Paleoearthquake Characteristics of Jiayuguan Fault and Its Seismic Risk
-
摘要: 嘉峪关断裂位于河西走廊西端,是酒西盆地和酒东盆地的分界断裂,其最新活动特征及强震危险性关系到嘉峪关地区及相关文物古迹的地震灾害问题.基于高分辨率卫星影像解译及野外考察,发现嘉峪关断裂中段由多条分支断裂组成,通过古地震探槽研究以及光释光方法测年,对断裂古地震特征进行了研究.结果表明,嘉峪关断裂最新的一次地震事件发生在约4.3~5.3 ka,之前在约20.0~21.2 ka、37.0~45.0 ka、58.1 ka分别发生过3次古地震事件.根据经验公式,嘉峪关断裂具有发生Mw7.0左右强震的潜能及危险性.在此震级下,嘉峪关城楼文物区的烈度可达到Ⅸ度,嘉峪关市区烈度会达到Ⅷ度.因此,嘉峪关断裂是本区防震减灾需重点关注的发震断层.Abstract: The Jiayuguan fault lies in the western part of the Hexi Corridor, which is a boundary fault between the Jiuxi basin and Jiudong basin. Its latest active characteristics and strong earthquake risk are related to the earthquake disaster of Jiayuguan area and related cultural relics. Based on the interpretation of high-resolution satellite images and field investigation, it is found that the middle segment of the Jiayuguan fault is composed of multiple branch faults. The paleoseismic characteristics of the fault are studied by means of paleoseismical trenching and optical stimulated luminescence (OSL) dating. The results show that the latest earthquake event on the Jiayuguan fault occurred at 4.3-5.3 ka, and three other events occurred approximately at 20.0-21.2 ka, 37.0-45.0 ka and 58.1 ka. According to the empirical relationship, the Jiayuguan fault has the potential and risk for strong earthquake of Mw 7.0. Under this magnitude, the seismic intensity of Jiayuguan tower area will be up to Ⅸ, and the Jiayuguan urban area will be Ⅷ. Therefore, the Jiayuguan fault is an important seismogenic fault in this area.
-
Key words:
- Hexi Corridor /
- Jiayuguan fault /
- Holocene /
- paleoearthquake /
- seismology
-
表 1 嘉峪关断裂光释光样品测年结果
Table 1. OSL dating results of the Jiayuguan fault
样品编号 埋深(m) U-238 (Bq/kg) Th-232 (Bq/kg) K-40(Bq/kg) 环境剂量率(Ga/ka) 等效剂量(Ga) 年龄(ka) CLTC02-02 1.1 4.8±2.2 57.1±4.3 428.8±34.3 2.3±0.2 111.8±18.6 47.8±9.7 CLTC03-03 0.2 24.2±2.0 35.0±2.6 617.1±49.4 2.7±0.3 99.2±11.4 37.0±5.6 CLTC01-01 0.2 46.6±6.4 42.2±3.1 587.6±47.0 3.3±0.3 126.2±14.6 38.2±6.7 CLTC01-04 0.4 29.9±4.8 40.3±3.0 616.9±49.3 2.9±0.3 212.2±22.9 74.3±11.3 CLTC02-03 0.3 29.3±4.8 68.3±5.1 646.9±51.7 3.3±0.3 69.6±15.4 21.2±5.5 -
[1] Cao, N., Lei, Z.S., Yuan, D.Y., et al., 2010. Textural Criticism on the Biaoshi, Gansu, Earthquake in 180 AD. Acta Seismologica Sinica, 32(6): 744-753, 767(in Chinese with English abstract). http://www.researchgate.net/publication/293148284_Textural_criticism_on_the_Biaoshi_Gansu_earthquake_in_180_AD [2] Chen, B.L., Liu, J.S., Zhang, Y.S., et al., 2007. Late Quaternary Neotectonic Movement of the Jiayuguan Fault. Journal of Geomechanics, 13(1): 78-85(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200701009.htm [3] Chen, J., Lu, Y.C., Wei, L.Y., et al., 1999. Optically Stimulated Luminescence Dating of Quaternary Sediments: A Comparison Using Different Equivalent Dose Determination Methods. Geochimica, 28(5): 443-452(in Chinese with English abstract). [4] Deng, Q.D., Wen, X.Z., 2008. A Review on the Research of Active Tectonics-History, Progress and Suggestions. Seismology and Geology, 30(1): 1-30(in Chinese with English abstract). [5] Gaudemer, Y., Tapponnier, P., Meyer, B., et al., 1995. Partitioning of Crustal Slip between Linked, Active Faults in the Eastern Qilian Shan, and Evidence for a Major Seismic Gap, the 'Tianzhu Gap', on the Western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599-645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x [6] He, W.G., Yuan, D.Y., Wang, A.G., et al., 2010. The Recent Active Characteristics of the Middle Segment of Jiayuguan Fault. Earthquake Research in China, 26(3): 296-303(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGZD201003005&dbcode=CJFD&year=2010&dflag=pdfdown [7] Huntley, D. J., Godfrey-Smith, D. I., Thewalt, M. L. W., 1985. Optical Dating of Sediments. Nature, 313(5998): 105-107. doi: 10.1038/313105a0 [8] Institute of Geology of China Earthquake Administration Lanzhou Institute of Seismology of China Earthquake Administration, 1993. The Qilian Mountain-Hexi Corridor Active Fault System. Seismological Press, Beijing (in Chinese). [9] Lei, Z.S., Yuan, D.Y., Zheng, W.J., et al., 2012. Textural Research of Zhangye-Jiuquan Earthquake in 756 A.D., Northwestern Seismological Journal, 34(1): 72-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201201012.htm [10] Li, Y.L., 1984. The Characteristics and Active Period of Jiayuguan Fault. Journal of Lanzhou University, 20(2): 118-123(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDZK198402016.htm [11] Liu, X.W., Lei, Z.S., Yuan, D.Y., et al., 2011. Textual Research on the Hongyapu M7.25 Earthquake in 1609. Northwestern Seismological Journal, 33(2): 143-148(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201102008.htm [12] Liu, X. W., Yuan, D. Y., Su, Q., 2017. Late Pleistocene Slip Rate of the Northern Qilian Shan Frontal Thrust, Western Hexi Corridor, China. Terra Nova, 29(4): 238-244. https://doi.org/10.1111/ter.12270 [13] Liu, X.W., Yuan, D.Y., Su, Q., et al., 2020. Paleoearthquake Characteristics along the Baiyanghe Fault in Jiuxi Basin. China Earthquake Engineering Journal, 42(1): 90-97(in Chinese with English abstract). [14] Mao, F.Y., Zhang, P.Z., 1995. Progressive Constraining Method in Paleoseismic Study and Paleoearthquakes along the Major Active Faults in Northern Xinjiang. In: Institute of Geology of China Earthquake Administration, ed., Research on Active Fault (4). Seismological Press, Beijing, 153-164 (in Chinese). [15] Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1-47. https://doi.org/10.1046/j.1365-246X.1998.00567.x [16] Schwartz, D. P., Coppersmith, K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. https://doi.org/10.1029/jb089ib07p05681 [17] Shi, X.J., Zhang, L., Zhang, C.G., et al., 2020. Zircon Geochronology and Geochemistry of the Granitoids in Yagan Area, Northern Alxa and Their Tectonic Implications. Earth Science, 45(7): 2469-2484(in Chinese with English abstract). [18] Tapponnier, P., Meyer, B., Avouac, J.P., et al., 1990. Active Thrusting and Folding in the Qilian Shan, and Decoupling between Upper Crust and Mantle in Northeastern Tibet. Earth and Planetary Science Letters, 97(3/4): 382-403. http://web.gps.caltech.edu/users/avouac/publications/TapponnierEPS1990.pdf [19] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978 [20] Wallace, R. E., 1970. Earthquake Recurrence Intervals on the San Andreas Fault. Geological Society of America Bulletin, 81(10): 2875. https://doi.org/10.1130/0016-7606(1970)81[2875:eriots]2.0.co;2 [21] Wang, X.L., Lu, Y.C., Li, X. N, 2005. Luminescence Dating of Fine-Grained Quartz in Chinese Loess-Simplified Multiple Aliquot Regenerative-Dose (Mar) Protocol. Seismology and Geology, 27(4): 615-623(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253225566.html [22] Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84: 974-1002. https://doi.org/10.1007/BF00808290 [23] Wu, Z.H., 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201273307896.html [24] Xu, X.W., Zhao, B.M., Ma, S.L., et al., 2011. Assessing Method for Earthquake Hazard and Its Application. Science Press, Beijing (in Chinese). [25] Yang, C.C., Chen, J., Zhang, K.Q., et al., 2007. Standardized Growth Curves (SGC) for Optical Dating of Fine-Grained Quartz from Water-Lain Sediments. Seismology and Geology, 29(2): 402-411(in Chinese with English abstract). http://www.researchgate.net/publication/289954985_Standardized_growth_curves_SGC_for_optical_dating_of_fine-grained_quartz_from_water-lain_sediments [26] Yuan, D. Y., Ge, W. P., Chen, Z. W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics, 32(5): 1358-1370. https://doi.org/10.1002/tect.20081 [27] Yuan, D.Y., Zhang, P.Z., Liu, B.C., et al., 2004. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeastern Margin of Qinghai-Xizang Plateau. Acta Geologica Sinica, 78(2): 270-278(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252711537.html [28] Zhang, K.Q., Wu, Z.H., Lü, T.Y., et al., 2015. Review and Progress of OSL Dating. Geological Bulletin of China, 34(1): 183-203(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201501015.htm [29] Zhao, H., Zhang, J., Qu, J.F., et al., 2020. Characteristics and Dynamic Background of Cenozoic Compressive Structures in Eastern Margin of Alxa Block. Earth Science, 45(4): 1337-1361(in Chinese with English abstract). [30] Zheng, W.J., 2010. Geometric Pattern and Active Tectonics of the Hexi Corridor and Its Adjacent Regions. Recent Developments in World Seismology, 40(3): 33-36(in Chinese with English abstract). [31] Zheng, W. J., Zhang, H. P., Zhang, P. Z., et al., 2013. Late Quaternary Slip Rates of the Thrust Faults in Western Hexi Corridor (Northern Qilian Shan, China) and Their Implications for Northeastward Growth of the Tibetan Plateau. Geosphere, 9(2): 342-354. doi: 10.1130/GES00775.1 [32] Zhou, Z.H., He, S.L., Chen, W.K., et al., 2011. Parameters in Seismic Intensity Affecting Field Model of Gansu Area. Technology for Earthquake Disaster Prevention, 6(2): 180-189(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201102012.htm [33] 曹娜, 雷中生, 袁道阳, 等, 2010. 公元180年甘肃表氏地震考. 地震学报, 32(6): 744-753, 767. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201006013.htm [34] 陈柏林, 刘建生, 张永双, 等, 2007. 嘉峪关断裂晚第四纪新构造活动特征. 地质力学学报, 13(1): 78-85. doi: 10.3969/j.issn.1006-6616.2007.01.010 [35] 陈杰, 卢演俦, 魏兰英, 等, 1999. 第四纪沉积物光释光测年中等效剂量测定方法的对比研究. 地球化学, 28(5): 443-452. doi: 10.3321/j.issn:0379-1726.1999.05.004 [36] 邓起东, 闻学泽, 2008. 活动构造研究: 历史、进展与建议. 地震地质, 30(1): 1-30. doi: 10.3969/j.issn.0253-4967.2008.01.002 [37] 中国地震局地质研究所, 中国地震局兰州地震研究所, 1993. 祁连山-河西走廊活动断裂系. 北京: 地震出版社. [38] 何文贵, 袁道阳, 王爱国, 等, 2010. 嘉峪关断层中段的新活动特征. 中国地震, 26(3): 296-303. doi: 10.3969/j.issn.1001-4683.2010.03.005 [39] 雷中生, 袁道阳, 郑文俊, 等, 2012.756年张掖-酒泉地震考. 西北地震学报, 34(1): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201201012.htm [40] 李玉龙, 1984. 嘉峪关断层的性质和活动时期. 兰州大学学报, 20(2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK198402016.htm [41] 刘兴旺, 雷中生, 袁道阳, 等, 2011.1609年甘肃红崖堡7(1/4)级地震考证. 西北地震学报, 33(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102008.htm [42] 刘兴旺, 袁道阳, 苏琦, 等, 2020. 酒西盆地白杨河断裂古地震特征研究. 地震工程学报, 42(1): 90-97. doi: 10.3969/j.issn.1000-0844.2020.01.090 [43] 毛凤英, 张培震, 1995. 古地震研究中的逐次限定方法与新疆北部主要断裂带的古地震研究. 见: 中国地震局地质研究所, 编, 活动断裂研究4. 北京: 地震出版社, 153-164. [44] 史兴俊, 张磊, 张辰光, 等, 2020. 阿拉善北部亚干地区花岗岩锆石年代学、地球化学特征及其构造意义. 地球科学, 45(7): 2469-2484. doi: 10.3799/dqkx.2020.164 [45] 王旭龙, 卢演俦, 李晓妮, 2005. 细颗粒石英光释光测年: 简单多片再生法. 地震地质, 27(4): 615-623. doi: 10.3969/j.issn.0253-4967.2005.04.010 [46] 吴中海, 2019. 活断层的定义与分类: 历史、现状和进展. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm [47] 徐锡伟, 赵伯明, 马胜利, 等, 2011. 活动断层地震灾害预测方法与应用. 北京: 科学出版社. [48] 杨传成, 陈杰, 张克旗, 等, 2007. 水成相沉积物细颗粒石英光释光综合生长曲线的建立与应用. 地震地质, 29(2): 402-411. doi: 10.3969/j.issn.0253-4967.2007.02.018 [49] 袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 782): 270-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200402016.htm [50] 张克旗, 吴中海, 吕同艳, 等, 2015. 光释光测年法: 综述及进展. 地质通报, 34(1): 183-203. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501015.htm [51] 赵衡, 张进, 曲军峰, 等, 2020. 阿拉善地块东缘新生代中新世挤压变形及动力学背景. 地球科学, 45(4): 1337-1361. doi: 10.3799/dqkx.2019.126 [52] 郑文俊, 2010. 河西走廊及其邻区活动构造图像及构造变形模式. 国际地震动态, 40(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201003011.htm [53] 周中红, 何少林, 陈文凯, 等, 2011. 甘肃地区地震烈度影响场计算模型参数的改进研究与应用. 震灾防御技术, 6(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201102012.htm