• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    典型岩溶槽谷区土壤水和地下水氢氧稳定同位素对隧道建设的响应

    邱菊 蒋勇军 吕同汝 茆杨 吴泽 马丽娜 汪啟容 张彩云

    邱菊, 蒋勇军, 吕同汝, 茆杨, 吴泽, 马丽娜, 汪啟容, 张彩云, 2022. 典型岩溶槽谷区土壤水和地下水氢氧稳定同位素对隧道建设的响应. 地球科学, 47(2): 717-728. doi: 10.3799/dqkx.2021.008
    引用本文: 邱菊, 蒋勇军, 吕同汝, 茆杨, 吴泽, 马丽娜, 汪啟容, 张彩云, 2022. 典型岩溶槽谷区土壤水和地下水氢氧稳定同位素对隧道建设的响应. 地球科学, 47(2): 717-728. doi: 10.3799/dqkx.2021.008
    Qiu Ju, Jiang Yongjun, Lv Tongru, Mao Yang, Wu Ze, Ma Lina, Wang Qirong, Zhang Caiyun, 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley. Earth Science, 47(2): 717-728. doi: 10.3799/dqkx.2021.008
    Citation: Qiu Ju, Jiang Yongjun, Lv Tongru, Mao Yang, Wu Ze, Ma Lina, Wang Qirong, Zhang Caiyun, 2022. Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley. Earth Science, 47(2): 717-728. doi: 10.3799/dqkx.2021.008

    典型岩溶槽谷区土壤水和地下水氢氧稳定同位素对隧道建设的响应

    doi: 10.3799/dqkx.2021.008
    基金项目: 

    国家重点研发计划项目 2016YFC0502306

    重庆市自然科学基金项目 cstc2019yszx-jcyjx002

    重庆市自然科学基金项目 cstc2020yszx-jcyjx006

    详细信息
      作者简介:

      邱菊(1997-), 女, 硕士研究生, 主要从事岩溶学与环境变化研究.ORCID: 0000-0001-8376-4847.E-mail: 1608550505@qq.com

      通讯作者:

      蒋勇军, E-mail: jiangjyj@swu.edu.cn

    • 中图分类号: P592.641

    Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley

    • 摘要: 隧道建设引起地下水流场改变,对区域水分运移过程造成严重影响.以重庆市中梁山岩溶槽谷为例,于2017年4月~2019年4月收集降水、土壤水、地下水和隧道排水,利用氢氧稳定同位素分析隧道影响区和非隧道影响区的土壤水和地下水运移过程,探索隧道建设对其产生的影响.结果表明:隧道影响区土壤水δ2H和δ18O变化幅度较非隧道影响区土壤水剧烈,地下水δ2H和δ18O变化幅度较非隧道影响区地下水更平稳;与非隧道影响区的土壤水和地下水相比,隧道影响区浅层土壤水δ2H和δ18O夏季偏重,深层土壤水δ2H和δ18O秋季偏重,浅层岩溶泉水δ2H和δ18O四季均偏重,地下河水δ2H和δ18O冬季偏重,其余季节各水体的δ2H和δ18O偏轻;隧道影响区和非隧道影响区水体平均滞留时间和"新水"比例差异从土壤水到地下水逐渐减小,隧道影响区土壤水滞留时间较非隧道影响区土壤水少25.4 d,"新水"比例高13.5%,地下水滞留时间少16.1 d,"新水"比例高3.4%.隧道建设一定程度上加快了隧道影响区水分运移速度,造成土壤层中滞留水分减少,水分混合作用减弱,导致地下水混合作用更加显著.

       

    • 图  1  研究区及采样点分布

      Fig.  1.  Study area and sampling points distribution

      图  2  大气降水降水量、气温和δ18O和δ2H的季节变化特征

      Fig.  2.  The seasonal variation characteristics of precipitation, temperature and δ18O and δ2H of atmospheric precipitation

      图  3  中梁山典型岩溶槽谷区各水体δ18O-δD的线性特征

      Fig.  3.  Linear characteristics of δ18O-δD of each water body in the valley area of a typical karst trough in Zhongliang Mountain

      图  4  降水、土壤水、地下水和隧道排水δ18O和δ2H的季节分布

      Fig.  4.  Seasonal distribution of δ18O and δ2H of precipitation, soil water, groundwater and tunnel drainage

      图  5  中梁山典型岩溶槽谷区大气降水、地下水和隧道排水δ18O值的余弦拟合

      Fig.  5.  Cosine fitting of δ18O values of atmospheric precipitation, groundwater and tunnel drainages in the typical karst trough area of Zhongliang Mountain

      表  1  龙凤槽谷3条隧道基本情况

      Table  1.   Basic situation of three tunnels in Longfeng karst trough valley

      隧道编号 隧道名 隧道开挖期 隧道长度(m) 隧道东/西海拔(m) 隧道东/西排水量(L/S)
      1 轻轨6号线北碚隧道 2010~2013年 4 322 245/240 1.5/23.3
      2 兰海高速北碚隧道 1999~2001年 4 035 250/240 2.5/16.8
      3 绕城高速施家梁隧道 2006~2008年 4 285 260/245 2.3/6.5
      下载: 导出CSV

      表  2  中梁山典型岩溶区土壤水、地下水和隧道排水的δ2H和δ18O值

      Table  2.   δ2H and δ18O values of soil waters, groundwater and tunnel drainages in a typical karst area of Zhongliang Mountain

      同位素 隧道影响 类型 编号 最大值(‰) 最小值(‰) 平均值(‰) 标准差(‰) 差异系数
      δ18O 土壤水 2#0~20 cm -4.50 -12.55 -8.35 2.58 -0.31
      2#20~40 cm -4.80 -9.80 -7.87 1.76 -0.22
      浅层岩溶泉 S -3.24 -9.38 -6.88 1.55 -0.22
      地下河 G1 -3.70 -9.35 -6.79 1.52 -0.22
      G2 -3.85 -9.09 -7.01 1.43 -0.20
      隧道排水 TGW1 -4.82 -9.02 -7.10 1.21 -0.17
      TGW2-G75 -2.63 -8.90 -7.01 1.45 -0.21
      TGW3-G5001 -5.09 -10.67 -7.65 1.38 -0.18
      土壤水 4#0~20 cm -4.91 -11.19 -7.65 1.92 -0.25
      4#20~40 cm -4.82 -9.96 -7.00 1.72 -0.25
      浅层岩溶泉 E2 -3.10 -13.38 -7.12 2.29 -0.32
      地下河 UG -1.04 -10.43 -6.10 2.09 -0.34
      δ2H 土壤水 2#0~20 cm -26.90 -85.32 -56.49 20.54 -0.36
      2#20~40 cm -29.10 -75.50 -52.45 16.20 -0.31
      浅层岩溶泉 S -25.68 -56.73 -43.61 7.50 -0.17
      地下河 G1 -28.75 -52.04 -42.20 5.14 -0.12
      G2 -28.50 -55.80 -44.68 5.23 -0.12
      隧道排水 TGW1 -37.81 -59.90 -47.18 3.71 -0.08
      TGW2-G75 -38.49 -50.23 -46.48 2.69 -0.06
      TGW3-G5001 -38.98 -50.59 -46.59 2.95 -0.06
      土壤水 4#0~20 cm -24.65 -79.10 -49.60 16.51 -0.33
      4#20~40 cm -26.19 -70.23 -44.49 15.26 -0.34
      浅层岩溶泉 E2 -25.29 -72.35 -44.73 11.15 -0.25
      地下河 UG -20.24 -51.37 -39.50 6.59 -0.17
      下载: 导出CSV

      表  3  中梁山典型岩溶区土壤水、地下水和隧道排水的平均滞留时间和“新水”比例

      Table  3.   Mean transit time and young water fraction of soil waters, groundwater and tunnel drainages in a typical karst area of Zhongliang Mountain

      隧道影响 类型 编号 $ {A}_{\mathrm{s}}/{A}_{\mathrm{p}} $ “新水”比例(%) 平均滞留时间MTT(a) 均方根误差RMSE(‰)
      土壤水 2#0~20 cm 0.79 78.96 0.12 1.97
      2#20~40 cm 0.74 73.51 0.15 1.36
      浅层岩溶泉 S 0.50 49.77 0.28 0.99
      地下河 G1 0.38 37.97 0.39 1.29
      G2 0.38 38.01 0.39 1.14
      隧道排水 TGW1 0.26 26.10 0.59 1.08
      TGW2-G75 0.19 19.00 0.82 1.08
      TGW3-G5001 0.34 33.73 0.44 1.17
      土壤水 4#0~20 cm 0.66 66.18 0.18 0.93
      4#20~40 cm 0.59 59.26 0.22 1.41
      浅层岩溶泉 E2 0.66 66.31 0.18 1.00
      地下河 UG 0.35 34.60 0.43 1.72
      下载: 导出CSV
    • [1] Bakalowicz, M., 2005. Karst Groundwater: a Challenge for New Resources. Hydrogeology Journal, 13(1): 148-160. https://doi.org/10.1007/s10040a-004-0402-9
      [2] Cao, J.H., Yuan, D.X., Tong, L.Q., et al. 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008
      [3] Cao, L., Shen, J. M., Nie, Z. L., et al., 2020. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in the Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract).
      [4] Dewalle, D. R., Edwards, P J., Swistock, B. R., et al., 1997. Seasonal Isotope Hydrology of Three Appala China Forest Catchments. Hydrological Processes, 11(15): 1895-1906. https://doi.org/10.1002/(SICI)1099-1085(199712)11:15<1895::AID-HYP538>3.0.CO;2-#
      [5] Duan, S. H., Jang, Y. J., Zhang, Y.Z. , et al., 2019. Sources of Nitrate in Groundwater and Its Environmental Effects in Karst Trough Valleys: a Case Study of an Underground River System in the Longfeng trough Valley, Chongging. Environmental Science, 40(4): 1715-1725(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/31087912
      [6] Gat, J. R., 1996. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annual Review of Earth and Planetary Sciences, 24(1): 225-262. https://doi. org/10.1146/annurev.earth.24.1.225 doi: 10.1146/annurev.earth.24.1.225
      [7] Gu, D., Zhang, Z., Mallik, A., et al., 2015. Seasonal Water Use Strategy of Cyclobalanopsis Glauca in a Karst Area of Southern China. Environmental Earth Sciences, 74(2): 1007-1014. https://doi.org/10.1007/s12665-014-3817-1
      [8] Hu, K., Chen, H., Nie, Y., et al., 2015. Seasonal Recharge and Mean Residence Times of Soil and Epikarst Water in a Small Karst Catchment of Southwest China. Scientific Reports, 5(1): 12-27. https://doi.org/10.1038/srep10215
      [9] Hu, Y. B., Xiao, W., Qian, Y. F. , et al., 2019. Effects of Water Vapor Source and Local Evaporation on the Stable Hydrogen and Oxygen Isotopic Compositions of Precipitation. Environmental Science, 40(2): 573-581(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/30628319/
      [10] Jasechko, S., 2019. Global Isotope Hydrogeology: Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018RG000627
      [11] Kirchner, J, W., 2016a. Aggregation in Environmental Systems: Part 1: Seasonal Tracer Cycles Quantify Young Water Fractions, But not Mean Transit Times, in Spatially Heterogeneous Catchments. Hydrology and Earth System Sciences, 20(1): 279-297. https://doi.org/10.5194/hess-20-279-2016
      [12] Kirchner, J. W., 2016b. Aggregation in Environmental Systems: Part 2: Catchment Mean Transit Times and Young Water Fractions under Hydrologic Nonstationarity. Hydrology and Earth System Sciences, 20(1): 299-328. https://doi.org/10.5194/hess-20-299-2016
      [13] Liu, D., 2001. Research on Application of Isotope and Hydrochemical Information in Groundwater Environment of Long Tunnel(Dissertation). Southwest Jiaotong University, Sichuan(in Chinese).
      [14] Luo, W. J., Wang, S. J., 2008. The Signal Transmission of δ18O in Atmospheric Precipitation-Soil Water-Drop and Its Significance at Guizhou Liangfeng Cave. Chinese Science Bulletin, 53(17): 2071-2076(in Chinese with English abstract). doi: 10.1360/csb2008-53-17-2071
      [15] Li, T. Y., Li, C. H., Sheng, C. Z., et al., 2010. Study on the δD and δ18O Characteristics of Meteoric Precipitation during 2006-2008 in Chonging, China. Advances in Water Science, 21(6): 757-764(in Chinese with English abstract).
      [16] Liu, W., Wang, S. J., Luo, W. J., 2011. The Response of Epikarst Spring to Precipitation and Its Implications in Karst Peak-Cluster Region of Libo County, Guizhou Province, China. Geochimica, 40(5): 487-496(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201105009.htm
      [17] Liu, M.J., Wang, Y., Zhang, Y. H., et al., 2015. Variation Characteristics of Stable Isotopes in Different Water Bodies in Southwestern China Monsoon Area: a Case Study of Beibei District, Chongqing. Carsologica Sinica, 34(5): 486-494(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201505009.htm
      [18] Liao, Y. P., 2018. Study on Evolution Law of Negative Effects of Groundwater Environment on Tunnel Engineering Around Karst Mountain Area of Chongqing(Dissertation). Chongqing Jiaotong University, Chongqing(in Chinese).
      [19] Lv, Y. X., Jang, Y. J., Wang, Z. , et al., 2020. Review on the Hydrology and the Ecological and Environmental Effects of Tunnel Construction in the Karst Valley of Southwest China. Acta Ecologica Sinica, 40(6): 1851-1864(in Chinese with English abstract). http://www.researchgate.net/publication/343207877_Review_on_the_hydrology_and_the_ecological_and_environmental_effects_of_tunnel_construction_in_the_karst_valley_of_Southwest_China
      [20] Maoszewski, P., Zuber, A., 1982. Determining the Turnover Ttime of Groundwater Systems with the Aid of Environmental Tracers. 1. Models and Their Applicability. Journal of Hydrology, 57(3-4): 207-231. https://doi.org/10.1016/0022-1694(82)90147-0
      [21] Maoszewski, P., Rauert, W., Stichler, W., et al., 1983. Application of Flow Models in an Alpine Catchment Area Using Tritium and Deuterium Data. Journal of Hydrology, 66(1-4): 319-330. https://doi.org/10.1016/0022-1694(83)90193-2
      [22] Maréchal, J. C., Etcheverry, D., 2003. The Use of 3H and 18O Tracers to Characterize Water Inflows in Alpine Tunnels. Applied Geochemistry, 18(3): 339-351. https://doi.org/10.1016/S0883-2927(02)00101-4
      [23] McGuire, K. J., McDonnell, J. J., 2006. A Review and Evaluation of Catchment Transit Time Modeling. Journal of Hydrology, 330(3-4): 543-563. https://doi.org/10.1016/j.jhydrol.2006.04.020
      [24] Meng, Y. C., Liu, G. D., 2010. Effect of Below-Cloud Secondary Evaporation on the Stable Isotopes in Precipitation over the Yangize River Basin. Advances in Water Science, 21(3): 327-334(in Chinese with English abstract). http://www.cqvip.com/QK/97113X/20103/34116302.html
      [25] Posmentier, E. S., Feng, X., Zhao, M., 2004. Seasonal Variations of Precipitation δ18O in Eastern Asia. Journal of Geophysical Research Atmospheres, 109(D23). https://doi.org/10.1029/2004JD004510
      [26] Pu, J. B., 2013. Hydrogen and Oxygen Isotope Geochemistry of Karst Groundwater in Chongqing. Acta Geoscientica Sinica, 34(6): 713-722(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201306009.htm
      [27] Peng, X. Y., 2019. Influence of Tunnel Construction on Soil Quality in Karst Valley of Zhongliang Mountain Chongqing(Dissertation). Southwest University, Chongqing (in Chinese).
      [28] Qin, C., 2017. Application of Hydrological Monitoring Technology to Construction of Karst Tunnels. Tunnel Construction, 37(7): 878-884(in Chinese with English abstract).
      [29] Ranfagni, L., Gherardi, F., Rossi, S., 2014. Chemical and Isotope Composition of Waters from Firenzuola Railway Tunnel, Italy. Springer International Publishing, Cham, 971-974. https://doi.org/10.1007/978-3-319-09060-3-176
      [30] Rusjan, S., Sapač, K., Petrič, M., et al. 2019. Identifying the Hydrological Behavior of a Complex Karst System Using Stable Isotopes. Journal of Hydrology, 577: 123956. https://doi.org/10.1016/j.jhydrol.2019.123956
      [31] Song, X. Q., Peng, Q., Duan, Q. s., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44(9): 2874-2886. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909006.htm
      [32] Trombulak, S. C., Frissell, C. A., 2000. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology, 14(1). https://doi.org/10.1046/j.1523-1739.2000.99084.x
      [33] Tomonaga, Y., Marzocchi, R., Pera, S., et al., 2017. Using Noble-Gas and Stable-Isotope Data to Determine Groundwater Origin and Flow Regimes: Application to the Ceneri Base Tunnel (Switzerland). Journal of Hydrology, 545: 395-409. https://doi.org/10.1016/j.jhydrol.2016.11.043
      [34] Vincenzi, V., Gargini, A., Goldscheide, r N., 2009. Using Tracer Tests and Hydrological Observations to Evaluate Effects of Tunnel Drainage on Groundwater and Surface Waters in the Northern Apennines (Italy). Hydrogeology Journal, 17(1): 135-150. https://doi.org/10.1007/s10040-008-0371-5
      [35] Wu, W., Jang, Y. J., Jia, Y.N., et al., 2018. Temporal and Spatial Distribution of the Soil Water δD and δ18O in a Typical Karst Valley: a Case Study of the Zhongliang Mountain, Chongging City. Environmental Science, 39(12): 5418-5427(in Chinese with English abstract). http://www.researchgate.net/publication/330512492_Temporal_and_Spatial_Distribution_of_the_Soil_Water_dD_and_d18O_in_a_Typical_Karst_Valley_A_Case_Study_of_the_Zhongliang_Mountain_Chongqing_City
      [36] Wang. R., Liu, Z.F., 2020. Stable Isotope Evidence for Recent Global Warming Hiatus. Journal of Earth Science, 31(2): 419-424. https://doi.org/10.1007/s12583-019-1239-4
      [37] Wang, Q. F., Zheng, W., Xu, H., et al., 2018. Influence of Groundwater Loss Induced by Karst Tunnel Construction on Growth of Surrounding Vegetation and Its Countermeasures. Tunnel Construction, 38(6): 915-923(in Chinese with English abstract). http://www.researchgate.net/publication/326572595_Influence_of_Groundwater_Loss_Induced_by_Karst_Tunnel_Construction_on_Growth_of_Surrounding_Vegetation_and_Its_Countermeasures
      [38] Yuan, D. X., 2000. Aspects on the New Round Land and Resources Survey in Karst Rock Desertification Areas of South China. Carsologica Sinica, 19(2): 103-108(in Chinese). http://www.researchgate.net/publication/291700885_Aspects_on_the_new_round_land_and_resources_survey_in_karst_rock_desertification_areas_of_south_China
      [39] 曹乐, 申建梅, 聂振龙, 等, 2020. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273
      [40] 段世辉, 蒋勇军, 张远瞩, 等, 2019. 岩溶槽谷区地下河硝酸盐来源及其环境效应: 以重庆龙凤槽谷地下河系统为例. 环境科学, 40(4): 1715-1725. doi: 10.3969/j.issn.1000-6923.2019.04.045
      [41] 胡勇博, 肖薇, 钱雨妃, 等, 2019. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响. 环境科学, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm
      [42] 刘丹, 2001. 长大隧道地下水环境中同位素及水化学信息的应用研究(博士毕业论文). 四川: 西南交通大学.
      [43] 罗维均, 王世杰, 2008. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义. 科学通报, (17): 2071-2076. doi: 10.3321/j.issn:0023-074X.2008.17.012
      [44] 李廷勇, 李红春, 沈川洲, 等, 2010.2006~2008年重庆大气降水δD和δ18O特征初步分析. 水科学进展, 21(6): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201006004.htm
      [45] 刘伟, 王世杰, 罗维均, 2011. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义. 地球化学, 40(5): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105009.htm
      [46] 刘梦娇, 王勇, 张耀华, 等, 2015. 中国西南季风区不同水体稳定同位素特征分析——以重庆市北碚区为例. 中国岩溶, 34(5): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201505009.htm
      [47] 廖云平, 2018. 重庆岩溶山区隧道工程地下水环境负效应演化规律研究(硕士毕业论文). 重庆: 重庆交通大学.
      [48] 吕玉香, 蒋勇军, 王正雄, 等, 2020. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展. 生态学报, 40(6): 1851-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202006002.htm
      [49] 孟玉川, 刘国东, 2010. 长江流域降水稳定同位素的云下二次蒸发效应. 水科学进展, 21(3): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003007.htm
      [50] 蒲俊兵, 2013. 重庆岩溶地下水氢氧稳定同位素地球化学特征. 地球学报, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm
      [51] 彭学义, 2019. 重庆市中梁山岩溶槽谷区隧道建设对土壤质量的影响(硕士毕业论文). 重庆: 西南大学.
      [52] 秦成, 2017. 水文监测技术在岩溶隧道施工中的应用. 隧道建设, 37(7): 878-884. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201707018.htm
      [53] 宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. doi: 10.3799/dqkx.2019.146
      [54] 吴韦, 蒋勇军, 贾亚男, 等, 2018. 典型岩溶槽谷区土壤水δD和δ18O时空分布特征: 以重庆市中梁山岩溶槽谷为例. 环境科学, 39(12): 5418-5427. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812015.htm
      [55] 王芳其, 郑炜, 徐华, 等, 2018. 岩溶山区隧道地下水漏失对植物生长的影响分析及对策. 隧道建设, 038(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201806006.htm
      [56] 袁道先, 2000. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见. 中国岩溶, (2): 103-108. doi: 10.3969/j.issn.1001-4810.2000.02.001
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  362
    • HTML全文浏览量:  130
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-01
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回