Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin
-
摘要: 为揭示东海盆地椒江凹陷油气勘探潜力,基于地球化学和盆地数值模拟方法对古新统月桂峰组、灵峰组和明月峰组烃源岩开展生烃能力和生烃过程研究.结果表明,月桂峰组和灵峰组泥岩有机质丰度高,以Ⅱ型干酪根为主,为水生生物和陆源高等植物混合来源,且形成于偏还原环境.夹有薄层炭质泥岩和煤的明月峰组泥岩有机质丰度低,以Ⅲ型干酪根为主,为陆源高等植物来源且形成于氧化环境.古新世至始新世,椒江凹陷大幅度沉降且古热流较高,是古新统烃源岩热演化程度增加的主要时期.受埋藏史和成熟度史共同控制,月桂峰组和灵峰组经历了2次生烃作用,第1次发生在古新世晚期,第2次发生在始新世中期至晚期,生烃强度高.明月峰组仅在始新世末期经历了1次生烃作用,生烃强度低.椒江凹陷古新统烃源岩生烃潜力强,具有广阔的油气勘探前景,应围绕生烃中心尤其是月桂峰组生烃中心选择形成于中新世之前的有效圈闭进行钻探.Abstract: In order to understand oil and gas exploration potential of Jiaojiang sag in the East China Sea basin, hydrocarbon generation capacity and process of the Paleocene Yueguifeng (E1y), Lingfeng (E1l) and Mingyuefeng (E1m) Formations were investigated using geochemical analysis and basin modeling. Results show that E1y and E1l mudstones are high-quality source rocks with high organic matter abundance and type Ⅱ kerogen, which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment. E1m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with low organic matter abundance and type Ⅲ kerogen, whose organic matter was derived from terrestrial higher plants under oxidized environment. Great subsidence and high paleo-heat flow from the Paleocene to the Eocene made it main period for increasing thermal maturity of source rocks. Controlled by burial and maturity histories, the E1y and E1l formations experienced two hydrocarbon generation stages, which took place in the Late Palaeocene and in the Middle to Late Eocene, respectively, and is characterized by high hydrocarbon generation potential. The E1m Formation only had one hydrocarbon generation process at the end of Eocene, which is characterized by low hydrocarbon generation potential. The Paleocene source rocks in the Jiaojiang sag have strong hydrocarbon generation capacity, so the future oil and gas exploration should focus on hydrocarbon generation center, especially that of the E1y Formation, and select effective traps formed before the Miocene.
-
Key words:
- source rock /
- biomarker /
- hydrocarbon generation history /
- Jiaojiang sag /
- East China Sea basin /
- hydrocarbon
-
图 6 JJ7-1井一维模型埋藏史和成熟度史(a)及热成熟度模型标定(b)
图b中,1.JJ6-1井实测地温数据; 2.JJ6-1井实测Ro数据; 3.仝志刚等(2012)发表的地层温度数据; 4.仝志刚等(2012)发表的Ro数据
Fig. 6. Burial and thermal evolution history (a), and calibration of thermal and maturity model (b) for 1-D model constructed in well JJ7-1
表 1 椒江凹陷古新统烃源岩生物标志化合物参数
Table 1. Biomarker parameters of the Paleocene source rocks in the Jiaojiang sag
井名 深度(m) 层位 正构烷烃 类异戊二烯烷烃 甾烷 萜烷 CPI OEP C21-/C22+ Pr/Ph Pr/nC17 Ph/nC18 C27(%) C28(%) C29(%) C2920S/(20R+20S) C29ββ/(αα+ββ) C19/C23 C20/C23 C24/C23 Ts/Tm C29/C30 Gam/C30 JJ4-1 2 412~2 433 E1y 1.48 1.30 0.62 2.01 1.97 1.16 19 24 57 0.13 0.17 0.42 0.97 1.03 0.53 0.52 0.12 JJ4-1 2 505~2 508 E1y 1.39 1.18 0.56 2.32 1.67 0.69 22 23 55 0.17 0.18 0.52 0.98 1.29 0.45 0.53 0.12 JJ4-1 2 550~2 565 E1y 1.45 1.19 0.68 1.39 2.01 1.29 24 25 51 0.12 0.19 0.48 1.03 0.98 0.48 0.45 0.11 JJ4-1 2 286~2 289 E1l 1.90 1.80 0.59 1.51 3.12 2.40 27 24 50 0.06 0.18 0.27 0.83 0.84 0.66 0.35 0.09 JJ4-1 2 319~2 328 E1l 1.77 1.84 0.49 1.86 3.10 1.79 26 22 51 0.11 0.18 0.44 1.01 1.00 0.62 0.36 0.07 JJ4-1 2 361~2 364 E1l 1.65 1.60 0.51 1.65 2.54 1.55 22 22 56 0.13 0.18 0.43 1.10 0.86 0.57 0.44 0.09 JJ6-1 2 760~2 780 E1m 1.78 1.61 0.33 9.53 7.89 0.87 10 15 75 0.11 0.27 7.39 4.06 3.85 0.05 0.63 0.04 JJ6-1 2 860~2 875 E1m 1.76 1.64 0.36 4.71 4.37 0.98 7 16 77 0.15 0.29 7.35 6.42 4.84 0.07 0.66 0.04 JJ6-1 3 085~3 100 E1m 1.47 1.35 0.33 5.92 7.52 1.31 5 14 81 0.26 0.29 27.63 6.38 / 0.07 0.70 0.02 JJ6-1 3 154 E1m 1.57 1.43 0.36 5.23 7.93 1.37 14 9 77 0.31 0.30 6.10 2.89 1.96 0.06 0.59 0.02 JJ6-1 3 184~3 199 E1m 1.64 1.49 0.26 8.65 8.47 0.94 7 16 77 0.20 0.29 10.57 4.63 7.31 0.07 0.68 0.02 表 2 JJ7-1井生烃史模拟的地质参数
Table 2. The geological parameters used for modeling of hydrocarbon generation history in well JJ7-1
地层 顶深(m) 底深(m) 厚度(m) 沉积年代 剥蚀年代 剥蚀厚度(m) 岩性 烃源岩属性 开始(Ma) 终止(Ma) 开始(Ma) 终止(Ma) 砂岩含量(%) 粉砂岩含量(%) 泥岩含量(%) TOC(%) HI(mg/g) 干酪根类型 Qd 83 488 405 2.6 0 18.9 23.5 57.6 - - - N2 488 857 369 5.3 2.6 38.4 17.9 43.7 - - - N1 857 1 302 445 23.3 5.3 56.8 14.4 28.8 0.4 46 Type Ⅲ E2p - - - 41.2 36.0 36.0 23.3 600 57.2 16.6 26.2 0.2 23 Type Ⅲ E2w 1 302 1 863 561 47.8 41.2 35.9 45.4 18.7 0.3 35 Type Ⅲ E2o 1 863 2 498 635 54.5 47.8 34.2 20.7 45.1 0.4 42 Type Ⅲ E1m 2 498 3 994 1 496 58.5 55.0 55.0 54.5 800 17.6 35.6 46.8 0.9 77 Type Ⅲ E1l 3 994 5 322 1 328 61.0 58.5 3.8 11.5 84.7 2.5 324 Type Ⅱ E1y 5 322 6 342 1 020 66.5 61.0 23.0 9.2 67.8 2.3 312 Type Ⅱ -
[1] Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. https://doi.org/10.1016/S0146-6380(97)00014-4 [2] Cai, J., Qi, P., Cui, M., et al., 2016. Well Analysis of Information from Drilled Wells and Revelation to Oil & Gas Exploration in Jiaojiang Sag. Offshore Oil, 36(4): 33-39 (in Chinese with English abstract). [3] Chen, C.F., Zhu, W.L., Fu, X.W., et al., 2017. Provenance Change and Its Influence in Late Paleocene, Jiaojiang Sag, East China Sea Shelf Basin. Journal of Tongji University (Natural Science), 45(10): 1522-1530, 1548 (in Chinese with English abstract). [4] Chen, J.P., Zhao, C.Y., He, Z.H., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, (1): 1-5, 91 (in Chinese with English abstract). [5] Cui, J.P., Zhao, J., Ren, Z.L., et al., 2020. Geochemical Characteristics of Lower Cretaceous Source Rocks and Thermal History in the Huhehu Depression, Hailar Basin. Earth Science, 45(1): 238-250 (in Chinese with English abstract). [6] Dan, M., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7 [7] de Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., et al., 2015. Geochemical Characterisation and Organic Matter Enrichment of Upper Cretaceous Gongila Shales from Chad (Bornu) Basin, Northeastern Nigeria: Bioproductivity versus Anoxia Conditions. Journal of Petroleum Science and Engineering, 135: 73-87. https://doi.org/10.1016/j.petrol.2015.08.012 [8] Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0 [9] Hakimi, M. H., Abdullah, W. H., 2015. Thermal Maturity History and Petroleum Generation Modelling for the Upper Jurassic Madbi Source Rocks in the Marib-Shabowah Basin, Western Yemen. Marine and Petroleum Geology, 59: 202-216. https://doi.org/10.1016/j.marpetgeo.2014.08.002 [10] Hanson, A.D., Zhang, S.C., Moldowan, J.M., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d [11] Huang, D.F., Zhang, D.J., Li, J.C., 1989. On Origin of 4-Methyl Steranes and Pregnanes. Petroleum Expoloration and Development, 16(3): 8-15 (in Chinese with English abstract). [12] Jiang, Z. L., Li, Y. J., Du, H. L., et al., 2015. The Cenozoic Structural Evolution and Its Influences on Gas Accumulation in the Lishui Sag, East China Sea Shelf Basin. Journal of Natural Gas Science and Engineering, 22: 107-118. https://doi.org/10.1016/j.jngse.2014.11.024 [13] Lei, C., Ye, J.R., Wu, J.F., et al., 2014. Dynamic Process of Hydrocarbon Accumulation in Low-Exploration Basins: A Case Study of Xihu Depression. Earth Science, 39(7): 837-847 (in Chinese with English abstract). [14] Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Characteristics and Deposition Models of the Paleocene Source Rocks in the Lishui Sag, East China Sea Shelf Basin: Evidences from Organic and Inorganic Geochemistry. Journal of Petroleum Science and Engineering, 200: 108342. https://doi.org/10.1016/j.petrol.2021.108342 [15] Li, D.Y., Guo, T.Y., Jiang, X.D., et al., 2015. Erosion Thickness Recovery and Tectonic Evolution Characterization of Southern East China Sea Shelf Basin. Oil & Gas Geology, 36(6): 913-923 (in Chinese with English abstract). [16] Li, S.J., 1999. Sedimentary Environmental Significance of Normal Alkane and the Ratio of Pristane to Phytane. Journal of the University of Petroleum, China (Edition of Natural Science), 23(5): 14-16 (in Chinese with English abstract). [17] Makeen, Y. M., Abdullah, W. H., Pearson, M. J., et al., 2016. Thermal Maturity History and Petroleum Generation Modelling for the Lower Cretaceous Abu Gabra Formation in the Fula Sub-Basin, Muglad Basin, Sudan. Marine and Petroleum Geology, 75: 310-324. https://doi.org/10.1016/j.marpetgeo.2016.04.023 [18] Moldowan, J. M., Sundararaman, P., Schoell, M., 1986. Sensitivity of Biomarker Properties to Depositional Environment and/or Source Input in the Lower Toarcian of SW-Germany. Organic Geochemistry, 10(4/5/6): 915-926. https://doi.org/10.1016/S0146-6380(86)80029-8 [19] Peters, K. E., Moldowan, J. M., 1991. Effects of Source, Thermal Maturity, and Biodegradation on the Distribution and Isomerization of Homohopanes in Petroleum. Organic Geochemistry, 17(1): 47-61. https://doi.org/10.1016/0146-6380(91)90039-M [20] Qian, Y., Zhang, T., Wang, Z. D., et al., 2018. Organic Geochemical Characteristics and Generating Potential of Source Rocks from the Lower-Middle Jurassic Coal-Bearing Strata in the East Junggar Basin, NW China. Marine and Petroleum Geology, 93: 113-126. https://doi.org/10.1016/j.marpetgeo.2018.02.036 [21] Sachsenhofer, R. F., Popov, S. V., Akhmetiev, M. A., et al., 2017. The Type Section of the Maikop Group (Oligocene-Lower Miocene) at the Belaya River (North Caucasus): Depositional Environment and Hydrocarbon Potential. AAPG Bulletin, 101(3): 289-319. https://doi.org/10.1306/08051616027 [22] Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., et al., 1995. Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59(9): 1895-1900. https://doi.org/10.1016/0016-7037(95)00073-9 [23] Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d [24] ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., et al., 1987. Restricted Utility of the Pristane/Phytane Ratio as a Palaeoenvironmental Indicator. Nature, 330(6149): 641-643. https://doi.org/10.1038/330641a0 [25] Tian, B., Li, X.Y., Pang, G.Y., et al., 2012. Sedimentary Systems of the Superimposed Rift-Subsidence Basin: Taking Lishui-Jiaojiang Sag of the East China Sea as an Example. Acta Sedimentologica Sinica, 30(4): 696-705 (in Chinese with English abstract). [26] Tian, Y., Ye, J.R., Lei, C., et al., 2016. Development Controlling Factors and Forming Model for Source Rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin. Earth Science, 41(9): 1561-1571 (in Chinese with English abstract). [27] Tong, Z.G., Zhao, Z.G., Yang, S.C., et al., 2012. Research on Thermal Evolution and Hydrocarbon Expulsion History of Source Rocks in Low-Exploration Basins: A Case Study on Jiaojiang Sag, East China Sea Basin. Petroleum Geology & Experiment, 34(3): 319-324, 329 (in Chinese with English abstract). [28] Volkman, J. K., 1986. A Review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9(2): 83-99. https://doi.org/10.1016/0146-6380(86)90089-6 [29] Wang, S.J., Hu, S.B., Li, T.J., et al., 2000. The Terrestrial Heat Flow in Junggar Basin. Chinese Science Bulletin, 45(12): 1327-1332 (in Chinese). doi: 10.1360/csb2000-45-12-1327 [30] Wu, F.D., Li, S.T., Lu, Y.C., et al., 1998. The Tertiary Sea Level Changes in the East China Sea Shelf Basin. Scientia Geologica Sinica, 33(2): 214-221 (in Chinese with English abstract). [31] Xu, J.Y., Zhu, X.F., Song, Y., et al., 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858(in Chinese with English abstract). [32] Yang, F., Wang, Q., Hao, F., et al., 2020. Biomarker Characteristics of Source Rock and Oil-Correlation in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 45(1): 263-275(in Chinese with English abstract). [33] Yin, S., Ding, W.L., Hu, Q.J., et al., 2016. Hydrocarbon Source Rock Characteristics and Favorable Hydrocarbon-Generating Area Evaluation of Carboniferous-Permian Coal Measures Strata in Qinshui Basin, Shanxi, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(2): 163-176(in Chinese with English abstract). [34] Yin, S.Y., He, S., Lei, C., et al., 2014. Characteristics and Hydrocarbon Generation-Expulsion History of Yueguifeng Formation Source Rock in Lishui-Jiaojiang Depression, East China Sea Shelf Basin. Marine Geology Frontiers, 30(8): 35-41, 65(in Chinese with English abstract). [35] Zhang, L.P., Huang, D.F., Liao, Z.Q., 1999. Gammacerane-Geochemical Indicator of Water Column Stratification. Acta Sedimentologica Sinica, 17(1): 136-140(in Chinese with English abstract). [36] Zhang, S.L., Xia, B., 2005. Characters of Tectonic Evolution of the Lishui-Jiaojiang Sag and Oil Accumulation. Natural Gas Geoscience, 16(3): 324-328(in Chinese with English abstract). [37] Zhu, Y.M., Zhou, J., Gu, S.X., et al., 2012. Molecular Geochemistry of Eocene Pinghu Formation Coal-Bearing Source Rocks in the Xihu Depression, East China Sea Shelf Basin. Acta Petrolei Sinica, 33(1): 32-39(in Chinese with English abstract). [38] 蔡佳, 祁鹏, 崔敏, 等, 2016. 椒江凹陷已钻井分析及对油气勘探的启示. 海洋石油, 36(4): 33-39. doi: 10.3969/j.issn.1008-2336.2016.04.033 [39] 陈春峰, 朱伟林, 付晓伟, 等, 2017. 东海椒江凹陷晚古新世物源变化. 同济大学学报(自然科学版), 45(10): 1522-1530, 1548. doi: 10.11908/j.issn.0253-374x.2017.10.015 [40] 陈建平, 赵长毅, 何忠华, 1997. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, (1): 1-5, 91. [41] 崔军平, 赵金, 任战利, 等, 2020. 海拉尔盆地呼和湖凹陷下白垩统烃源岩地球化学特征及热演化史. 地球科学, 45(1): 238-250. doi: 10.3799/dqkx.2018.300 [42] 黄第藩, 张大江, 李晋超, 1989. 论4-甲基甾烷和孕甾烷的成因. 石油勘探与开发, 16(3): 8-15. doi: 10.3321/j.issn:1000-0747.1989.03.002 [43] 雷闯, 叶加仁, 吴景富, 等, 2014. 低勘探程度盆地成藏动力学过程: 以西湖凹陷中部地区为例. 地球科学, 39(7): 837-847. doi: 10.3799/dqkx.2014.078 [44] 李德勇, 郭太宇, 姜效典, 等, 2015. 东海陆架盆地南部剥蚀厚度恢复及构造演化特征. 石油与天然气地质, 36(6): 913-923. [45] 李守军, 1999. 正烷烃、姥鲛烷与植烷对沉积环境的指示意义: 以山东济阳坳陷下第三系为例. 石油大学学报(自然科学版), 23(5): 14-16. doi: 10.3321/j.issn:1000-5870.1999.05.004 [46] 田兵, 李小燕, 庞国印, 等, 2012. 叠合断陷盆地沉积体系分析: 以东海丽水-椒江凹陷为例. 沉积学报, 30(4): 696-705. [47] 田杨, 叶加仁, 雷闯, 等, 2016. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩发育控制因素及形成模式. 地球科学, 41(9): 1561-1571. doi: 10.3799/dqkx.2016.116 [48] 仝志刚, 赵志刚, 杨树春, 等, 2012. 低勘探程度盆地烃源岩热演化及排烃史研究: 以东海椒江凹陷为例. 石油实验地质, 34(3): 319-324, 329. doi: 10.3969/j.issn.1001-6112.2012.03.016 [49] 王社教, 胡圣标, 李铁军, 等, 2000. 准噶尔盆地大地热流. 科学通报, 45(12): 1327-1332. doi: 10.3321/j.issn:0023-074X.2000.12.019 [50] 武法东, 李思田, 陆永潮, 等, 1998. 东海陆架盆地第三纪海平面变化. 地质科学, 33(2): 214-221. [51] 徐建永, 朱祥峰, 宋宇, 等, 2019. 南黄海盆地古近系烃源岩地球化学特征及油源对比. 地球科学, 44(3): 848-858. doi: 10.3799/dqkx.2018.377 [52] 杨帆, 王权, 郝芳, 等, 2020. 冀中坳陷饶阳凹陷北部烃源岩生物标志物特征与油源对比. 地球科学, 45(1): 263-275. doi: 10.3799/dqkx.2018.374 [53] 殷世艳, 何生, 雷闯, 等, 2014. 东海陆架盆地丽水-椒江凹陷月桂峰组烃源岩特征及生排烃史. 海洋地质前沿, 30(8): 35-41, 65. [54] 尹帅, 丁文龙, 胡秋嘉, 等, 2016. 沁水盆地石炭-二叠煤系地层烃源岩特征及生烃有利区评价. 成都理工大学学报(自然科学版), 43(2): 163-176. doi: 10.3969/j.issn.1671-9727.2016.02.03 [55] 张立平, 黄第藩, 廖志勤, 1999. 伽马蜡烷: 水体分层的地球化学标志. 沉积学报, 17(1): 136-140. doi: 10.3969/j.issn.1000-0550.1999.01.022 [56] 张胜利, 夏斌, 2005. 丽水-椒江凹陷构造演化特征与油气聚集. 天然气地球科学, 16(3): 324-328. doi: 10.3969/j.issn.1672-1926.2005.03.014 [57] 朱扬明, 周洁, 顾圣啸, 等, 2012. 西湖凹陷始新统平湖组煤系烃源岩分子地球化学特征. 石油学报, 33(1): 32-39.