Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method
-
摘要: 水力压裂作为一种主要的地热能开采手段,其压裂效果除与岩体基本物理力学性质有关外,还与裂隙分布、地应力状态、压裂工程参数等密切相关.为了探究以上因素对水力压裂过程中裂缝扩展行为的影响,以冀中坳陷碳酸盐岩储层岩体为研究对象,基于扩展有限元法,建立裂缝扩展流固耦合模型,分析了水平应力差、射孔方位角、注入液排量和压裂液黏度等参数对裂缝扩展行为的影响.结果表明:单裂缝扩展时,射孔方位角越小、注入量越大、越有利于裂缝扩展;双裂缝扩展时,水平应力差增大,裂缝偏转程度变小;水力裂缝与天然裂缝相交时,较小水平应力差有利于天然裂缝开启.Abstract: Hydraulic fracturing is one of the main geothermal energy exploitation methods, and its fracturing effect is not only related to the basic physical and mechanical properties of the rock mass, but also closely related to the distribution of fractures, the state of in-situ stress, and the engineering parameters of fracturing. To explore the influence of the above factors of the fracture propagation behavior in the process of hydraulic fracturing, in this paper it takes the carbonatite reservoir rock mass in Jizhong depression as the research object. Based on the extended finite element method, a fracture propagation fluid-solid coupling model is established and analyzed. The influence of parameters such as horizontal stress difference, perforation azimuth angle, injection fluid displacement, and fracturing fluid viscosity on fracture propagation behavior. The results show: When a single fracture propagates, the smaller the perforation azimuth angle and the larger the injection rate, the more conducive to fracture propagation. When double cracks propagate, the horizontal stress difference increases, and the degree of crack deflection decreases. When hydraulic fractures intersect with natural fractures, the smaller horizontal stress difference is beneficial to the opening of natural fractures.
-
表 1 冀中坳陷碳酸盐岩地热储层裂缝扩展流固耦合模型参数
Table 1. Fracture propagation fluid-solid coupling model parameters of carbonatite geothermal reservoirs in Jizhong depression
最大水平主应力(MPa) 最小水平主应力(MPa) 抗拉强度(MPa) 孔隙比 弹性模量(GPa) 泊松比 压裂液黏度(Pa·s) 压裂液排量(m3/s) 射孔长度(m) 8.0 6.0 7.0 0.1 20 0.24 0.001 0.002 1.0 -
[1] Aimene, Y.E., Nairn, J.A., 2014. Modeling Multiple Hydraulic Fractures Interacting with Natural Fractures Using the Material Point Method. SPE, Vienna. DOI: 10.2118/167801-ms [2] Batchelor, C.K., Batchelor, G.K., 2000. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. [3] Chitrala, Y., Moreno, C., Sondergeld, C., et al., 2013. An Experimental Investigation into Hydraulic Fracture Propagation under Different Applied Stresses in Tight Sands Using Acoustic Emissions. Journal of Petroleum Science and Engineering, 108: 151-161. DOI: 10.1016/j.petrol.2013.01.002 [4] Dong, B.X., Yang, L., Li, W., et al., 2019. Physical Simulation of Fracture Initiation and Propagation in Horizontal Well Fracturing. Special Oil & Gas Reservoirs, 26(6): 151-157(in Chinese with English abstract). [5] Du, Y.K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756(in Chinese with English abstract). [6] Gordeliy, E., Peirce, A., 2013. Implicit Level Set Schemes for Modeling Hydraulic Fractures Using the XFEM. Computer Methods in Applied Mechanics and Engineering, 266: 125-143. DOI: 10.1016/j.cma.2013.07.016 [7] Guo, L.L., Chen, Z.F., Luo, J.R., et al., 2011. A Review of the Extended Finite Element Method and Its Applications. Chinese Quarterly of Mechanics, 32(4): 612-625(in Chinese with English abstract). [8] Heng, S., Yang, C.H., Zeng, Y.J., et al., 2014. Experimental Study on Hydraulic Fracture Geometry of Shale. Chinese Journal of Geotechnical Engineering, 36(7): 1243-1251(in Chinese with English abstract). [9] Jeffrey, R.G., Kear, J., Kasperczyk, D., et al., 2015. A 2D Experimental Method with Results for Hydraulic Fractures Crossing Discontinuities. 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association: San Francisco, California, 28. [10] Lamont, N., Jessen, F.W., 1963. The Effects of Existing Fractures in Rocks on the Extension of Hydraulic Fractures. Journal of Petroleum Technology, 15(2): 203-209. DOI: 10.2118/419-pa [11] Lei, Y., 2014. Underground Hydraulic Fracturing in Soft Coal Seams Fracturing Mechanism and Application Research(Dissertation). China Coal Research Institute CCRI, Beijing(in Chinese with English abstract). [12] Li, D.W., Wang, Y.X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869(in Chinese with English abstract). [13] Li, L.X., Wang, T.J., 2005. The Extended Finite Element Method and Its Applications: A Review. Advances in Mechanics, 35(1): 5-20(in Chinese with English abstract). [14] Li, S.B., Li, L., Zhang, L.G., 2014. The Numerical Simulation Analysis of Crack Propagation Law under Riverfrac Treatment Multi-Field Coupling. Journal of Petrochemical Universities, 27(1): 42-47(in Chinese with English abstract). [15] Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597(in Chinese with English abstract). [16] Lou, Y., Zhang, G.Q., 2019. Experimental Analysis of Fracturing Fluid Viscosity on Cyclic Hydraulic Fracturing. Rock and Soil Mechanics, 40(Suppl. 1): 109-118(in Chinese with English abstract). [17] Michael, J.E., 2002. Measures to Increase Oil Reservoir Production (Zhang, B.P., etc., Translate). Petroleum Industry Press, Beijing (in Chinese). [18] Mohammadi, S., 2007. Extended Finite Element Method: For Fracture Analysis of Structures. XFEM Fracture Analysis of Composites, 45(22): 5675-5687. [19] Olson, J.E., Taleghani, A.D., 2009. Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction with Natural Fractures. SPE, The Woodlands, Texas. DOI: 10.2118/119739-ms [20] Pan, L.H., Zhang, S.C., Zhang, J., et al., 2012. The Analysis of Hydraulic Fracture Propagation in Fracture-Cavity Carbonate Reservoirs. Science Technology and Engineering, 12(12): 2816-2819, 2824(in Chinese with English abstract). [21] Réthoré, J., Gravouil, A., Combescure, A., 2005. An Energy-Conserving Scheme for Dynamic Crack Growth Using the Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 63(5): 631-659. DOI: 10.1002/nme.1283 [22] Shao, C.Y., Pan, P.Z., Zhao, D.C., et al., 2020. Effect of Pumping Rate on Hydraulic Fracturing Breakdown Pressure and Pressurization Rate. Rock and Soil Mechanics, 41(7): 2411-2421, 2484(in Chinese with English abstract). [23] Su, L.X., 2008. Numerical Simulation of Hydraulic Fracturing of Rock Mass with Single Fracture Using Meshless Method(Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract). [24] Tomac, I., Sauter, M., 2018. A Review on Challenges in the Assessment of Geomechanical Rock Performance for Deep Geothermal Reservoir Development. Renewable and Sustainable Energy Reviews, 82: 3972-3980. DOI: 10.1016/j.rser.2017.10.076 [25] Unger, J.F., Eckardt, S., Könke, C., 2007. Modelling of Cohesive Crack Growth in Concrete Structures with the Extended Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 196(41-44): 4087-4100. DOI: 10.1016/j.cma.2007.03.023 [26] Wei, Y.L., Yang, C.H., Guo, Y.T., et al., 2016. Experimental Study on Hydraulic Fracture Geometry of Tight Sandstone from Xujiahe Group. Chinese Journal of Rock Mechanics and Engineering, 35(Suppl. 1): 2720-2731(in Chinese with English abstract). [27] Yu, J.Y., Shen, F., Gu, Q.H., et al., 2011. Influence of Perforation Parameters on Hydraulic Fracturing of Fracture Pressure in Horizontal Well. Petroleum Geology and Recovery Efficiency, 18(1): 105-107, 110, 118(in Chinese with English abstract). [28] Rutqvist, J., Stephansson, O., 1996. A Cyclic Hydraulic Jacking Test to Determine the In Situ Stress Normal to a Fracture. International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, 33, 695-711. doi: 10.1016/0148-9062(96)00013-7 [29] Zangeneh, N., Eberhardt, E., Bustin, R.M., 2012. Application of the Distinct-Element Method to Investigate the Influence of Natural Fractures and In-Situ Stresses on Hydrofrac Propagation. In: ARMA 12-331, the 46th US Rock Mechanics Symposium, Chicago, IL, USA. [30] Zhang, G.M., Liu, H., Zhang, J., et al., 2010. Three-Dimensional Finite Element Simulation and Parametric Study for Horizontal Well Hydraulic Fracture. Journal of Petroleum Science and Engineering, 72(3-4): 310-317. DOI: 10.1016/j.petrol.2010.03.032 [31] Zhang, G.M., Liu, H., Zhang, J., et al., 2010. Mathematical Model and Nonlinear Finite Element Equation for Reservoir Fluid-Solid Coupling. Rock and Soil Mechanics, 31(5): 1657-1662(in Chinese with English abstract). [32] Zhang, S.C., Sun, K.M., 2019. Hydraulic Fracturing Crack Propagation under Various Reservoir Heterogeneity and Anisotropy. Special Oil & Gas Reservoirs, 26(2): 96-100(in Chinese with English abstract). [33] Zhao, Y.Z., Qu, L.Z., Wang, X.Z., et al., 2007. Simulation Experiment on Prolongation Law of Hydraulic Fracture for Different Lithologic Formations. Journal of China University of Petroleum (Edition of Natural Science), 31(3): 63-66(in Chinese with English abstract). [34] Zhou, J., Chen, M., Jin, Y., et al., 2007. Experimental Study on Propagation Mechanism of Hydraulic Fracture in Naturally Fractured Reservoir. Acta Petrolei Sinica, 28(5): 109-113(in Chinese with English abstract). [35] Zhou, J., Chen, M., Jin, Y., et al., 2008. Experiment of Propagation Mechanism of Hydraulic Fracture in Multi-Fracture Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 32(4): 51-54, 59(in Chinese with English abstract). [36] Zubkov, V. V., Koshelev, V. F., Lin'kov, A. M., 2007. Numerical Modeling of Hydraulic Fracture Initiation and Development. Journal of Mining Science, 43(1): 40-56. DOI: 10.1007/s10913-007-0006-6 [37] 董丙响, 杨柳, 李伟, 等, 2019. 水平井压裂裂缝起裂及延伸规律模拟实验研究. 特种油气藏, 26(6): 151-157. doi: 10.3969/j.issn.1006-6535.2019.06.028 [38] 杜玉昆, 庞飞, 陈科, 等, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221 [39] 郭历伦, 陈忠富, 罗景润, 等, 2011. 扩展有限元方法及应用综述. 力学季刊, 32(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm [40] 衡帅, 杨春和, 曾义金, 等, 2014. 页岩水力压裂裂缝形态的试验研究. 岩土工程学报, 36(7): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407010.htm [41] 雷毅, 2014. 松软煤层井下水力压裂致裂机理及应用研究(博士学位论文). 北京: 煤炭科学研究总院. [42] 李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166 [43] 李录贤, 王铁军, 2005. 扩展有限元法(XFEM)及其应用. 力学进展, 35(1): 5-20. doi: 10.3321/j.issn:1000-0992.2005.01.002 [44] 李士斌, 李磊, 张立刚, 2014. 清水压裂多场耦合下裂缝扩展规律数值模拟分析. 石油化工高等学校学报, 27(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHX201401008.htm [45] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [46] 楼烨, 张广清, 2019. 压裂液黏度对循环水力压裂影响的试验研究. 岩土力学, 40(增刊1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1017.htm [47] Michael, J.E., 2002. 油藏增产措施(张保平等, 译). 北京: 石油工业出版社. [48] 潘林华, 张士诚, 张劲, 等, 2012. 缝洞型碳酸盐岩裂缝扩展分析. 科学技术与工程, 12(12): 2816-2819, 2824. doi: 10.3969/j.issn.1671-1815.2012.12.009 [49] 邵长跃, 潘鹏志, 赵德才, 等, 2020. 流量对水力压裂破裂压力和增压率的影响研究. 岩土力学, 41(7): 2411-2421, 2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007028.htm [50] 苏利勋, 2008. 无网格法数值模拟岩体单裂隙水力劈裂(硕士学位论文). 昆明: 昆明理工大学. [51] 魏元龙, 杨春和, 郭印同, 等, 2016. 须家河组致密砂岩水力压裂裂缝形态的试验研究. 岩石力学与工程学报, 35(增刊1): 2720-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1016.htm [52] 虞建业, 沈飞, 顾庆宏, 等, 2011. 水平井射孔参数对压裂起裂压力的影响. 油气地质与采收率, 18(1): 105-107, 110, 118. doi: 10.3969/j.issn.1009-9603.2011.01.029 [53] 张广明, 刘合, 张劲, 等, 2010. 储层流固耦合的数学模型和非线性有限元方程. 岩土力学, 31(5): 1657-1662. doi: 10.3969/j.issn.1000-7598.2010.05.053 [54] 张树翠, 孙可明, 2019. 储层非均质性和各向异性对水力压裂裂纹扩展的影响. 特种油气藏, 26(2): 96-100. doi: 10.3969/j.issn.1006-6535.2019.02.017 [55] 赵益忠, 曲连忠, 王幸尊, 等, 2007. 不同岩性地层水力压裂裂缝扩展规律的模拟实验. 中国石油大学学报(自然科学版), 31(3): 63-66. doi: 10.3321/j.issn:1000-5870.2007.03.013 [56] 周健, 陈勉, 金衍, 等, 2007. 裂缝性储层水力裂缝扩展机理试验研究. 石油学报, 28(5): 109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020 [57] 周健, 陈勉, 金衍, 等, 2008. 多裂缝储层水力裂缝扩展机理试验. 中国石油大学学报(自然科学版), 32(4): 51-54, 59. doi: 10.3321/j.issn:1673-5005.2008.04.011