sea. China Navigation Publications, Tianjin (in Chinese). [35] Yao, B.C., 1994. Tectonical Evolution on the Southern Margin of South China Sea. Geological Research of South China Sea, (6): 1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ199400000.htm [36] Yao, B. C., Wan, L., Liu, Z. H., 2004. Tectonic Dynamics of Cenozoic Sedimentary Basins and Hydrocarbon Resources in the South China Sea. Earth Science, 29(5): 543-549 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405006.htm [37] Yao, Y. J., Liu, H. L., Yang, C. P., et al., 2012. Characteristics and Evolution of Cenozoic Sediments in the Liyue Basin, SE South China Sea. Journal of Asian Earth Sciences, 60: 114-129. https://doi.org/10.1016/j.jseaes.2012.08.003 [38] Zhao, Z. X., Sun, Z., Wang, Z. F., et al., 2013. The Dynamic Mechanism of Post-Rift Accelerated Subsidence in Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 295-308. https://doi.org/10.1007/s11001-013-9188-2 [39] Zhou, D., Wu, S. M., Chen, H. Z., 2005. Some Remarks on the Tectonic Evolution of Nansha and Its Adjacent regions in Southern South China Sea. Geotectonica et Metallogenia, 29(3): 339-345 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200503008&dbcode=CJFD&year=2005&dflag=pdfdown [40] Zuo, Q. M., Li, J. L., Pei, J. X., et al., 2019. Cenozoic Tectonic Sequence Boundary and Petroleum Geological Significance of the Lile Basin, South China Sea. Sedimentary Geology and Tethyan Geology, 39(2): 60-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD201902007.htm [41] 丁巍伟, 李家彪, 黎明碧, 2011. 南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制: 来自NH973-2多道地震测线的证据. 地球科学, 36(5): 895-904. doi: 10.3799/dqkx.2011.094 [42] 方鹏高, 丁巍伟, 方银霞, 等, 2015. 南海礼乐滩碳酸盐台地的发育及其新生代构造响应. 地球科学, 40(12): 2052-2066. doi: 10.3799/dqkx.2015.182 [43] 金庆焕, 李唐根, 2000. 南沙海域区域地质构造. 海洋地质与第四纪地质, 20(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200001000.htm [44] 刘海龄, 阎贫, 孙岩, 等, 2002. 南沙微板块的层块构造. 中国地质, 29(4): 374-381. doi: 10.3969/j.issn.1000-3657.2002.04.008 [45] 邱宁, 姚永坚, 张江阳, 等, 2019. 南海东南部陆缘地壳结构特征及其构造意义. 地球物理学报, 62(7): 2607-2621. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907019.htm [46] 孙珍, 赵中贤, 李家彪, 等, 2011. 南沙地块内破裂不整合与碰撞不整合的构造分析. 地球物理学报, 54(12): 3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019 [47] 王利杰, 姚永坚, 李学杰, 等, 2019a. 南沙东部海域裂陷结束不整合面时空迁移规律及构造意义. 地球物理学报, 62(12): 4766-4781. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912022.htm [48] 王利杰, 姚永坚, 孙珍, 等. 2019b. 南海东南部陆缘S3界面(中中新世末)属性及其意义. 海洋地质与第四纪地质, 39(4): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201904008.htm [49] 王利杰, 姚永坚, 孙珍, 等, 2020. 南海东南部中生界识别及其构造属性. 中国地质, 47(5): 1337-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005006.htm [50] 吴时国, 赵学燕, 董冬冬, 等, 2011. 南沙海区礼乐盆地碳酸盐台地地震响应及发育演化. 地球科学, 36(5): 807-814. doi: 10.3799/dqkx.2011.083 [51] 徐东海, 王利杰, 姚永坚, 等, 2018. 礼乐盆地碳酸盐岩时空分布特征及构造意义. 热带海洋学报, 37(6): 49-62. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201806006.htm [52] 杨胜雄, 邱燕, 朱本铎, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社. [53] 姚伯初, 1994. 南海南部地区的新生代构造演化. 南海地质研究, (6): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ199400000.htm [54] 姚伯初, 万玲, 刘振湖, 2004. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源. 地球科学, 29(5): 543-549. doi: 10.3321/j.issn:1000-2383.2004.05.007 [55] 周蒂, 吴世敏, 陈汉宗, 2005. 南沙海区及邻区构造演化动力学的若干问题. 大地构造与成矿学, 29(3): 339-345. doi: 10.3969/j.issn.1001-1552.2005.03.008 [56] 左倩媚, 李俊良, 裴健翔, 等, 2019. 南海礼乐盆地新生代构造层序界面特征及油气地质意义. 沉积与特提斯地质, 39(2): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201902007.htm