Response of Stable Isotopes of Hydrogen and Oxygen in Soil Water and Groundwater to Tunnel Construction in Typical Karst trough Valley
-
摘要: 隧道建设引起地下水流场改变,对区域水分运移过程造成严重影响.以重庆市中梁山岩溶槽谷为例,于2017年4月~2019年4月收集降水、土壤水、地下水和隧道排水,利用氢氧稳定同位素分析隧道影响区和非隧道影响区的土壤水和地下水运移过程,探索隧道建设对其产生的影响.结果表明:隧道影响区土壤水δ2H和δ18O变化幅度较非隧道影响区土壤水剧烈,地下水δ2H和δ18O变化幅度较非隧道影响区地下水更平稳;与非隧道影响区的土壤水和地下水相比,隧道影响区浅层土壤水δ2H和δ18O夏季偏重,深层土壤水δ2H和δ18O秋季偏重,浅层岩溶泉水δ2H和δ18O四季均偏重,地下河水δ2H和δ18O冬季偏重,其余季节各水体的δ2H和δ18O偏轻;隧道影响区和非隧道影响区水体平均滞留时间和"新水"比例差异从土壤水到地下水逐渐减小,隧道影响区土壤水滞留时间较非隧道影响区土壤水少25.4 d,"新水"比例高13.5%,地下水滞留时间少16.1 d,"新水"比例高3.4%.隧道建设一定程度上加快了隧道影响区水分运移速度,造成土壤层中滞留水分减少,水分混合作用减弱,导致地下水混合作用更加显著.Abstract: The construction of the tunnel caused changes in the groundwater flow field, which seriously affected the process of regional water migration. Taking the karst trough of Zhongliang Mountain in Chongqing as an example, we collected precipitation, soil water, groundwater and tunnel drainage from April 2017 to April 2019. This study used stable hydrogen and oxygen isotopes to analyze the soil water and groundwater migration processes in the tunnel-affected zone and non-tunnel-affected zone, and explored the impact of tunnel construction on it.The results showed that the change of δ2H and δ18O of soil water in the tunnel-affected area was greater than that of the tunnel-affected area, and the change of groundwater δ2H and δ18O was more stable than that of the non-tunnel-affected area.Compared with the soil water and groundwater in the non-tunnel-affected area, the δ2H and δ18O of the shallow soil water in the tunnel-affected area were heavier in summer, the δ2H and δ18O of deep soil were heavier in autumn, the δ2H and δ18O of shallow karst spring water were basically heavier in all seasons, and the underground river water was δ2H and δ18O tends to be heavier in winter, and the δ2H and δ18O of water bodies in other seasons were basically lighter. The difference of meantransit time and young water fraction between the tunnel-affected zone and the non-tunnel-affected zone gradually decreased from soil water to groundwater.The meantransit time of soil water in the tunnel-affected area was 25.4 days shorter than that in the non-tunnel-affected area, the young water fraction was 13.5% higher, the meantransit time of groundwater was 16.1 days less, and the young water fraction was 3.4% higher.To sum up, the tunnel construction accelerated the water movement speed in the tunnel-affected zone to a certain extent, resulting in the reduction of retained water in the soil layer and the weakening of water mixing.
-
表 1 龙凤槽谷3条隧道基本情况
Table 1. Basic situation of three tunnels in Longfeng karst trough valley
隧道编号 隧道名 隧道开挖期 隧道长度(m) 隧道东/西海拔(m) 隧道东/西排水量(L/S) 1 轻轨6号线北碚隧道 2010~2013年 4 322 245/240 1.5/23.3 2 兰海高速北碚隧道 1999~2001年 4 035 250/240 2.5/16.8 3 绕城高速施家梁隧道 2006~2008年 4 285 260/245 2.3/6.5 表 2 中梁山典型岩溶区土壤水、地下水和隧道排水的δ2H和δ18O值
Table 2. δ2H and δ18O values of soil waters, groundwater and tunnel drainages in a typical karst area of Zhongliang Mountain
同位素 隧道影响 类型 编号 最大值(‰) 最小值(‰) 平均值(‰) 标准差(‰) 差异系数 δ18O 是 土壤水 2#0~20 cm -4.50 -12.55 -8.35 2.58 -0.31 2#20~40 cm -4.80 -9.80 -7.87 1.76 -0.22 浅层岩溶泉 S -3.24 -9.38 -6.88 1.55 -0.22 地下河 G1 -3.70 -9.35 -6.79 1.52 -0.22 G2 -3.85 -9.09 -7.01 1.43 -0.20 隧道排水 TGW1 -4.82 -9.02 -7.10 1.21 -0.17 TGW2-G75 -2.63 -8.90 -7.01 1.45 -0.21 TGW3-G5001 -5.09 -10.67 -7.65 1.38 -0.18 否 土壤水 4#0~20 cm -4.91 -11.19 -7.65 1.92 -0.25 4#20~40 cm -4.82 -9.96 -7.00 1.72 -0.25 浅层岩溶泉 E2 -3.10 -13.38 -7.12 2.29 -0.32 地下河 UG -1.04 -10.43 -6.10 2.09 -0.34 δ2H 是 土壤水 2#0~20 cm -26.90 -85.32 -56.49 20.54 -0.36 2#20~40 cm -29.10 -75.50 -52.45 16.20 -0.31 浅层岩溶泉 S -25.68 -56.73 -43.61 7.50 -0.17 地下河 G1 -28.75 -52.04 -42.20 5.14 -0.12 G2 -28.50 -55.80 -44.68 5.23 -0.12 隧道排水 TGW1 -37.81 -59.90 -47.18 3.71 -0.08 TGW2-G75 -38.49 -50.23 -46.48 2.69 -0.06 TGW3-G5001 -38.98 -50.59 -46.59 2.95 -0.06 否 土壤水 4#0~20 cm -24.65 -79.10 -49.60 16.51 -0.33 4#20~40 cm -26.19 -70.23 -44.49 15.26 -0.34 浅层岩溶泉 E2 -25.29 -72.35 -44.73 11.15 -0.25 地下河 UG -20.24 -51.37 -39.50 6.59 -0.17 表 3 中梁山典型岩溶区土壤水、地下水和隧道排水的平均滞留时间和“新水”比例
Table 3. Mean transit time and young water fraction of soil waters, groundwater and tunnel drainages in a typical karst area of Zhongliang Mountain
隧道影响 类型 编号 $ {A}_{\mathrm{s}}/{A}_{\mathrm{p}} $ “新水”比例(%) 平均滞留时间MTT(a) 均方根误差RMSE(‰) 是 土壤水 2#0~20 cm 0.79 78.96 0.12 1.97 2#20~40 cm 0.74 73.51 0.15 1.36 浅层岩溶泉 S 0.50 49.77 0.28 0.99 地下河 G1 0.38 37.97 0.39 1.29 G2 0.38 38.01 0.39 1.14 隧道排水 TGW1 0.26 26.10 0.59 1.08 TGW2-G75 0.19 19.00 0.82 1.08 TGW3-G5001 0.34 33.73 0.44 1.17 否 土壤水 4#0~20 cm 0.66 66.18 0.18 0.93 4#20~40 cm 0.59 59.26 0.22 1.41 浅层岩溶泉 E2 0.66 66.31 0.18 1.00 地下河 UG 0.35 34.60 0.43 1.72 -
[1] Bakalowicz, M., 2005. Karst Groundwater: a Challenge for New Resources. Hydrogeology Journal, 13(1): 148-160. https://doi.org/10.1007/s10040a-004-0402-9 [2] Cao, J.H., Yuan, D.X., Tong, L.Q., et al. 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008 [3] Cao, L., Shen, J. M., Nie, Z. L., et al., 2020. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in the Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract). [4] Dewalle, D. R., Edwards, P J., Swistock, B. R., et al., 1997. Seasonal Isotope Hydrology of Three Appala China Forest Catchments. Hydrological Processes, 11(15): 1895-1906. https://doi.org/10.1002/(SICI)1099-1085(199712)11:15<1895::AID-HYP538>3.0.CO;2-# [5] Duan, S. H., Jang, Y. J., Zhang, Y.Z. , et al., 2019. Sources of Nitrate in Groundwater and Its Environmental Effects in Karst Trough Valleys: a Case Study of an Underground River System in the Longfeng trough Valley, Chongging. Environmental Science, 40(4): 1715-1725(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/31087912 [6] Gat, J. R., 1996. Oxygen and Hydrogen Isotopes in the Hydrologic Cycle. Annual Review of Earth and Planetary Sciences, 24(1): 225-262. https://doi. org/10.1146/annurev.earth.24.1.225 doi: 10.1146/annurev.earth.24.1.225 [7] Gu, D., Zhang, Z., Mallik, A., et al., 2015. Seasonal Water Use Strategy of Cyclobalanopsis Glauca in a Karst Area of Southern China. Environmental Earth Sciences, 74(2): 1007-1014. https://doi.org/10.1007/s12665-014-3817-1 [8] Hu, K., Chen, H., Nie, Y., et al., 2015. Seasonal Recharge and Mean Residence Times of Soil and Epikarst Water in a Small Karst Catchment of Southwest China. Scientific Reports, 5(1): 12-27. https://doi.org/10.1038/srep10215 [9] Hu, Y. B., Xiao, W., Qian, Y. F. , et al., 2019. Effects of Water Vapor Source and Local Evaporation on the Stable Hydrogen and Oxygen Isotopic Compositions of Precipitation. Environmental Science, 40(2): 573-581(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/30628319/ [10] Jasechko, S., 2019. Global Isotope Hydrogeology: Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018RG000627 [11] Kirchner, J, W., 2016a. Aggregation in Environmental Systems: Part 1: Seasonal Tracer Cycles Quantify Young Water Fractions, But not Mean Transit Times, in Spatially Heterogeneous Catchments. Hydrology and Earth System Sciences, 20(1): 279-297. https://doi.org/10.5194/hess-20-279-2016 [12] Kirchner, J. W., 2016b. Aggregation in Environmental Systems: Part 2: Catchment Mean Transit Times and Young Water Fractions under Hydrologic Nonstationarity. Hydrology and Earth System Sciences, 20(1): 299-328. https://doi.org/10.5194/hess-20-299-2016 [13] Liu, D., 2001. Research on Application of Isotope and Hydrochemical Information in Groundwater Environment of Long Tunnel(Dissertation). Southwest Jiaotong University, Sichuan(in Chinese). [14] Luo, W. J., Wang, S. J., 2008. The Signal Transmission of δ18O in Atmospheric Precipitation-Soil Water-Drop and Its Significance at Guizhou Liangfeng Cave. Chinese Science Bulletin, 53(17): 2071-2076(in Chinese with English abstract). doi: 10.1360/csb2008-53-17-2071 [15] Li, T. Y., Li, C. H., Sheng, C. Z., et al., 2010. Study on the δD and δ18O Characteristics of Meteoric Precipitation during 2006-2008 in Chonging, China. Advances in Water Science, 21(6): 757-764(in Chinese with English abstract). [16] Liu, W., Wang, S. J., Luo, W. J., 2011. The Response of Epikarst Spring to Precipitation and Its Implications in Karst Peak-Cluster Region of Libo County, Guizhou Province, China. Geochimica, 40(5): 487-496(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201105009.htm [17] Liu, M.J., Wang, Y., Zhang, Y. H., et al., 2015. Variation Characteristics of Stable Isotopes in Different Water Bodies in Southwestern China Monsoon Area: a Case Study of Beibei District, Chongqing. Carsologica Sinica, 34(5): 486-494(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201505009.htm [18] Liao, Y. P., 2018. Study on Evolution Law of Negative Effects of Groundwater Environment on Tunnel Engineering Around Karst Mountain Area of Chongqing(Dissertation). Chongqing Jiaotong University, Chongqing(in Chinese). [19] Lv, Y. X., Jang, Y. J., Wang, Z. , et al., 2020. Review on the Hydrology and the Ecological and Environmental Effects of Tunnel Construction in the Karst Valley of Southwest China. Acta Ecologica Sinica, 40(6): 1851-1864(in Chinese with English abstract). http://www.researchgate.net/publication/343207877_Review_on_the_hydrology_and_the_ecological_and_environmental_effects_of_tunnel_construction_in_the_karst_valley_of_Southwest_China [20] Maoszewski, P., Zuber, A., 1982. Determining the Turnover Ttime of Groundwater Systems with the Aid of Environmental Tracers. 1. Models and Their Applicability. Journal of Hydrology, 57(3-4): 207-231. https://doi.org/10.1016/0022-1694(82)90147-0 [21] Maoszewski, P., Rauert, W., Stichler, W., et al., 1983. Application of Flow Models in an Alpine Catchment Area Using Tritium and Deuterium Data. Journal of Hydrology, 66(1-4): 319-330. https://doi.org/10.1016/0022-1694(83)90193-2 [22] Maréchal, J. C., Etcheverry, D., 2003. The Use of 3H and 18O Tracers to Characterize Water Inflows in Alpine Tunnels. Applied Geochemistry, 18(3): 339-351. https://doi.org/10.1016/S0883-2927(02)00101-4 [23] McGuire, K. J., McDonnell, J. J., 2006. A Review and Evaluation of Catchment Transit Time Modeling. Journal of Hydrology, 330(3-4): 543-563. https://doi.org/10.1016/j.jhydrol.2006.04.020 [24] Meng, Y. C., Liu, G. D., 2010. Effect of Below-Cloud Secondary Evaporation on the Stable Isotopes in Precipitation over the Yangize River Basin. Advances in Water Science, 21(3): 327-334(in Chinese with English abstract). http://www.cqvip.com/QK/97113X/20103/34116302.html [25] Posmentier, E. S., Feng, X., Zhao, M., 2004. Seasonal Variations of Precipitation δ18O in Eastern Asia. Journal of Geophysical Research Atmospheres, 109(D23). https://doi.org/10.1029/2004JD004510 [26] Pu, J. B., 2013. Hydrogen and Oxygen Isotope Geochemistry of Karst Groundwater in Chongqing. Acta Geoscientica Sinica, 34(6): 713-722(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201306009.htm [27] Peng, X. Y., 2019. Influence of Tunnel Construction on Soil Quality in Karst Valley of Zhongliang Mountain Chongqing(Dissertation). Southwest University, Chongqing (in Chinese). [28] Qin, C., 2017. Application of Hydrological Monitoring Technology to Construction of Karst Tunnels. Tunnel Construction, 37(7): 878-884(in Chinese with English abstract). [29] Ranfagni, L., Gherardi, F., Rossi, S., 2014. Chemical and Isotope Composition of Waters from Firenzuola Railway Tunnel, Italy. Springer International Publishing, Cham, 971-974. https://doi.org/10.1007/978-3-319-09060-3-176 [30] Rusjan, S., Sapač, K., Petrič, M., et al. 2019. Identifying the Hydrological Behavior of a Complex Karst System Using Stable Isotopes. Journal of Hydrology, 577: 123956. https://doi.org/10.1016/j.jhydrol.2019.123956 [31] Song, X. Q., Peng, Q., Duan, Q. s., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44(9): 2874-2886. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909006.htm [32] Trombulak, S. C., Frissell, C. A., 2000. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology, 14(1). https://doi.org/10.1046/j.1523-1739.2000.99084.x [33] Tomonaga, Y., Marzocchi, R., Pera, S., et al., 2017. Using Noble-Gas and Stable-Isotope Data to Determine Groundwater Origin and Flow Regimes: Application to the Ceneri Base Tunnel (Switzerland). Journal of Hydrology, 545: 395-409. https://doi.org/10.1016/j.jhydrol.2016.11.043 [34] Vincenzi, V., Gargini, A., Goldscheide, r N., 2009. Using Tracer Tests and Hydrological Observations to Evaluate Effects of Tunnel Drainage on Groundwater and Surface Waters in the Northern Apennines (Italy). Hydrogeology Journal, 17(1): 135-150. https://doi.org/10.1007/s10040-008-0371-5 [35] Wu, W., Jang, Y. J., Jia, Y.N., et al., 2018. Temporal and Spatial Distribution of the Soil Water δD and δ18O in a Typical Karst Valley: a Case Study of the Zhongliang Mountain, Chongging City. Environmental Science, 39(12): 5418-5427(in Chinese with English abstract). http://www.researchgate.net/publication/330512492_Temporal_and_Spatial_Distribution_of_the_Soil_Water_dD_and_d18O_in_a_Typical_Karst_Valley_A_Case_Study_of_the_Zhongliang_Mountain_Chongqing_City [36] Wang. R., Liu, Z.F., 2020. Stable Isotope Evidence for Recent Global Warming Hiatus. Journal of Earth Science, 31(2): 419-424. https://doi.org/10.1007/s12583-019-1239-4 [37] Wang, Q. F., Zheng, W., Xu, H., et al., 2018. Influence of Groundwater Loss Induced by Karst Tunnel Construction on Growth of Surrounding Vegetation and Its Countermeasures. Tunnel Construction, 38(6): 915-923(in Chinese with English abstract). http://www.researchgate.net/publication/326572595_Influence_of_Groundwater_Loss_Induced_by_Karst_Tunnel_Construction_on_Growth_of_Surrounding_Vegetation_and_Its_Countermeasures [38] Yuan, D. X., 2000. Aspects on the New Round Land and Resources Survey in Karst Rock Desertification Areas of South China. Carsologica Sinica, 19(2): 103-108(in Chinese). http://www.researchgate.net/publication/291700885_Aspects_on_the_new_round_land_and_resources_survey_in_karst_rock_desertification_areas_of_south_China [39] 曹乐, 申建梅, 聂振龙, 等, 2020. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273 [40] 段世辉, 蒋勇军, 张远瞩, 等, 2019. 岩溶槽谷区地下河硝酸盐来源及其环境效应: 以重庆龙凤槽谷地下河系统为例. 环境科学, 40(4): 1715-1725. doi: 10.3969/j.issn.1000-6923.2019.04.045 [41] 胡勇博, 肖薇, 钱雨妃, 等, 2019. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响. 环境科学, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm [42] 刘丹, 2001. 长大隧道地下水环境中同位素及水化学信息的应用研究(博士毕业论文). 四川: 西南交通大学. [43] 罗维均, 王世杰, 2008. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义. 科学通报, (17): 2071-2076. doi: 10.3321/j.issn:0023-074X.2008.17.012 [44] 李廷勇, 李红春, 沈川洲, 等, 2010.2006~2008年重庆大气降水δD和δ18O特征初步分析. 水科学进展, 21(6): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201006004.htm [45] 刘伟, 王世杰, 罗维均, 2011. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义. 地球化学, 40(5): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105009.htm [46] 刘梦娇, 王勇, 张耀华, 等, 2015. 中国西南季风区不同水体稳定同位素特征分析——以重庆市北碚区为例. 中国岩溶, 34(5): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201505009.htm [47] 廖云平, 2018. 重庆岩溶山区隧道工程地下水环境负效应演化规律研究(硕士毕业论文). 重庆: 重庆交通大学. [48] 吕玉香, 蒋勇军, 王正雄, 等, 2020. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展. 生态学报, 40(6): 1851-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202006002.htm [49] 孟玉川, 刘国东, 2010. 长江流域降水稳定同位素的云下二次蒸发效应. 水科学进展, 21(3): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003007.htm [50] 蒲俊兵, 2013. 重庆岩溶地下水氢氧稳定同位素地球化学特征. 地球学报, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm [51] 彭学义, 2019. 重庆市中梁山岩溶槽谷区隧道建设对土壤质量的影响(硕士毕业论文). 重庆: 西南大学. [52] 秦成, 2017. 水文监测技术在岩溶隧道施工中的应用. 隧道建设, 37(7): 878-884. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201707018.htm [53] 宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. doi: 10.3799/dqkx.2019.146 [54] 吴韦, 蒋勇军, 贾亚男, 等, 2018. 典型岩溶槽谷区土壤水δD和δ18O时空分布特征: 以重庆市中梁山岩溶槽谷为例. 环境科学, 39(12): 5418-5427. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201812015.htm [55] 王芳其, 郑炜, 徐华, 等, 2018. 岩溶山区隧道地下水漏失对植物生长的影响分析及对策. 隧道建设, 038(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201806006.htm [56] 袁道先, 2000. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见. 中国岩溶, (2): 103-108. doi: 10.3969/j.issn.1001-4810.2000.02.001