Paleofluid Characteristics since Indosinian Movement in Yuanma Basin, West Hunan: Significance for Cambrian Shale Gas Exploration
-
摘要: 因古隆起周缘页岩生烃时间晚、热演化程度低,目前已成为中扬子地区油气勘探的重要领域.雪峰古隆起形成于加里东末期,经历了后期复杂的沉积-构造演化,白垩系覆盖区勘探方向尚未明确.以雪峰古隆起西侧沅麻盆地北部为主要研究对象,通过对不整合于寒武系页岩之上的白垩系底部方解石脉与寒武系页岩方解石脉地球化学和包裹体对比分析,研究了古流体形成环境、来源及其对寒武系生烃演化过程的指示.研究结果表明:(1)白垩系脉体碳氧同位素与围岩具有相似性,REE无明显的Eu异常,与寒武系脉体Eu强正异常对比鲜明,表明白垩系脉体主要来自白垩系,受寒武系页岩的影响弱;(2)白垩系方解石脉采样位置位于构造高位,但是包裹体类型显示以纯水溶液包裹体为主,形成于弱还原-弱氧化的环境,未见沥青和明显的纯甲烷包裹体,表明寒武系大规模生排烃在白垩系沉积之前;(3)以包裹体均一温度和Ro为制约,结合区域地质特征恢复了沅麻盆地寒武系两种类型埋藏史,即沅麻盆地北部草堂凹陷早期深埋藏,白垩纪以来不具二次生烃的条件;辰溪凹陷南部早期浅埋藏,白垩系以来Ro可能由1.2%升至2.5%,二次生烃潜力较大,是下一步勘探的有利区.Abstract: Paleo-uplifts with late hydrocarbon generation and relatively low maturity of source rock have become important targets for petroleum exploration in the Middle Yangtze region. Xuefeng uplift formed in Late Caledonian, covered by Cretaceous strata, has no clear exploration directions because of complex tectono-sedimentary evolution. In this paper, it focuses on the north part of Yuanma basin located in the north margin of Xuefeng paleo-uplift, two types of calcite vein samples were collected from Cambrian shale and Cretaceous rocks near the unconformity between Cambrian and Cretaceous, in order to discuss the paleo-fluid environment, source, and its significance for hydrocarbon-generation evolution, by comprehensive analysis of geochemical data and inclusions. The following results were obtained. (1) Cretaceous veins with similar carbon and oxygen isotope value to surrounding rocks have no noticeable Eu abnormality of REE, different from strong Eu positive anomaly in Cambrian veins, indicating the source of veins was Cretaceous and little influenced by Cambrian shale. (2)Most inclusions in Cretaceous samples collected from structurally high position are aqueous inclusions, formed in weakly oxic to weakly reducing environment, with no bitumen or pure methane inclusions, indicating that the Cretaceous sediment was formed later than the time of large-scale hydrocarbon generation and expulsion of Cambrian shale. (3) Under the restrains of homogeneous temperature of fluid inclusions and Ro, two types burial history of Cambrian shale are proposed in Yuanma basin combined with regional geological characteristics. In Caotang depression, north of Yuanma basin, Cambrian shale has no secondary hydrocarbon generation due to deeply buried in early stage. However, the Chenxi depression in the south part may be a favorable area for shale gas exploration, where the Cambrian shale was shallow buried in early stage, and its Ro elevated form 1.2% to 2.5% in Cretacous buried stage leading to huge hydrocarbon potential.
-
Key words:
- West Hunan Province /
- Yuanma basin /
- paleo-uplift /
- Cretaceous /
- Cambrian /
- paleofulid /
- secondary hydrocarbon generation /
- shale gas
-
图 2 沅麻盆地脉体及围岩北美页岩标准化配分模式(据Haskin et al., 1968)
Fig. 2. NASC-normalized REE patterns of veins and surrounding rocks in Yuanma basin (after Haskin et al., 1968)
图 6 方解石及围岩碳氧同位素对比图(K结核数据据刘芮岑等,2018)
Fig. 6. Comparison of carbon and oxygen isotopes of calcite and surrounding rock(the date of K calcareous concretions after Liu et al., 2018)
表 1 方解石脉及围岩碳氧同位素测试结果
Table 1. The analytic results for carbon and oxygen stable isotope of calcite veins and surrounding rocks
样品编号 裂缝类型 采样位置 δ13C方解石
(‰)δ18O方解石
(‰)δ13C灰岩
(‰)δ18O灰岩
(‰)Δ13C脉-围岩
(‰)Δ18O脉-围岩
(‰)YL-2 泥岩裂缝 ① -9.60 -7.04 YL-3 不整合面砾岩裂缝 ② -2.85 -11.97 2.74 -10.27 -5.59 -1.7 YL-4 不整合面砾岩裂缝 ③ -2.60 -17.86 YL-5 不整合面砾岩裂缝 ③ -2.82 -17.83 YL-6 不整合面砾岩裂缝 ④ -3.06 -17.88 1.2 -9.94 -4.26 -7.94 YL-7 不整合面砾岩裂缝 ⑤ -8.35 -21.11 YL-8 不整合面砾岩裂缝 ⑥ -3.37 -18.37 -2.64 -9.11 -0.73 -9.26 YL-9 不整合面砾岩裂缝 ⑥ -3.39 -17.36 -2.78 -9.38 -0.61 -7.98 YL-10 不整合面砾岩裂缝 ⑦ -1.83 -18.92 0.44 -9.61 -2.27 -9.31 YL-11 不整合面砾岩裂缝 ⑦ -1.26 -22.51 1.11 -8.76 -2.37 -13.75 YL-12 不整合面砾岩裂缝 ⑦ -1.37 -22.15 1.46 -7.93 -2.83 -14.22 YL-13 砂质泥岩裂缝 ⑧ -10.55 -6.67 YL-14 泥质砂岩裂缝 ⑨ -3.21 -12.74 -3.34 -14.61 0.13 1.87 YL-15 泥质砂岩裂缝 ⑨ -3.36 -13.67 -3.34 -14.61 -0.02 0.94 表 2 方解石脉及页岩稀土元素含量(10-6)
Table 2. Contents of REE of calcite veins and shales(10-6)
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu LREE HREE L/H ∑REE δEu δCe YL-3 1.38 3.20 0.58 3.36 1.11 0.24 0.88 0.15 0.82 0.14 0.32 0.038 0.20 0.025 9.87 2.57 3.84 12.44 1.06 0.75 YL-6 1.82 6.00 1.02 5.02 1.26 0.27 1.03 0.16 0.84 0.14 0.30 0.036 0.20 0.023 15.39 2.73 5.64 18.12 1.04 0.88 YL-7 1.30 6.40 1.32 7.96 2.56 0.67 1.97 0.32 1.66 0.28 0.60 0.070 0.38 0.046 20.21 5.33 3.79 25.54 1.31 0.84 YL-10 5.77 17.60 2.22 9.35 2.10 0.45 1.94 0.32 1.76 0.31 0.72 0.088 0.46 0.054 37.49 5.65 6.63 43.14 0.98 1.05 YL-11 3.64 8.53 1.00 4.01 0.82 0.17 0.78 0.12 0.67 0.12 0.27 0.034 0.18 0.022 18.17 2.20 8.27 20.37 0.93 0.97 XJ-6 2.27 4.52 0.54 2.39 0.75 1.04 0.79 0.15 0.92 0.17 0.40 0.054 0.29 0.033 11.51 2.81 4.10 14.32 5.92 0.89 XJ-7 27.20 48.50 5.15 20.00 4.46 2.47 4.50 0.72 3.79 0.67 1.54 0.190 1.00 0.120 107.78 12.53 8.60 120.31 2.42 0.88 N-1 23.70 45.30 5.57 20.90 4.36 1.62 4.04 0.67 3.81 0.78 2.24 0.380 2.47 0.360 101.45 14.75 6.88 116.20 1.69 0.86 N-2 28.40 52.30 6.50 22.60 3.58 1.35 3.10 0.42 2.16 0.45 1.43 0.260 1.82 0.280 114.73 9.92 11.57 124.65 1.78 0.84 表 3 包裹体类型、均一温度、盐度统计
Table 3. Testing results of inclusion features, homogeneous temperature and salinity
采样位置 样品 层位 包裹体类型及占比(%) 均一温度范围(℃) 均一温度峰值(℃) 盐度(%) 气相 高密度甲烷 液相 两相 ④号点 YL-6 K1 30 0 65 5 115~141 110~120, 130~140 1.74~12.42 ⑥号点 YL-8 30 0 60 10 110~131 110~130 1.57~11.75 ⑦号点 YL-10 20 0 75 5 104~127 100~130 5.56~14.87 ⑦号点 YL-12 10 0 80 10 94~145 110~130 0.88~12.42 ⑨号点 YL-15 5 0 85 5 101~140 100~130 2.74~9.73 JD1井 XJ-5 ${\rm{\rlap{-} C}} $1n 0 80 10 10 128~224 130~140, 150~160, 170~190 13.94~16.05 ZD1井 ZD-5 0 50 30 20 189~256 240~250 3.39~11.81 表 4 脉体包裹体群离子组分统计
Table 4. Ionic constituents in inclusions of vein minerals
样品号 F-含量
(mg/L)Cl-含量
(mg/L)NO3-含量
(mg/L)SO42-含量
(mg/L)Na+含量
(mg/L)K+含量
(mg/L)Mg2+含量
(mg/L)Ca2+含量
(mg/L)rNa+/ rCl- (rCl--rNa+)/ rMg2+ rSO42+×100/rCl- YL-3 0.65 10.60 0.88 5.01 6.32 0.40 1.05 14.50 0.92 0.28 34.86 YL-6 0.76 9.84 0.99 5.62 5.88 0.64 1.29 18.60 0.92 0.21 42.13 YL-7 0.28 6.55 1.30 5.84 4.38 0.37 0.92 18.40 1.03 -0.08 65.76 YL-10 0.52 1.72 1.00 2.94 1.22 0.44 0.73 17.00 1.09 -0.08 126.08 YL-11 0.18 3.03 0.90 2.49 2.11 0.27 0.58 16.10 1.07 -0.13 60.61 -
[1] Bai, D.Y., Jiang, W., Zhong, X., et al., 2015. Mesozoic-Cenozoic Structural Deformation Characteristics of Yuanling-Mayang Basin and Regional Tectonic Setting. Geology in China, 42(6): 1851-1875(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DIZI201506014&dbcode=CJFD&year=2015&dflag=pdfdown [2] Bai, D.Y., Xiong, X., Yang, J., et al., 2014. Geological Structure Characteristics of the Middle Segment of the Xuefeng Orogen. Geology in China, 41(2): 399-418(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201402008.htm [3] Burruss, R. C., 1981. Analysis of Fluid Inclusions: Phase Equilibria at Constant Volume. American Journal of Science, 281(8): 1104-1126. https://doi.org/10.2475/ajs.281.8.1104 [4] Chen, X.H., Wang, C.S., Liu, A., et al., 2017. The Discovery of the Shale Gas in the Cambrian Shuijingtuo Formation of Yichang Area, Hubei Province. Geology in China, 44(1): 188-189(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0016236116309358 [5] Chen, Y.J., Zhao, Y.C., 1997. Geochemical Characteristics and Evolution of REE in the Early Precambrian Sediments: Evidences from the Southern Margin of the North China Craton. Episodes, 20(2): 109-116. https://doi.org/10.18814/epiiugs/1997/v20i2/008 [6] Eadington P. J., Lisk M., Krieger F.W., 1996. Identifying Oil Well Sites. United States Patent, No. 5543616. http://www.freepatentsonline.com/5543616.html [7] Fan, X.L., 1996. The Geological Structure of the Xuefeng Mountains-Yuanma Basin and Its Significance to Oil Exploration. Petroleum Geology and Experiment, 18(1): 64-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD601.005.htm [8] Fang, W.X., Hu, R.Z., Su, W.C., et al., 2002. Geochemical Characteristics of Dahebian-Gongxi Superlarge Barite Deposits and Analysis on Its Background of Tectonic Geology, China. Acta Petrologica Sinica, 18(2): 247-255(in Chinese with English abstract). http://www.oalib.com/paper/1471976 [9] Gao, J., Zhang, J. K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102: 844-859. https://doi.org/10.1016/j.marpetgeo.2019.01.032 [10] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091 [11] Haskin, L. A., Wildemanan, T. R., Haskin, M. A. . 1968. An Accurate Procedure for the Determination of the Rare Earth by Neutron Activation. Journal of Radioanalytical Chemistry, 1(4): 337-348. doi: 10.1007/BF02513689 [12] Hu, D. F., Zhang, H. R., Ni, K., et al., 2014. Preservation Conditions for Marine Shale Gas at the Southeastern Margin of the Sichuan Basin and Their Controlling Factors. Natural Gas Industry B, 1(2): 178-184. https://doi.org/10.1016/j.ngib.2014.11.009 [13] Hu, W.X., Chen, Q., Wang, X.L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818(in Chinese with English abstract). http://www.researchgate.net/publication/308353614_REE_models_for_the_discrimination_of_fluids_in_the_formation_and_evolution_of_dolomite_reservoirs [14] Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1-3): 37-57. https://doi.org/10.1016/S0009-2541(99)00080-7 [15] Ju, Y. W., Wang, G. C., Bu, H. L., et al., 2014. China Organic-Rich Shale Geologic Features and Special Shale Gas Production Issues. Journal of Rock Mechanics and Geotechnical Engineering, 6(3): 196-207. https://doi.org/10.1016/j.jrmge.2014.03.002 [16] Liang, F., Zhu, Y.M., Qi, L., et al., 2016. Accumulation Condition and Gas Content Influence Factors of Niutitang Formation Organic-Rich Shale in Changde Area, Hunan Province. Natural Gas Geoscience, 27(1): 180-188(in Chinese with English abstract). http://www.researchgate.net/publication/316514141_Accumulation_condition_and_gas_content_influence_factors_of_Niutitang_Formation_organic-rich_shale_in_Changde_area_Hunan_Province [17] Liu, A., Li, X.B., Wang, C.S., et al., 2013. Analysis of Geochemical Feature and Sediment Environment for Hydrocarbon Source Rocks of Cambrian in West Hunan-Hubei Area. Acta Sedimentologica Sinica, 31(6): 1122-1132(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=48105257 [18] Liu, A., Ou, W. J., Huang, H. L., et al., 2018. Significance of Paleo-Fluid in the Ordovician-Silurian Detachment Zone to the Preservation of Shale Gas in Western Hunan-Hubei Area. Natural Gas Industry B, 5(6): 565-574. https://doi.org/10.1016/j.ngib.2018.11.004 [19] Liu, A., Ou, W.J., Wei, K., et al., 2017. Characteristics of Dengying Formation Paleo-Reservoir in Daping County, Zhangjiajie, and Its Natural Gas Exploration Significance. Acta Geologica Sinica, 91(8): 1848-1859(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201708013&dbcode=CJFD&year=2017&dflag=pdfdown [20] Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm [21] Liu, R.C., Li, X.H., Hu, X.M., 2018. Late Cretaceous Oxygen Isotope of Paleoprecipitation in Chaling Basin, Hunan Province. Acta Sedimentologica Sinica, 36(6): 1169-1176(in Chinese with English abstract). http://www.researchgate.net/publication/325594478_Late_Cretaceous_Oxygen_Isotope_of_Paleoprecipitation_in_Chaling_Basin_Hunan_Province/download [22] Lu, W. J., Chou, I. M., Burruss, R. C., et al., 2007. A Unified Equation for Calculating Methane Vapor Pressures in the CH4-H2O System with Measured Raman Shifts. Geochimica et Cosmochimica Acta, 71(16): 3969-3978. https://doi.org/10.1016/j.gca.2007.06.004 [23] Ma, L., Chen, H.J., Gan, K.W., et al., 2004. Geotectonic and Petroleum Geology of Marine Sedimentary Rocks in Southern China. Geological Publishing House, Beijing, 259-336(in Chinese). [24] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science, 35(2): 161-174(in Chinese with English abstract). http://www.researchgate.net/publication/269538168_xiangexi-chuandongzhongshengdailuneidijinkuozhanbianxinglaiziliebianjingjihepinghengpoumiandezhengju [25] Miao, F.B., Peng, Z.Q., Wang, C.S., et al., 2019. Gas-Bearing Capacity and Controlling Factors of Niutitang Formation Shale in Well XZD-1, Western Margin of Xuefeng Uplift. Earth Science, 44(11): 3662-3677(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911007.htm [26] Nie, H.K., Bao, S.J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3): 280-294(in Chinese with English abstract). http://www.researchgate.net/publication/285797572_A_study_of_shale_gas_preservation_conditions_for_the_Lower_Paleozoic_in_Sichuan_Basin_and_its_periphery [27] Peng, Z.Q., Tian, W., Miao, F.B., et al., 2019. Geological Features and Favorable Area Prediction of Shale Gas in Lower Cambrian Niutitang Formation of Xuefeng Ancient Uplift and Its Periphery. Earth Science, 44(10): 3512-3528(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910022.htm [28] Shan, X. Q., Zhang, B. M., Zhang, J., et al., 2015. Paleofluid Restoration and Its Application in Studies of Reservoir Forming: A Case Study of the Ordovician in Tarim Basin, NW China. Petroleum Exploration and Development, 42(3): 301-310. https://doi.org/10.1016/S1876-3804(15)30020-3 [29] Xiong, Y. Q., Zhang, L., Chen, Y., et al., 2016. The Origin and Evolution of Thermogenic Gases in Organic-Rich Marine Shales. Journal of Petroleum Science and Engineering, 143: 8-13. https://doi.org/10.1016/j.petrol.2016.02.008 [30] Yang, S.X., 1998. Geological Characteristics and Deposit-Controlled Significance of Huayuan-Zhangjiajie Thrust Fault Zone in Western Hunan. Hunan Geology, 17(2): 28-31, 36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ802.005.htm [31] Yuan, Y.S., Zhu, C.Q., Hu, S.B., 2007. Heat Flow History, Tectono-Sedimentary Evolution and Thermal Events of the Jianghan Basin. Progress in Geophysics, 22(3): 934-939(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqwlxjz200703041 [32] Zeng, J.H., Wu, Q., Yang, H.J., et al., 2008. Chemical Characteristics of Formation Water in Tazhong Area of the Tarim Basin and Their Petroleum Geological Significance. Oil & Gas Geology, 29(2): 223-229(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200802010.htm [33] Zhang, Y. Y., He, Z. L., Jiang, S., et al., 2019. Fracture Types in the Lower Cambrian Shale and Their Effect on Shale Gas Accumulation, Upper Yangtze. Marine and Petroleum Geology, 99: 282-291. https://doi.org/10.1016/j.marpetgeo.2018.10.030 [34] Zhao, X. Z., Pu, X. G., Jiang, W. Y., et al., 2019. An Exploration Breakthrough in Paleozoic Petroleum System of Huanghua Depression in Dagang Oilfield and Its Significance, North China. Petroleum Exploration and Development, 46(4): 651-663. https://doi.org/10.1016/S1876-3804(19)60224-7 [35] Zhao, Z.J., Zhu, Y., Deng, H.Y., et al., 2003. Control of Paleouplifts to the Meso-Paleozoic Primary Oil and Gas Pools in the South of China. Petroleum Geology & Experiment, 25(1): 10-17, 27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200301002.htm [36] Zheng, G.Z., Luo, X.M., Hou, G.J., et al., 1998. Classification and Lithostratigraphy of the Cretaceous System in Yuanling-Mayang Basin. Journal of Stratigraphy, 22(3): 201-205(in Chinese with English abstract). http://www.researchgate.net/publication/293107981_Classification_and_lithostratigraphy_of_the_Cretaceous_system_in_Yuanling-Mayang_Basin [37] Zhou, X.X., Lou, Z.H., Zhu, R., et al., 2015. Hydrogeology Geochemical Characteristics of Continental Formation Water in Xinchang Gas Field, Western Sichuan Depression and Gas Migration and Accumulation. Chinese Journal of Geology (Scientia Geologica Sinica), 50(1): 330-339(in Chinese with English abstract). http://www.researchgate.net/publication/282255208_Hydrogeology_geochemical_characteristics_of_continental_formation_water_in_Xinchang_gas_field_western_Sichuan_depression_and_gas_migration_and_accumulation [38] Zhou, Y., Duan, Q.F., Cao, L., et al., 2018. Microthermometry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science, 43(7): 2465-2483(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807020.htm [39] Zhu, D.Y., Meng, Q.Q., Hu, W.X., et al., 2013. Differences between Fluid Activities in the Central and North Tarim Basin. Geochimica, 42(1): 82-94(in Chinese with English abstract). http://www.researchgate.net/publication/311365958_Differences_between_Fluid_Activities_in_the_Central_and_North_Tarim_Basin [40] Zhu, M. Y., Zhang, J. M., Li, G. X., et al., 2004. Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 37(2): 287-301. https://doi.org/10.1016/j.geobios.2003.06.001 [41] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 753-767. https://doi.org/10.1016/S1876-3804(15)30072-0 [42] 柏道远, 姜文, 钟响, 等, 2015. 湘西沅麻盆地中新生代构造变形特征及区域地质背景. 中国地质, 42(6): 1851-1875. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506014.htm [43] 柏道远, 熊雄, 杨俊, 等, 2014. 雪峰造山带中段地质构造特征. 中国地质, 41(2): 399-418. doi: 10.3969/j.issn.1000-3657.2014.02.008 [44] 陈孝红, 王传尚, 刘安, 等, 2017. 湖北宜昌地区寒武系水井沱组探获页岩气. 中国地质, 44(1): 188-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201701014.htm [45] 范小林, 1996. 雪峰山系-沅麻盆地地质结构及找油意义. 石油实验地质, 18(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD601.005.htm [46] 方维萱, 胡瑞忠, 苏文超, 等, 2002. 大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景. 岩石学报, 18(2): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200202012.htm [47] 胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm [48] 梁峰, 朱炎铭, 漆麟, 等, 2016. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素. 天然气地球科学, 27(1): 180-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601022.htm [49] 刘安, 李旭兵, 王传尚, 等, 2013. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析. 沉积学报, 31(6): 1122-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306020.htm [50] 刘安, 欧文佳, 危凯, 等, 2017. 张家界大坪镇灯影组古油藏特征及天然气勘探意义. 地质学报, 91(8): 1848-1859. doi: 10.3969/j.issn.0001-5717.2017.08.013 [51] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [52] 刘芮岑, 李祥辉, 胡修棉, 2018. 湖南茶陵盆地晚白垩世古降水氧同位素. 沉积学报, 36(6): 1169-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806010.htm [53] 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社, 259-336. [54] 梅廉夫, 刘昭茜, 汤济广, 等, 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174. doi: 10.3969/j.issn.1672-6561.2010.02.008 [55] 苗凤彬, 彭中勤, 王传尚, 等, 2019. 雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素. 地球科学, 44(11): 3662-3677. doi: 10.3799/dqkx.2019.167 [56] 聂海宽, 包书景, 高波, 等, 2012. 四川盆地及其周缘下古生界页岩气保存条件研究. 地学前缘, 19(3): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203030.htm [57] 彭中勤, 田巍, 苗凤彬, 等, 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测. 地球科学, 44(10): 3512-3528. doi: 10.3799/dqkx.2019.956 [58] 杨绍祥, 1998. 湘西花垣-张家界逆冲断裂带地质特征及其控矿意义. 湖南地质, 17(2): 28-31, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ802.005.htm [59] 袁玉松, 朱传庆, 胡圣标, 2007. 江汉盆地热流史、沉积构造演化与热事件. 地球物理学进展, 22(3): 934-939. doi: 10.3969/j.issn.1004-2903.2007.03.041 [60] 曾溅辉, 吴琼, 杨海军, 等, 2008. 塔里木盆地塔中地区地层水化学特征及其石油地质意义. 石油与天然气地质, 29(2): 223-229. doi: 10.3321/j.issn:0253-9985.2008.02.011 [61] 赵宗举, 朱琰, 邓红婴, 等, 2003. 中国南方古隆起对中、古生界原生油气藏的控制作用. 石油实验地质, 25(1): 10-17, 27. doi: 10.3969/j.issn.1001-6112.2003.01.002 [62] 郑贵洲, 罗新民, 侯光久, 等, 1998. 沅麻盆地白垩系划分及岩石地层研究. 地层学杂志, 22(3): 201-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ803.005.htm [63] 周孝鑫, 楼章华, 朱蓉, 等, 2015. 川西坳陷新场气田水文地质地球化学特征及天然气运聚. 地质科学, 50(1): 330-339. doi: 10.3969/j.issn.0563-5020.2015.01.022 [64] 周云, 段其发, 曹亮, 等, 2018. 湘西花垣地区铅锌矿床流体包裹体显微测温与特征元素测定. 地球科学, 43(7): 2465-2483. doi: 10.3799/dqkx.2018.520 [65] 朱东亚, 孟庆强, 胡文瑄, 等, 2013. 塔里木盆地塔北和塔中地区流体作用环境差异性分析. 地球化学, 42(1): 82-94. doi: 10.3969/j.issn.0379-1726.2013.01.010