Exploration of Li Isotope in Application of Ore Deposits
-
摘要: 矿床的形成受制于多种复杂的地质作用,包括全球尺度的板块构造运动、岩浆活动、变质沉积改造等过程,并普遍伴随热液活动、流体迁移、水-岩相互作用、元素分异及同位素分馏等一系列局部区域地质和地球化学过程.在过去的矿床学研究中,地球化学方法主要围绕在主、微量元素和传统的稳定同位素等手段,解决了很多矿床成因问题.但仍存在不少的多解和难解问题,比如许多矿床在矿化类型、蚀变分带与金属矿物组合方面具有诸多相似之处,常规地球化学指标难以区分.随着测试精度的提高和自然储库组成的完善,Li同位素近些年来已成为新兴的稳定同位素体系.Li同位素在自然界过程中高达80‰的同位素分馏使其具有更好的辨识能力,同时兼有直接和间接指示作用,有潜力成为研究各种复杂成矿过程的良好示踪剂.本文总结了近年来有关矿床学中Li同位素的研究和应用进展,以俯冲带成矿为主,阐述了斑岩型-热液矿床、伟晶岩型矿床和沉积矿床等类型矿床的Li同位素地球化学特征,并探究新的Li同位素方法在矿床中的应用前景.基于Li同位素体系在各类矿床的应用实例,我们认为Li同位素体系将为矿床学研究提供更多的指示信息和依据.Abstract: The formation of ore deposits is subject to varieties of complex geological processes, including plate tectonics, magmatic activities, metamorphic sedimentary transformations and other processes on global scale, and is generally accompanied by a series of geological and geochemical processes such as hydrothermal activities, fluid migration, fluid-rock interaction, elemental differentiation and isotopic fractionation. Over the past decades, studies of geochemical methods have focused on major, trace elements and traditional stable isotopes, that have addressed the genesis of ore deposits. However, there are still some difficulties and multi solutions. For instance, portions of ore deposits in the mineralization, alteration zoning, and metal mineral assemblage have many similarities, so the conventional geochemical indicators are difficult to be distinguished. With the improvement of analysis and the integrity of natural reservoir composition, Li isotope has become a new stable isotope system in recent years. The Li isotopic fractionation of up to 80‰ in the natural process enhances the identification ability of Li isotope, as well as in direct or indirect indicator function. Thus, Li isotopic systematics has the potential to be a good tracer to study various complex metallogenic processes. Here, this paper summarizes the studies and applications of Li isotopes on ore deposit in recent years, mainly in subduction zone mineralization, the geochemical behavior and characteristics of Li isotopes in porphyry-hydrothermal deposits, pegmatite deposits and sedimentary deposits, then it explores an application prospect of new Li isotopic method for ore deposits. Based on the applications of Li isotopic system in various ore deposits, it proposes that Li isotopic system will provide more indicative information for ore deposit study in the future.
-
Key words:
- Li isotopes /
- isotopic fractionation /
- subduction zone /
- ore-forming fluid /
- porphyry copper deposit /
- geochemistry
-
图 1 (a) 寄主石英中的δ7Li变化和均一温度的流体包裹体;(b)纯石英样品(含原生流体包裹体)中的Li同位素分馏系数(Δ石英流体)与流体包裹体均一温度(1 000/T)之间的关系(据Yang et al., 2015)
Fig. 1. Variation of δ7Li in the host quartz and fluid inclusions with the measured homogeneous temperatures (a); relationship of Li isotopic fractionation factor(Δδ7LiQuartz-fluid) with homogeneous temperatures (1 000/T) in fluid inclusions hosted from pure-quartz samples (b) (containing primary fluid inclusions) (modified from Yang et al., 2015)
图 2 不同岩石类型中Mg/Li比值和Li含量变化(a);西藏地区Li & δ7Li和∑REE & SiO2协变示意(b~d)
a.据刘英俊(1987)修改;b~d.据Tian et al.(2017b)
Fig. 2. Mg/Li ratios in different rock types (a); Li & 7Li vs. ∑REE & SiO2 covariant diagram for granite in Tibet (b-d)
图 3 俯冲带的Li同位素体系
据Tang et al.(2007, 2010);汤艳杰等(2009)修改
Fig. 3. Schematic illustration of Li isotope systematics in subduction-zone
图 4 (a) (87Sr/86Sr)i vs. δ7Li和(b) (143Nd/144Nd)i vs. δ7Li相关投影
其中安山岩来自典中组,玄武岩来自叶巴组,辉长岩和闪长岩来自冈底斯岩基.地幔端元数据来自Krienitz et al.(2012);Sr-Nd -δ7Li同位素组成的底图据Tian et al.(2018)
Fig. 4. Ploting diagrams of (87Sr/86Sr)i vs. δ7Li (a) and (143Nd/144Nd)i vs. δ7Li (b)
图 5 花岗岩和伟晶岩δ7Li和lgLi的相关图
Ⅰ.甲基卡钠长锂辉石伟晶岩;Ⅱ.加拿大小纳汉尼伟晶岩群(Barnes et al., 2012);Ⅲ. 甲基卡伟晶岩脉围岩(刘丽君等,2017a);Ⅳ.甲基卡二云母花岗岩;Ⅴ.厄尔士山花岗岩(Romer et al., 2014);Ⅵ.荆山淡色花岗岩(Sun et al., 2016);Ⅶ.布拉克山哈尼峰花岗岩(Teng et al., 2006a);Ⅷ.中国东北A型花岗岩(Teng et al., 2009);据侯江龙等(2018)
Fig. 5. Relationship of δ7Li vs. lgLi between granite and pegmatite
表 1 四川甲基卡伟晶岩型锂多金属矿床锂辉石和黑云母质量分数和同位素组成
Table 1. Lithium concentrations and isotope compositions of spodumenes and biotites from the Jiajika lithium polymetallic deposit, Sichuan Province
样号 样品描述 Li(10-6) δ7Li(‰) 308 伟晶岩中锂辉石 34.3 -0.4 134-4 伟晶岩中锂辉石 33.6 -0.6 JY-4 二云母花岗岩中黑云母 7.4 +1.6 注:数据刘丽君等(2017a). -
[1] Audétat, A., Gunther, D., Heinrich, C.A., 1998. Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions. Science, 279(5359): 2091-2094. https://doi.org/10.1126/science.279.5359.2091 [2] Audétat, A., Li, W.T., 2017. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geology Reviews, 88: 436-460. https://doi.org/10.1016/j.oregeorev.2017.05.018 [3] Aulbach, S., Rudnick, R.L., 2009. Origins of Non-Equilibrium Lithium Isotopic Fractionation in Xenolithic Peridotite Minerals: Examples from Tanzania. Chemical Geology, 258(1-2): 17-27. https://doi.org/10.1016/j.chemgeo.2008.07.015 [4] Barnes, E.M., Weis, D., Groat, L.A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36. https://doi.org/10.1016/j.lithos.2011.11.014 [5] Benton, L.D., Ryan, J.G., Savov, I.P., 2004. Lithium Abundance and Isotope Systematics of Forearc Serpentinites, Conical Seamount, Mariana Forearc: Insights into the Mechanics of Slab-Mantle Exchange during Subduction. Geochemistry, Geophysics, Geosystems, 5(8): Q08J12. https://doi.org/10.1029/2004gc000708 [6] Bottomley, D.J., Katz, A., Chan, L.H., et al., 1999. The Origin and Evolution of Canadian Shield Brines: Evaporation or Freezing of Seawater? New Lithium Isotope and Geochemical Evidence from the Slave Craton. Chemical Geology, 155(3-4): 295-320. https://doi.org/10.1016/s0009-2541(98)00166-1 doi: 10.1016/S0009-2541(98)00166-1 [7] Bouman, C., Elliott, T., Vroon, P.Z., 2004. Lithium Inputs to Subduction Zones. Chemical Geology, 212(1-2): 59-79. https://doi.org/10.1016/j.chemgeo.2004.08.004 [8] Brenan, J.M., Ryerson, F.J., Shaw, H.F., 1998. The Role of Aqueous Fluids in the Slab-to-Mantle Transfer of Boron, Beryllium, and Lithium during Subduction: Experiments and Models. Geochimica et Cosmochimica Acta, 62(19-20): 3337-3347. https://doi.org/10.1016/s0016-7037(98)00224-5 doi: 10.1016/S0016-7037(98)00224-5 [9] Brown, I.D., 2009. Recent Developments in the Methods and Applications of the Bond Valence Model. Chemical Reviews, 109(12): 6858-6919. https://doi.org/10.1021/cr900053k [10] Candela, P.A., Piccoli, P.M., 2005. Magmatic Processes in the Development of Porphyry-Type Ore Systems. Society of Economic Geologists, 100: 25-38. https://doi.org/10.5382/av100.03 [11] Caves Rugenstein, J.K., Ibarra, D.E., von Blanckenburg, F., 2019. Neogene Cooling Driven by Land Surface Reactivity rather than Increased Weathering Fluxes. Nature, 571: 99-102. https://doi.org/10.1038/s41586-019-1332-y [12] Chan, L., Alt, J., Teagle, D., 1996. Alteration of the Upper 1.8 Kilometers of Oceanic Crust: A Lithium Isotope Record at ODP Site 504B. Trans. Am. Geophys. Union, 77: F805. [13] Chan, L.H., Alt, J.C., Teagle, D.A.H., 2002. Lithium and Lithium Isotope Profiles through the Upper Oceanic Crust: A Study of Seawater-Basalt Exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187-201. https://doi.org/10.1016/s0012-821x(02)00707-0 doi: 10.1016/S0012-821X(02)00707-0 [14] Chan, L.H., Edmond, J.M., 1988. Variation of Lithium Isotope Composition in the Marine Environment: A Preliminary Report. Geochimica et Cosmochimica Acta, 52(6): 1711-1717. https://doi.org/10.1016/0016-7037(88)90239-6 [15] Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6 [16] Chan, L.H., Frey, F.A., 2003. Lithium Isotope Geochemistry of the Hawaiian Plume: Results from the Hawaii Scientific Drilling Project and Koolau Volcano. Geochemistry, Geophysics, Geosystems, 4(3): 8707. https://doi.org/10.1029/2002gc000365 [17] Chan, L.H., Hein, J.R., 2007. Lithium Contents and Isotopic Compositions of Ferromanganese Deposits from the Global Ocean. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(11-13): 1147-1162. https://doi.org/10.1016/j.dsr2.2007.04.003 [18] Chan, L.H., Leeman, W.P., Plank, T., 2006. Lithium Isotopic Composition of Marine Sediments. Geochemistry, Geophysics, Geosystems, 7(6): Q06005. https://doi.org/10.1029/2005gc001202 [19] Chan, L.H., Leeman, W.P., You, C.F., 1999. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids. Chemical Geology, 160(4): 255-280. https://doi.org/10.1016/s0009-2541(99)00101-1 doi: 10.1016/S0009-2541(99)00101-1 [20] Chaussidon, M., Robert, F., 1998. 7Li/6Li and 11B/10B Variations in Chondrules from the Semarkona Unequilibrated Chondrite. Earth and Planetary Science Letters, 164(3-4): 577-589. https://doi.org/10.1016/s0012-821x(98)00250-7 doi: 10.1016/S0012-821X(98)00250-7 [21] Chen, B., Gu, H.O., Chen, Y.J., et al., 2018. Lithium Isotope Behaviour during Partial Melting of Metapelites from the Jiangnan Orogen, South China: Implications for the Origin of REE Tetrad Effect of F-Rich Granite and Associated Rare-Metal Mineralization. Chemical Geology, 483: 372-384. https://doi.org/10.1016/j.chemgeo.2018.03.002 [22] Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551: 119769. https://doi.org/10.1016/j.chemgeo.2020.119769 [23] Chen, H., Wu, C., 2020. Metallogenesis and Major Challenges of Porphyry Copper Systems above Subduction Zones. Scientia Sinica (Terrae), 50(7): 865-886 (in Chinese). doi: 10.1360/SSTe-2019-0130 [24] Chen, H.Y., Xiao, B., 2014. Metallogenesis of Subduction Zone: The Progress and Future. Earth Science Frontiers, 21(5): 13-22 (in Chinese with English abstract). [25] Chi, G.X., Lai, J.Q., 2009. Roles of Fluid Inclusions in Study of Mineral Deposits. Mineral Deposits, 28(6): 850-855 (in Chinese with English abstract). [26] Choi, H.B., Ryu, J.S., Shin, W.J., et al., 2019. The Impact of Anthropogenic Inputs on Lithium Content in River and Tap Water. Nature Communications, 10: 5371. https://doi.org/10.1038/s41467-019-13376-y [27] Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801 [28] Decitre, S., Buatier, M., James, R., 2004. Li and Li Isotopic Composition of Hydrothermally Altered Sediments at Middle Valley, Juan de Fuca. Chemical Geology, 211(3-4): 363-373. https://doi.org/10.1016/j.chemgeo.2004.07.005 [29] Decitre, S., Deloule, E., Reisberg, L., et al., 2002. Behavior of Li and Its Isotopes during Serpentinization of Oceanic Peridotites. Geochemistry, Geophysics, Geosystems, 3(1): 1-20. https://doi.org/10.1029/2001gc000178 [30] Dellinger, M., Bouchez, J., Gaillardet, J., et al., 2017. Tracing Weathering Regimes Using the Lithium Isotope Composition of Detrital Sediments. Geology, 45(5): 411-414. https://doi.org/10.1130/g38671.1 doi: 10.1130/G38671.1 [31] Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029 [32] Dill, H.G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022 [33] Dohmen, R., Kasemann, S.A., Coogan, L., et al., 2010. Diffusion of Li in Olivine. Part Ⅰ: Experimental Observations and a Multi Species Diffusion Model. Geochimica et Cosmochimica Acta, 74(1): 274-292. https://doi.org/10.1016/j.gca.2009.10.016 [34] Elliott, T., Jeffcoate, A., Bouman, C., 2004. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 220(3-4): 231-245. https://doi.org/10.1016/s0012-821x(04)00096-2 doi: 10.1016/S0012-821X(04)00096-2 [35] Elliott, T., Thomas, A., Jeffcoate, A., et al., 2006. Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 443: 565-568. https://doi.org/10.1038/nature05144 [36] Fan, J.J., Tang, G.J., Wei, G.J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352-353: 105236. https://doi.org/10.1016/j.lithos.2019.105236 [37] Foster, J.G., Lambert, D.D., Frick, L.R., et al., 1996. Re-Os Isotopic Evidence for Genesis of Archaean Nickel Ores from Uncontaminated Komatiites. Nature, 382: 703-706. https://doi.org/10.1038/382703a0 [38] Gagnevin, D., Boyce, A.J., Barrie, C.D., et al., 2012. Zn, Fe and S Isotope Fractionation in a Large Hydrothermal System. Geochimica et Cosmochimica Acta, 88: 183-198. https://doi.org/10.1016/j.gca.2012.04.031 [39] Gieskes, J.M., Simoneit, B.R.T., Goodfellow, W.D., et al., 2002. Hydrothermal Geochemistry of Sediments and Pore Waters in Escanaba Trough: ODP Leg 169. Applied Geochemistry, 17(11): 1435-1456. https://doi.org/10.1016/s0883-2927(02)00111-7 doi: 10.1016/S0883-2927(02)00111-7 [40] Goodfellow, W.D., Franklin, J.M., 1993. Geology, Mineralogy, and Chemistry of Sediment-Hosted Clastic Massive Sulfides in Shallow Cores, Middle Valley, Northern Juan de Fuca Ridge. Economic Geology, 88(8): 2037-2068. https://doi.org/10.2113/gsecongeo.88.8.2037 [41] Gordienko, V.V., Gordienko, V.V., Sergeev, A.S., et al., 2007. First Data in Favor of the Crystallization Model of Lithium Isotope Fractionation in the Pegmatitic Process. Doklady Earth Sciences, 413(2): 441-443. https://doi.org/10.1134/s1028334x07030270 doi: 10.1134/S1028334X07030270 [42] Gou, L.F., Jin, Z.D., He, M.Y., 2017. Using Lithium Isotopes Traces Continental Weathering: Progresses and Challenges. Journal of Earth Environment, 8(2): 89-102 (in Chinese with English abstract). [43] Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007. Precise Zircon SHRIMP U-Pb and Quartz Vein Rb-Sr Dating of Mesozoic Taoxikeng Tungsten Polymetallic Deposit in Southern Jiangxi. Mineral Deposits, 26(4): 432-442 (in Chinese with English abstract). [44] Harkness, J.S., Ruhl, L.S., Millot, R., et al., 2015. Lithium Isotope Fingerprints in Coal and Coal Combustion Residuals from the United States. Procedia Earth and Planetary Science, 13: 134-137. https://doi.org/10.1016/j.proeps.2015.07.032 [45] He, M.Y., Luo, C.G., Yang, H.J., et al., 2020a. Sources and a Proposal for Comprehensive Exploitation of Lithium Brine Deposits in the Qaidam Basin on the Northern Tibetan Plateau, China: Evidence from Li Isotopes. Ore Geology Reviews, 117: 103277. https://doi.org/10.1016/j.oregeorev.2019.103277 [46] He, H.T., Wang, J.X., Xing, L.C., et al., 2020b. Enrichment Mechanisms of Lithium in the No. 6 Coal Seam from the Guanbanwusu Mine, Inner Mongolia, China: Explanations Based on Li Isotope Values and Density Functional Theory Calculations. Journal of Geochemical Exploration, 213: 106510. https://doi.org/10.1016/j.gexplo.2020.106510 [47] Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 93(4): 373-404. https://doi.org/10.2113/gsecongeo.93.4.373 [48] Heinrich, C.A., Pettke, T., Halter, W.E., et al., 2003. Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Geochimica et Cosmochimica Acta, 67(18): 3473-3497. https://doi.org/10.1016/s0016-7037(03)00084-x doi: 10.1016/S0016-7037(03)00084-X [49] Hindshaw, R.S., Aciego, S.M., Tipper, E.T., 2018. Li and U Isotopes as a Potential Tool for Monitoring Active Layer Deepening in Permafrost Dominated Catchments. Frontiers in Earth Science, 6: 102. https://doi.org/10.3389/feart.2018.00102 [50] Hoefs, J., 2009. Stable Isotope Geochemistry. Springer, Berlin. https://doi.org/10.1007/978-3-662-02290-0 [51] Hou, J.L., Li, J.K., Zhang, Y.J., et al., 2018. Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(6): 2042-2054 (in Chinese with English abstract). [52] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007. Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings. Geoscience, 21(2): 332-351 (in Chinese with English abstract). [53] Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 [54] Hou, Z.Q., Yang, Z.M., Wang, R., et al., 2020. Further Discussion on Porphyry Cu-Mo-Au Deposit Formation in Chinese Mainland. Earth Science Frontiers, 27(2): 20-44 (in Chinese with English abstract). [55] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012. Metallogenesis of Continental Collision Setting: Part Ⅰ. Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet. Mineral Deposits, 31(4): 647-670 (in Chinese with English abstract). [56] Huang, D.H., Wang, Y.C., Nie, F.J., et al., 1984. Isotopic Composition of Sulfur, Carbon and Oxygen and Source Material of the Huanglongpu Carbonatite Vein-Type of Molybdenum (Lead) Deposits. Acta Geologica Sinica, 58(3): 252-264 (in Chinese with English abstract). [57] Jiang, S.Y., Ling, H.F., Yang, J.H., et al., 2002. New Isotopic Tracers for Hydrothermal Mineralization and Ore Genesis Studies and Direct Dating Methods of Ore Deposits. Mineral Deposits, 21(Suppl. 1): 974-977 (in Chinese with English abstract). [58] Kısakürek, B., Widdowson, M., James, R.H., 2004. Behaviour of Li Isotopes during Continental Weathering: The Bidar Laterite Profile, India. Chemical Geology, 212(1-2): 27-44. https://doi.org/10.1016/j.chemgeo.2004.08.027 [59] Klemm, L.M., Pettke, T., Heinrich, C.A., et al., 2007. Hydrothermal Evolution of the El Teniente Deposit, Chile: Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102(6): 1021-1045. https://doi.org/10.2113/gsecongeo.102.6.1021 [60] Kobayashi, K., Tanaka, R., Moriguti, T., et al., 2004. Lithium, Boron, and Lead Isotope Systematics of Glass Inclusions in Olivines from Hawaiian Lavas: Evidence for Recycled Components in the Hawaiian Plume. Chemical Geology, 212(1-2): 143-161. https://doi.org/10.1016/j.chemgeo.2004.08.050 [61] Krienitz, M.S., Garbe-Schönberg, C.D., Romer, R.L., et al., 2012. Lithium Isotope Variations in Ocean Island Basalts-Implications for the Development of Mantle Heterogeneity. Journal of Petrology, 53(11): 2333-2347. https://doi.org/10.1093/petrology/egs052 [62] Leeman, W.P., Tonarini, S., Chan, L.H., et al., 2004. Boron and Lithium Isotopic Variations in a Hot Subduction Zone: The Southern Washington Cascades. Chemical Geology, 212(1-2): 101-124. https://doi.org/10.1016/j.chemgeo.2004.08.010 [63] Lei, J.J., Chu, F.Y., Li, X.H., et al., 2008. Li Isotopic Geochemistry and Its Application in the Study of Hydrothermal Activity. Journal of Marine Sciences, 26(1): 72-79 (in Chinese with English abstract). [64] Li, D.Y., Xiao, Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085 (in Chinese with English abstract). [65] Li, J., Huang, X.L., Wei, G.J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64-79. https://doi.org/10.1016/j.gca.2018.08.021 [66] Li, S.M., Wei, M.H., Li, S.W., et al., 2014. Rb-Sr and Sm-Nd Isochron Ages of the Liangjiagou Pb-Zn-Ag Ore Deposit in Chicheng County of Zhangjiakou City and Their Geological Implications. Geology in China, 41(2): 529-539 (in Chinese with English abstract). [67] Li, W.Q., Zhao, S.G., Wang, X.M., et al., 2020. Fingerprinting Hydrothermal Fluids in Porphyry Cu Deposits Using K and Mg Isotopes. Scientia Sinica (Terrae), 50(2): 245-257 (in Chinese) doi: 10.1360/N072018-0278 [68] Li, X.F., Zhang, Y.J., Tian, S.H., 2019. Application of Lithium Isotopes in Genetic Study of Pegmatite Deposits. Geology in China, 46(2): 419-429 (in Chinese with English abstract). [69] Li, X.Y., Chen, W., Qu, X.M., et al., 2018. S, Pb Isotopic Characteristics of Xiongmei Porphyry Copper Deposit in Tibet and Their Metallogenic Significance. Mineral Deposits, 37(3): 643-655 (in Chinese with English abstract). [70] Liang, T., Wang, D.H., Cai, M.H., et al., 2008. Sulfur and Lead Isotope Composition Tracing for the Sources of Ore-Forming Material in Dachang Tin-Polymentallic Orefield, Guangxi. Acta Geologica Sinica, 82(7): 967-977 (in Chinese with English abstract). [71] Liao, W., 1984. Sulfur and Lead Isotopic Composition and Metallogenic Model of Lead-Zinc Polymetallic Areas in Eastern Yunnan and Western Guizhou. Geology and Prospecting, 20(1): 2-6(in Chinese with English abstract). [72] Linnen, R.L., van Lichtervelde, M., Černý, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. https://doi.org/10.2113/gselements.8.4.275 [73] Liu, C.Y., Gou, L.F., Deng, L., et al., 2019. Effects of Li Isotopic Fractionation during Ion Exchange on the Measurement Accuracy of Li Isotopes. Rock and Mineral Analysis, 38(1): 35-44 (in Chinese with English abstract). [74] Liu, H.Y., Sun, H., Xiao, Y.L., et al., 2019. Lithium Isotope Systematics of the Sumdo Eclogite, Tibet: Tracing Fluid/Rock Interaction of Subducted Low-T Altered Oceanic Crust. Geochimica et Cosmochimica Acta, 246: 385-405. https://doi.org/10.1016/j.gca.2018.12.002 [75] Liu, L.J., Wang, D.H., Hou, K.J., 2017a. Application of Lithium Isotope in the Study of Methyl Kaxin No. 3 Vein, Sichuan Province. Earth Science Frontiers, 24(5): 167-171 (in Chinese with English abstract). [76] Liu, L.J., Wang, D.H., Liu, X.F., et al., 2017b. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2): 263-278 (in Chinese with English abstract). [77] Liu, Y.J., 1987. Introduction to Elemental Geochemistry. Geological Publishing House, Beijing(in Chinese). [78] Lu, H.Z., 2009. Discussion on Ore-Forming Fluids. Acta Mineralogica Sinica, 29(Suppl. 1): 230-231 (in Chinese). [79] Lu, Y.G., Fang, K., Lu, J.K., et al., 2015. Metallogenic Regularity Comparison of Rare Earth Elements Deposits of Ion-Adsorption Type in Longjiang of Guangxi. Journal of Guilin University of Technology, 35(4): 660-666 (in Chinese with English abstract). [80] Lu, Y.G., Xiao, Y.L., Nadeau, O., et al., 2021. Inherited Source Affinity of Li and Hf Isotopes for Porphyry Copper Deposits from Subduction and Collisional Settings. Ore Geology Reviews, 138: 104328. https://doi.org/10.1016/j.oregeorev.2021.104328 [81] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973 (in Chinese with English abstract). [82] Magna, T., Novák, M., Janoušek, V., 2013. Lithium Isotopesin Giant Pegmatite Bodies: Implications for Their Sources and Evolution. Geological Association of Canada and Mineralogical Association of Canadaannual Meeting. Winnipeg, Canada, 135. [83] Maloney, J.S., Nabelek, P.I., Sirbescu, M.L.C.H., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905-916. https://doi.org/10.1127/0935-1221/2008/0020-1823 [84] Mao, J.W., Li, H.M., Wang, Y.T., et al., 2005. The Relationship between Mantle-Derived Fluid and Gold Ore-Formation in the Eastern Shandong Peninsula: Evidences from D-O-C-S Isotopes. Acta Geologica Sinica, 79(6): 839-857 (in Chinese with English abstract). [85] Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract). [86] Mathur, R., Munk, L., Nguyen, M., et al., 2013. Modern and Paleofluid Pathways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska. Economic Geology, 108(3): 529-541. https://doi.org/10.2113/econgeo.108.3.529 [87] Millot, R., Guerrot, C., Vigier, N., 2004. Accurate and High-Precision Measurement of Lithium Isotopes in Two Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 28(1): 153-159. https://doi.org/10.1111/j.1751-908X.2004.tb01052.x [88] Mo, X.X., 2020a. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257 (in Chinese with English abstract). [89] Mo, X.X., 2020b. Geodynamic Background of Metallogenesis of Large-Superlarge Ore Deposits. Earth Science Frontiers, 27(2): 13-19 (in Chinese with English abstract). [90] Moriguti, T., Nakamura, E., 1998. Across-Arc Variation of Li Isotopes in Lavas and Implications for Crust/Mantle Recycling at Subduction Zones. Earth and Planetary Science Letters, 163(1-4): 167-174. https://doi.org/10.1016/s0012-821x(98)00184-8 doi: 10.1016/S0012-821X(98)00184-8 [91] Ni, P., Chi, Z., Pan, J.Y., et al., 2018. The Characteristics of Ore-Forming Fluids and Mineralization Mechanism in Hydrothermal Deposits: A Case Study of Some Typical Deposits in China. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 369-394, 560 (in Chinese with English abstract). [92] Ni, P., Fan, H.R., Ding, J.Y., 2014. Progress in Fluid Inclusions. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 1-5 (in Chinese with English abstract). [93] Nishio, Y., Nakai, S., Yamamoto, J., et al., 2004. Lithium Isotopic Systematics of the Mantle-Derived Ultramafic Xenoliths: Implications for EM1 Origin. Earth and Planetary Science Letters, 217(3-4): 245-261. https://doi.org/10.1016/s0012-821x(03)00606-x doi: 10.1016/S0012-821X(03)00606-X [94] Pang, X.C., Si, Y.Y., Liu, J.F., et al., 2019. Sm-Nd Isotopic Dating and Geological Significance of Kangda Fluorite Deposit in Songxian County of Henan Province. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 534-538 (in Chinese with English abstract). [95] Peng, A.P., 2012. Development Status and Future Trend of Lithium Industry. China Metal Bulletin, (11): 19-21(in Chinese). [96] Penniston-Dorland, S.C., Bebout, G.E., Pogge von Strandmann, P.A.E., et al., 2012. Lithium and Its Isotopes as Tracers of Subduction Zone Fluids and Metasomatic Processes: Evidence from the Catalina Schist, California, USA. Geochimica et Cosmochimica Acta, 77: 530-545. https://doi.org/10.1016/j.gca.2011.10.038 [97] Penniston-Dorland, S.C., Liu, X.M., Rudnick, R.L., 2017. Lithium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 165-217. https://doi.org/10.2138/rmg.2017.82.6 [98] Penniston-Dorland, S.C., Wing, B.A., Nex, P.A.M., et al., 2008. Multiple Sulfur Isotopes Reveal a Magmatic Origin for the Platreef Platinum Group Element Deposit, Bushveld Complex, South Africa. Geology, 36(12): 979-982. https://doi.org/10.1130/g25098a.1 doi: 10.1130/G25098A.1 [99] Pistiner, J.S., Henderson, G.M., 2003. Lithium-Isotope Fractionation during Continental Weathering Processes. Earth and Planetary Science Letters, 214(1-2): 327-339. https://doi.org/10.1016/s0012-821x(03)00348-0 doi: 10.1016/S0012-821X(03)00348-0 [100] Pogge von Strandmann, P.A.E., Kasemann, S.A., Wimpenny, J.B., 2020. Lithium and Lithium Isotopes in Earth's Surface Cycles. Elements, 16(4): 253-258. https://doi.org/10.2138/gselements.16.4.253 [101] Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., et al., 2017. Lithium Isotopes in Speleothems: Temperature-Controlled Variation in Silicate Weathering during Glacial Cycles. Earth and Planetary Science Letters, 469: 64-74. https://doi.org/10.1016/j.epsl.2017.04.014 [102] Richard, A., Banks, D.A., Hendriksson, N., et al., 2018. Lithium Isotopes in Fluid Inclusions as Tracers of Crustal Fluids: An Exploratory Study. Journal of Geochemical Exploration, 184: 158-166. https://doi.org/10.1016/j.gexplo.2017.10.017 [103] Richards, J.P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1 doi: 10.1130/G25451A.1 [104] Ripley, E.M., 1999. Systematics of Sulphur and Oxygen Isotopes in Mafic Igneous Rocks and Related Cu-Ni-PGE Mineralization. In: Keays, R.R., Lesher, C.M., Lightfoot, P.C., eds., Dynamic Processes in Magmatic Ore Deposits and Their Application Inmineral Exploration. Geological Association of Canada Short Course Notes, 13: 133-158. [105] Ripley, E.M., Li, C., Shin, D., 2002. Paragneiss Assimilation in the Genesis of Magmatic Ni-Cu-Co Sulfide Mineralization at Voisey's Bay, Labrador: δ34S, δ13C, and Se/S Evidence. Economic Geology, 97(6): 1307-1318. https://doi.org/10.2113/gsecongeo.97.6.1307 [106] Romer, R.L., Meixner, A., Förster, H.J., 2014. Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131: 98-114. https://doi.org/10.1016/j.gca.2014.01.018 [107] Rotich, E.K., Handler, M.R., Naeher, S., et al., 2020. Re-Os Geochronology and Isotope Systematics, and Organic and Sulfur Geochemistry of the Middle-Late Paleocene Waipawa Formation, New Zealand: Insights into Early Paleogene Seawater Os Isotope Composition. Chemical Geology, 536: 119473. https://doi.org/10.1016/j.chemgeo.2020.119473 [108] Rui, Z. Y, Li, G.M., Zhang, L.S., et al., 2004. The Response of Porphyry Copper Deposits to Important Geological Events in Xizang. Earth Science Frontiers, 11(1): 145-152 (in Chinese with English abstract). [109] Rusk, B.G., Reed, M.H., Dilles, J.H., et al., 2004. Compositions of Magmatic Hydrothermal Fluids Determined by LA-ICP-MS of Fluid Inclusions from the Porphyry Copper-Molybdenum Deposit at Butte, MT. Chemical Geology, 210(1-4): 173-199. https://doi.org/10.1016/j.chemgeo.2004.06.011 [110] Schuessler, J.A., Schoenberg, R., Sigmarsson, O., 2009. Iron and Lithium Isotope Systematics of the Hekla Volcano, Iceland: Evidence for Fe Isotope Fractionation during Magma Differentiation. Chemical Geology, 258(1-2): 78-91. https://doi.org/10.1016/j.chemgeo.2008.06.021 [111] Seitz, H.M., Woodland, A.B., 2000. The Distribution of Lithium in Peridotitic and Pyroxenitic Mantle Lithologies: An Indicator of Magmatic and Metasomatic Processes. Chemical Geology, 166(1-2): 47-64. https://doi.org/10.1016/s0009-2541(99)00184-9 doi: 10.1016/S0009-2541(99)00184-9 [112] Sillitoe, R.H., 1972. A Plate Tectonic Model for the Origin of Porphyry Copper Deposits. Economic Geology, 67(2): 184-197. https://doi.org/10.2113/gsecongeo.67.2.184 [113] Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [114] Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016 [115] Su, B.X., Zhang, H.F., Deloule, E., et al., 2012. Extremely High Li and Low δ7Li Signatures in the Lithospheric Mantle. Chemical Geology, 292-293: 149-157. https://doi.org/10.1016/j.chemgeo.2011.11.023 [116] Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004 [117] Sun, H., Xiao, Y.L., 2009. Fluid Inclusions: Latest Development, Geological Applications and Prospect. Advances in Earth Science, 24(10): 1105-1121 (in Chinese with English abstract). [118] Sun, H., Xiao, Y.L., Gao, Y.J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences of the United States of America, 115(15): 3782-3787. https://doi.org/10.1073/pnas.1711862115 [119] Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004 [120] Sun, Y.Z., Yang, J.J., Zhao, C.L., 2012. Minimum Mining Grade of Associated Li Deposits in Coal Seams. Energy Exploration & Exploitation, 30(2): 167-170. https://doi.org/10.1260/0144-5987.30.2.167 [121] Tan, D.B., Xiao, Y.L., Sun, H., et al., 2020. Lithium Isotopic Compositions of Post-Collisional Mafic-Ultramafic Rocks from Dabieshan, China: Implications for Recycling of Deeply Subducted Continental Crust. Lithos, 352-353: 105327. https://doi.org/10.1016/j.lithos.2019.105327 [122] Tang, Y.J., Zhang, H.F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79-90. https://doi.org/10.1016/j.lithos.2011.12.001 [123] Tang, Y.J., Zhang, H.F., Deloule, E., et al., 2014. Abnormal Lithium Isotope Composition from the Ancient Lithospheric Mantle beneath the North China Craton. Scientific Reports, 4: 4274. https://doi.org/10.1038/srep04274 [124] Tang, Y.J., Zhang, H.F., Ying, J.F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374-388. https://doi.org/10.2747/0020-6814.49.4.374 [125] Tang, Y.J., Zhang, H.F., Ying, J.F., 2009. Discussion on Fractionation Mechanism of Lithium Isotopes. Earth Science, 34(1): 43-55(in Chinese with English abstract). . [126] Tang, Y.J., Zhang, H.F., Ying, J.F., 2010. A Brief Review of Isotopically Light Li: A Feature of the Enriched Mantle? International Geology Review, 52(9): 964-976. https://doi.org/10.1080/00206810903211385 [127] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031 [128] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2006a. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710. https://doi.org/10.1016/j.epsl.2006.01.036 [129] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2006b. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083 [130] Teng, F.Z., Rudnick, R.L., McDonough, W.F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009 [131] Teng, F.Z., Rudnick, R.L., McDonough, W.F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009 [132] Tian, S.H., Hou, Z.Q., Tian, Y.H., et al., 2018. Lithium Content and Isotopic Composition of the Juvenile Lower Crust in Southern Tibet. Gondwana Research, 62: 198-211. https://doi.org/10.1016/j.gr.2018.02.011 [133] Tian, S.H., Yang, Z.S., Hou, Z.Q., et al., 2017a. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41: 29-50. https://doi.org/10.1016/j.gr.2015.09.005 [134] Tian, S.H., Zhao, Y., Hou, Z.Q., et al., 2017b. Lithium Isotopic Composition and Concentration of Himalayan Leucogranites and the Indian Lower Continental Crust. Lithos, 284-285: 416-428. https://doi.org/10.1016/j.lithos.2017.05.001 [135] Tian, Y., Xiao, Y.L., Chen, Y.X., et al., 2019. Serpentinite-Derived Low δ7Li Fluids in Continental Subduction Zones: Constraints from the Fluid Metasomatic Rocks (Whiteschist) from the Dora-Maira Massif, Western Alps. Lithos, 348-349: 105177. https://doi.org/10.1016/j.lithos.2019.105177 [136] Tomascak, P.B., Magna, T., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-01430-2 [137] Tomascak, P.B., Ryan, J.G., Defant, M.J., 2000. Lithium Isotope Evidence for Light Element Decoupling in the Panama Subarc Mantle. Geology, 28(6): 507-510. doi: 10.1130/0091-7613(2000)28<507:LIEFLE>2.0.CO;2 [138] Tomascak, P.B., Tera, F., Helz, R.T., et al., 1999. The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907-910. https://doi.org/10.1016/s0016-7037(98)00318-4 doi: 10.1016/S0016-7037(98)00318-4 [139] Verney-Carron, A., Vigier, N., Millot, R., et al., 2015. Lithium Isotopes in Hydrothermally Altered Basalts from Hengill (SW Iceland). Earth and Planetary Science Letters, 411: 62-71. https://doi.org/10.1016/j.epsl.2014.11.047 [140] Vigier, N., Gislason, S.R., Burton, K.W., et al., 2009. The Relationship between Riverine Lithium Isotope Composition and Silicate Weathering Rates in Iceland. Earth and Planetary Science Letters, 287(3-4): 434-441. https://doi.org/10.1016/j.epsl.2009.08.026 [141] Wan, H.Q., Sun, H., Liu, H.Y., et al., 2015. Lithium Isotopic Geochemistry in Subduction Zones: Retrospects and Prospects. Earth Science Frontiers, 22(5): 29-43(in Chinese with English abstract). [142] Wang, Q.L., Zhao, Z.Q., Liu, C.Q., 2006. New Progress in Lithium Isotope Environmental Geochemistry. Acta Mineralogica Sinica, 26(2): 196-202(in Chinese with English abstract). [143] Wang, X.X., Xiao, Y.L., Sun, H., et al., 2020. Initiation of the North China Craton Destruction: Constraints from the Diamond-Bearing Alkaline Basalts from Lan'gan, China. Gondwana Research, 80: 228-243. https://doi.org/10.1016/j.gr.2019.11.003 [144] Wang, Y., Zhu, X.K., 2012. Fe Isotope Systematics and Its Implications in Ore Deposit Geology. Acta Petrologica Sinica, 28(11): 3638-3654(in Chinese with English abstract). [145] Wang, Y., Zhu, X.K., Mao, J.W., et al., 2014. Preliminary Study on Cu Isotopic Geochemistry Behavior of Dongguashan Porphyry-Skarn Deposit, Tongling District. Acta Geologica Sinica, 88(12): 2413-2422(in Chinese with English abstract). [146] Wang, Y.Y., Xiao, Y.L., 2018. Fluid-Controlled Element Transport and Mineralization in Subduction Zones. Solid Earth Sciences, 3(4): 87-104. https://doi.org/10.1016/j.sesci.2018.06.003 [147] Wei, G.Y., Wei, W., Wang, D., et al., 2020. Enhanced Chemical Weathering Triggered an Expansion of Euxinic Seawater in the Aftermath of the Sturtian Glaciation. Earth and Planetary Science Letters, 539: 116244. https://doi.org/10.1016/j.epsl.2020.116244 [148] Wei, J.H., Liu, C.W., Li, Z.D., et al., 2003. U-Pb, Rb-Sr Isotopic Dating of the Diagenesis and Mineralization of Gold Deposits in the Dandong Area. Acta Geologica Sinica, 77(1): 113-119(in Chinese with English abstract). [149] Wenger, M., Armbruster, T., 1991. Crystal Chemistry of Lithium: Oxygen Coordination and Bonding. European Journal of Mineralogy, 3(2): 387-400. doi: 10.1127/ejm/3/2/0387 [150] Wimpenny, J., Colla, C.A., Yu, P., et al., 2015. Lithium Isotope Fractionation during Uptake by Gibbsite. Geochimica et Cosmochimica Acta, 168: 133-150. https://doi.org/10.1016/j.gca.2015.07.011 [151] Wu, S., Zheng, Y.Y., Wang, D., et al., 2017. Variation of Copper Isotopes in Chalcopyrite from Dabu Porphyry Cu-Mo Deposit in Tibet and Implications for Mineral Exploration. Ore Geology Reviews, 90: 14-24. https://doi.org/10.1016/j.oregeorev.2017.10.001 [152] Wu, Z.P., Chen, Z.H., 2018. Lithium and Boron Isotopes Tracing Hydrocarbons in Oil-Gas Shale. 2018 International Field Exploration and Development Conference in Xi'an, Xi'an(in Chinese with English abstract). [153] Wunder, B., Meixner, A., Romer, R.L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112-120. https://doi.org/10.1007/s00410-005-0049-0 [154] Xiang, L., Romer, R.L., Glodny, J., et al., 2020. Li and B Isotopic Fractionation at the Magmatic-Hydrothermal Transition of Highly Evolved Granites. Lithos, 376-377: 105753. https://doi.org/10.1016/j.lithos.2020.105753 [155] Xiao, Y., Zhang, H.F., Deloule, E., et al., 2015. Large Lithium Isotopic Variations in Minerals from Peridotite Xenoliths from the Eastern North China Craton. The Journal of Geology, 123(1): 79-94. https://doi.org/10.1086/680222 [156] Xiao, Y.L., Chen, R.X., Chen, Y.X., et al., 2020. Supercritical Fluid Records in Natural Rocks. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 448-462, 440(in Chinese with English abstract). [157] Xiao, Y.L., Hoefs, J., Hou, Z.H., et al., 2011. Fluid/Rock Interaction and Mass Transfer in Continental Subduction Zones: Constraints from Trace Elements and Isotopes (Li, B, O, Sr, Nd, Pb) in UHP Rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contributions to Mineralogy and Petrology, 162(4): 797-819. https://doi.org/10.1007/s00410-011-0625-4 [158] Xiao, Y.L., Sun, H., Gu, H.O., et al., 2015. Fluid/Melt in Continental Deep Subduction Zones: Compositions and Related Geochemical Fractionations. Scientia Sinica (Terrae), 45(8): 1063-1087(in Chinese). doi: 10.1360/zd2015-45-8-1063 [159] Xu, Z.Q., Wang, R.C., Zhao, Z.B., et al., 2018. On the Structural Backgrounds of the Large-Scale "Hard-Rock Type" Lithium Ore Belts in China. Acta Geologica Sinica, 92(6): 1091-1106(in Chinese with English abstract). [160] Yang, D., Hou, Z., Zhao, Y., et al., 2015. Lithium Isotope Traces Magmatic Fluid in a Seafloor Hydrothermal System. Scientific Reports, 5: 13812. https://doi.org/10.1038/srep13812 [161] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2020. Ore-Accumulating Structural System and Mineral Exploration. Earth Science, 45(12): 4389-4398(in Chinese with English abstract). [162] Zhang, A.C., Wang, R.C., Jiang, S.Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41 [163] Zhang, D.H., Audétat, A., 2017. What Caused the Formation of the Giant Bingham Canyon Porphyry Cu-Mo-Au Deposit? Insights from Melt Inclusions and Magmatic Sulfides. Economic Geology, 112(2): 221-244. https://doi.org/10.2113/econgeo.112.2.221 [164] Zhang, H.F., Deloule, E., Tang, Y.J., et al., 2010. Melt/Rock Interaction in Remains of Refertilized Archean Lithospheric Mantle in Jiaodong Peninsula, North China Craton: Li Isotopic Evidence. Contributions to Mineralogy and Petrology, 160(2): 261-277. https://doi.org/10.1007/s00410-009-0476-4 [165] Zhang, W.H., 1984. Research and Application Status of Fluid Inclusions. Geological Science and Technology Information, (4): 13-19(in Chinese with English abstract). [166] Zhang, X., Saldi, G.D., Schott, J., et al., 2021. Experimental Constraints on Li Isotope Fractionation during the Interaction between Kaolinite and Seawater. Geochimica et Cosmochimica Acta, 292: 333-347. https://doi.org/10.1016/j.gca.2020.09.029 [167] Zheng, Y.C., Liu, S.A., Wu, C.D., et al., 2019. Cu Isotopes Reveal Initial Cu Enrichment in Sources of Giant Porphyry Deposits in a Collisional Setting. Geology, 47(2): 135-138. https://doi.org/10.1130/g45362.1 doi: 10.1130/G45362.1 [168] Zheng, Y.F., Zhang, L.F., McClelland, W.C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139: 1-9. https://doi.org/10.1016/j.lithos.2011.11.020 [169] Zhou, T., Bi, X.W., Wang, D., et al., 2013. Lithium Isotopic Characteristics of Ore-Bearing and Barren Intrusions in the Jinshajiang-Honghe Alkali-Rich Intrusive Belt. Acta Mineralogica Sinica, 33(2): 221-230(in Chinese with English abstract). [170] Zhou, W.Q., Zhou, Q.L., 1992. A Study on the Isotopic Composition of Pb and S in the Lanping Pb-Zn Deposit, Yunnan Province. Geochimica, 21(2): 141-148(in Chinese with English abstract). [171] Zhu, J.C., Rao, B., Xiong, X.L., et al., 2002. Comparison and Genetic Interpretation of Li-F Rich, Rare-Metal Bearing Granitic Rocks. Geochimica, 31(2): 141-152(in Chinese with English abstract). [172] 陈华勇, 吴超, 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865-886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007001.htm [173] 陈华勇, 肖兵, 2014. 俯冲边界成矿作用研究进展及若干问题. 地学前缘, 21(5): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405003.htm [174] 池国祥, 赖健清, 2009. 流体包裹体在矿床研究中的作用. 矿床地质, 28(6): 850-855. doi: 10.3969/j.issn.0258-7106.2009.06.013 [175] 苟龙飞, 金章东, 贺茂勇, 2017. 锂同位素示踪大陆风化: 进展与挑战. 地球环境学报, 8(2): 89-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201702001.htm [176] 郭春丽, 王登红, 陈毓川, 等, 2007. 赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定. 矿床地质, 26(4): 432-442. doi: 10.3969/j.issn.0258-7106.2007.04.007 [177] 侯江龙, 李建康, 张玉洁, 等, 2018. 四川甲基卡锂矿床花岗岩体Li同位素组成及其对稀有金属成矿的制约. 地球科学, 43(6): 2042-2054. doi: 10.3799/dqkx.2018.595 [178] 侯增谦, 潘小菲, 杨志明, 等, 2007. 初论大陆环境斑岩铜矿. 现代地质, 21(2): 332-351. doi: 10.3969/j.issn.1000-8527.2007.02.019 [179] 侯增谦, 杨志明, 王瑞, 等, 2020. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用. 地学前缘, 27(2): 20-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002004.htm [180] 侯增谦, 郑远川, 杨志明, 等, 2012. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统. 矿床地质, 31(4): 647-670. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm [181] 黄典豪, 王义昌, 聂凤军, 等, 1984. 黄龙铺碳酸岩脉型钼(铅)矿床的硫、碳、氧同位素组成及成矿物质来源. 地质学报, 58(3): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198403007.htm [182] 蒋少涌, 凌洪飞, 杨競红, 等, 2002. 热液成矿作用与矿床成因的同位素示踪新技术和金属矿床直接定年. 矿床地质, 21(增刊1): 974-977. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1258.htm [183] 雷吉江, 初凤友, 李小虎, 等, 2008. 锂同位素地球化学及其在热液活动研究中的应用. 海洋学研究, 26(1): 72-79. doi: 10.3969/j.issn.1001-909X.2008.01.011 [184] 李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255 [185] 李随民, 魏明辉, 李森文, 等, 2014. 张家口梁家沟铅锌银矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义. 中国地质, 41(2): 529-539. doi: 10.3969/j.issn.1000-3657.2014.02.016 [186] 李伟强, 赵书高, 王小敏, 等, 2020. 斑岩铜矿热液流体的K-Mg同位素示踪. 中国科学: 地球科学, 50(2): 245-257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202002007.htm [187] 李贤芳, 张玉洁, 田世洪, 2019. 锂同位素在伟晶岩矿床成因研究中的应用. 中国地质, 46(2): 419-429. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902019.htm [188] 黎心远, 陈伟, 曲晓明, 等, 2018. 西藏申扎县雄梅铜矿床的硫、铅同位素特征及其成矿意义. 矿床地质, 37(3): 643-655. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201803012.htm [189] 梁婷, 王登红, 蔡明海, 等, 2008. 广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪. 地质学报, 82(7): 967-977. doi: 10.3321/j.issn:0001-5717.2008.07.015 [190] 廖文, 1984. 滇东、黔西铅锌金属区硫、铅同位素组成特征与成矿模式探讨. 地质与勘探, 20(1): 2-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198401000.htm [191] 刘纯瑶, 苟龙飞, 邓丽, 等, 2019. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 38(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901004.htm [192] 刘丽君, 王登红, 侯可军, 等, 2017a. 锂同位素在四川甲基卡新三号矿脉研究中的应用. 地学前缘, 24(5): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705021.htm [193] 刘丽君, 王登红, 刘喜方, 等, 2017b. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702005.htm [194] 刘英俊, 1987. 元素地球化学导论. 北京: 地质出版社. [195] 卢焕章, 2009. 论成矿流体. 矿物学报, 29(增刊1): 230-231. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1117.htm [196] 陆一敢, 方科, 卢见昆, 等, 2015. 广西龙江矿区离子吸附型稀土矿成矿规律对比. 桂林理工大学学报, 35(4): 660-666. doi: 10.3969/j.issn.1674-9057.2015.04.002 [197] 马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 44(6): 1957-1973. doi: 10.3799/dqkx.2019.041 [198] 毛景文, 李厚民, 王义天, 等, 2005. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据. 地质学报, 79(6): 839-857. doi: 10.3321/j.issn:0001-5717.2005.06.013 [199] 毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm [200] 莫宣学, 2020a. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160 [201] 莫宣学, 2020b. 大型-超大型矿床成矿地球动力学背景. 地学前缘, 27(2): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002003.htm [202] 倪培, 迟哲, 潘君屹, 等, 2018. 热液矿床的成矿流体与成矿机制: 以中国若干典型矿床为例. 矿物岩石地球化学通报, 37(3): 369-394, 560. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803001.htm [203] 倪培, 范宏瑞, 丁俊英, 2014. 流体包裹体研究进展. 矿物岩石地球化学通报, 33(1): 1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001 [204] 庞绪成, 司媛媛, 刘纪峰, 等, 2019. 河南嵩县康达萤石矿Sm-Nd同位素年龄及地质意义. 矿物岩石地球化学通报, 38(3): 534-538. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201903012.htm [205] 彭爱平, 2012. 锂工业发展现状及未来趋势. 中国金属通报, (11): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201211007.htm [206] 芮宗瑶, 李光明, 张立生, 等, 2004. 西藏斑岩铜矿对重大地质事件的响应. 地学前缘, 11(1): 145-152. doi: 10.3321/j.issn:1005-2321.2004.01.011 [207] 孙贺, 肖益林, 2009. 流体包裹体研究: 进展、地质应用及展望. 地球科学进展, 24(10): 1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005 [208] 汤艳杰, 张宏福, 英基丰, 2009. 锂同位素分馏机制讨论. 地球科学, 34(1): 43-55. doi: 10.3321/j.issn:1000-2383.2009.01.006 [209] 万红琼, 孙贺, 刘海洋, 等, 2015. 俯冲带Li同位素地球化学: 回顾与展望. 地学前缘, 22(5): 29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505004.htm [210] 汪齐连, 赵志琦, 刘丛强, 2006. 锂同位素在环境地球化学研究中的新进展. 矿物学报, 26(2): 196-202. doi: 10.3321/j.issn:1000-4734.2006.02.013 [211] 王跃, 朱祥坤, 2012. 铁同位素体系及其在矿床学中的应用. 岩石学报, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm [212] 王跃, 朱祥坤, 毛景文, 等, 2014. 铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的Cu同位素地球化学行为初步研究. 地质学报, 88(12): 2413-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412019.htm [213] 魏俊浩, 刘丛强, 李志德, 等, 2003. 论金矿床成矿年代的确定——以丹东地区成岩成矿Rb-Sr、U-Pb同位素年代为例. 地质学报, 77(1): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301021.htm [214] 吴泽鹏, 陈中红, 2018. Li和B同位素对页岩油气运移的示踪作用. 西安: 2018 IFEDC油气田勘探与开发国际会议. [215] 肖益林, 陈仁旭, 陈伊翔, 等, 2020. 自然界岩石样品中的超临界流体记录. 矿物岩石地球化学通报, 39(3): 448-462, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003004.htm [216] 肖益林, 孙贺, 顾海欧, 等, 2015. 大陆深俯冲过程中的熔/流体成分与地球化学分异. 中国科学: 地球科学, 45(8): 1063-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508001.htm [217] 许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001 [218] 姚书振, 丁振举, 周宗桂, 等, 2020. 聚矿构造系统与找矿. 地球科学, 45(12): 4389-4398. doi: 10.3799/dqkx.2020.337 [219] 张文淮, 1984. 流体包裹体的研究和应用现状. 地质科技情报, 3(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198404007.htm [220] 周汀, 毕献武, 王蝶, 等, 2013. 金沙江-红河富碱侵入岩带含矿与不含矿富碱斑岩Li同位素地球化学特征及其地质意义. 矿物学报, 33(2): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201302015.htm [221] 周维全, 周全立, 1992. 兰坪铅锌矿床铅和硫同位素组成研究. 地球化学, 21(2): 141-148. doi: 10.3321/j.issn:0379-1726.1992.02.005 [222] 朱金初, 饶冰, 熊小林, 等, 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 141-152. doi: 10.3321/j.issn:0379-1726.2002.02.005