• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于子域解析元素法的煤矿地下水流场模拟

    任晓波 武强 吴瑞芳 刘守强

    任晓波, 武强, 吴瑞芳, 刘守强, 2021. 基于子域解析元素法的煤矿地下水流场模拟. 地球科学, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389
    引用本文: 任晓波, 武强, 吴瑞芳, 刘守强, 2021. 基于子域解析元素法的煤矿地下水流场模拟. 地球科学, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389
    Ren Xiaobo, Wu Qiang, Wu Ruifang, Liu Shouqiang, 2021. Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method. Earth Science, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389
    Citation: Ren Xiaobo, Wu Qiang, Wu Ruifang, Liu Shouqiang, 2021. Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method. Earth Science, 46(8): 3019-3027. doi: 10.3799/dqkx.2020.389

    基于子域解析元素法的煤矿地下水流场模拟

    doi: 10.3799/dqkx.2020.389
    基金项目: 

    国家自然科学基金项目 41877186

    国家自然科学基金项目 41602262

    国家重点研发计划项目 2017YFC0804104

    详细信息
      作者简介:

      任晓波(1981-), 男, 博士, 从事矿井水害方面的研究.ORCID: 0000-0003-1893-3485.E-mail: kcykk98x@163.com

    • 中图分类号: P641.4

    Simulation of Groundwater Flow Field of Coal Mine Based on Subdomain-Analytic Element Method

    • 摘要: 为了分析将子域解析元素法应用于煤矿地下水流场模拟的可行性,并探究如何提高此方法的模拟精度,首先推导出了强度非线性变化的高阶线汇的复势表达式,分析了其流量势与流函数的空间分布特征,在此基础上应用python语言构建了基于子域解析元素法的煤矿地下水流场模型并应用于求解某煤矿放水试验后水位分布问题.模拟结果显示,模拟水位与观测孔水位偏差绝对值范围为1.36~5.27 m,模型外边界(实际定水头边界)上的水位接近实际值(900 m),且通过模型外边界(实际隔水边界)的流量近似为零.对模拟原理及模拟结果的分析表明,基于子域解析元素法的煤矿地下水流场模型在全域上满足质量守恒及达西流梯度场,在全域内任意一点的水位可通过该点所处的子域所对应的流量势函数求得,因此应用子域解析元素法进行煤矿地下水流场模拟是可行的,而且将代表模型边界的非线性强度线汇剖分为更短的长度可进一步提高模拟精度.

       

    • 图  1  奥灰含水层水流场模型平面图

      K为渗透系数;H为含水层厚度;h0为初始平均水位

      Fig.  1.  Plan view of flow field model in Ordovician limestone aquifer

      图  2  矿井放水试验后的等水位图

      Fig.  2.  Contour map of head after the drainage test

      图  3  子域内边界线汇水位分布

      Fig.  3.  Head on inter-domain boundary represented by line-sink

      图  4  子域内边界线汇上流函数值分布

      Fig.  4.  Values of stream function on inter-domain boundary represented by line-sink

      图  5  通过子域内边界线汇各段流量

      Fig.  5.  Discharge across segments of inter-domain boundary represented by line-sink

      图  6  定水头边界线汇水位分布

      Fig.  6.  Head on head-specified boundary represented by line-sink

      图  7  定流量边界线汇上流函数值分布

      Fig.  7.  Values of stream function on normal flux-specified boundary represented by line-sink

      图  8  通过定流量边界线汇各段流量

      Fig.  8.  Discharge across segments of normal flux-specified boundary represented by line-sink

    • [1] Bakker, M., 2014. Python Scripting: The Return to Programming. Groundwater, 52(6): 821-822. https://doi.org/10.1111/gwat.12269
      [2] Bakker, M., 2019. Data-Sharing Requires Script-Sharing. Groundwater, 57(2): 187. https://doi.org/10.1111/gwat.12852
      [3] Bakker, M., Kelson, V. A., 2009. Writing Analytic Element Programs in Python. Groundwater, 47(6): 828-834. https://doi.org/10.1111/j.1745-6584.2009.00583.x
      [4] Chen, C.X., Tang, Z.H., Hu, L.T., 2014. Theoretical Method and Model Design of Groundwater Flow Numerical Simulation. Geological Publishing House, Beijing (in Chinese).
      [5] Fienen, M. N., Bakker, M., 2016. HESS Opinions: Repeatable Research: What Hydrologists can Learn from the Duke Cancer Research Scandal. Hydrology and Earth System Sciences, 20(9): 3739-3743. https://doi.org/10.5194/hess-20-3739-2016
      [6] Fitts, C. R., 1997. Analytic Modeling of Impermeable and Resistant Barriers. Groundwater, 35(2): 312-317. https://doi.org/10.1111/j.1745-6584.1997.tb00088.x
      [7] Fitts, C. R., 2010. Modeling Aquifer Systems with Analytic Elements and Subdomains. Water Resources Research, 46(7): W07521. https://doi.org/10.1029/2009wr008331
      [8] Fitts, C. R., 2012. Groundwater Science (2nd Edition). Elsevier/Academic Press, San Diego.
      [9] Fitts, C. R., 2018. Modeling Dewatered Domains in Multilayer Analytic Element Models. Groundwater, 56(4): 557-561. https://doi.org/10.1111/gwat.12645
      [10] Fitts, C. R., Godwin, J., Feiner, K., et al., 2015. Analytic Element Modeling of Steady Interface Flow in Multilayer Aquifers Using AnAqSim. Groundwater, 53(3): 432-439. https://doi.org/10.1111/gwat.12225
      [11] Haitjema, H.M., 1995. Analytic Element Modeling of Groundwater Flow. Academic Press, San Diego.
      [12] Haitjema, H. M., 2015. The Cost of Modeling. Groundwater, 53(2): 179. https://doi.org/10.1111/gwat.12321
      [13] Haitjema, H. M., Hunt, R. J., Jankovic, I., et al., 2006. Foreword: Ground Water Flow Modeling with the Analytic Element Method. Groundwater, 44(1): 1-2. https://doi.org/10.1111/j.1745-6584.2005.00144.x
      [14] Jiang, L.Q., Sun, R.L., Liang, X., 2020. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.268
      [15] Li, J.Z., Zhou, A.G., Zhou, J.W., et al., 2020. Risk Assessment of Aquifer Destruction in Underground Mining Coal of North China: A Case Study of Hongshan Mine in Zibo City. Earth Science, 45(3): 1027-1040 (in Chinese with English abstract). doi: 10.1007/s11356-020-10056-z
      [16] Liu, S.Q., 2012. Research on the Evaluation Method of Coal Seam Floor Water Bursting and Its Application (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract).
      [17] National Coal Mine Safety Supervision Bureau, 2018. Coal Mine Water Prevention and Control Regulations. Coal Industry Press, Beijing (in Chinese).
      [18] Ranjram, M., Craig, J. R., 2018. Closed Analytic Elements with Flexible Geometry. Groundwater, 56(5): 816-822. https://doi.org/10.1111/gwat.12649
      [19] Steward, D. R., 2015. Analysis of Discontinuities across Thin Inhomogeneities, Groundwater/Surface Water Interactions in River Networks, and Circulation about Slender Bodies Using Slit Elements in the Analytic Element Method. Water Resources Research, 51(11): 8684-8703. https://doi.org/10.1002/2015wr017526.
      [20] Strack, O.D.L., 1989. Groundwater Mechanics. Prentice Hall, Englewood Cliffs.
      [21] Strack, O. D. L., 2003. Theory and Applications of the Analytic Element Method. Reviews of Geophysics, 41(2): 1005. https://doi.org/10.1029/2002rg000111
      [22] Strack, O. D. L., 2017a. Vertically Integrated Flow in Stratified Aquifers. Journal of Hydrology, 548: 794-800. https://doi.org/10.1016/j.jhydrol.2017.01.039
      [23] Strack, O.D.L., 2017b. Analytical Groundwater Mechanics. Cambridge University Press, Cambridge.
      [24] Strack, O. D. L., 2018. Limitless Analytic Elements. Water Resources Research, 54(2): 1174-1190. https://doi.org/10.1002/2017wr022117
      [25] Toller, E. A. L., Strack, O. D. L., 2019. Interface Flow with Vertically Varying Hydraulic Conductivity. Water Resources Research, 55(11): 8514-8525. https://doi.org/10.1029/2019wr024927
      [26] Wang, X.S., Wan, L., 2011. Groundwater Movement Equations. Geological Publishing House, Beijing (in Chinese).
      [27] Wu, Q., 2014. Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China. Journal of China Coal Society, 39(5): 795-805 (in Chinese with English abstract). http://www.cqvip.com/QK/96550X/201405/49847171.html
      [28] Wu, Q., Cui, F.P., Zhao, S.Q., et al., 2013a. Type Classification and Main Characteristics of Mine Water Disasters. Journal of China Coal Society, 38(4): 561-565 (in Chinese with English abstract).
      [29] Wu, Q., Zhao, S.Q., Sun, W.J., et al., 2013b. Classification of the Hydrogeological Type of Coal Mine and Analysis of Its Characteristics in China. Journal of China Coal Society, 38(6): 901-905 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000006/art00001
      [30] Zhang, Z. Y., Wang, W. K., Yeh, T. C. J., et al., 2016. Finite Analytic Method Based on Mixed-Form Richards' Equation for Simulating Water Flow in Vadose Zone. Journal of Hydrology, 537: 146-156. https://doi.org/10.1016/j.jhydrol.2016.03.035
      [31] 陈崇希, 唐仲华, 胡立堂, 2014. 地下水流数值模拟理论方法及模型设计. 北京: 地质出版社.
      [32] 国家煤矿安全监察局, 2018. 煤矿防治水细则. 北京: 煤炭工业出版社.
      [33] 蒋立群, 孙蓉琳, 梁杏, 2020. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学. https://doi.org/10.3799/dqkx.2020.268
      [34] 李建中, 周爱国, 周建伟, 等, 2020. 华北煤田矿山开采导致含水层破坏风险评估: 以淄博洪山煤矿为例. 地球科学, 45(3): 1027-1040. doi: 10.3799/dqkx.2019.088
      [35] 刘守强, 2012. 煤层底板突水评价方法与应用研究(博士学位论文). 北京: 中国矿业大学.
      [36] 王旭升, 万力, 2011. 地下水运动方程. 北京: 地质出版社.
      [37] 武强, 2014. 我国矿井水防控与资源化利用的研究进展、问题和展望. 煤炭学报, 39(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201405001.htm
      [38] 武强, 崔芳鹏, 赵苏启, 等, 2013a. 矿井水害类型划分及主要特征分析. 煤炭学报, 38(4): 561-565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201304006.htm
      [39] 武强, 赵苏启, 孙文洁, 等, 2013b. 中国煤矿水文地质类型划分与特征分析. 煤炭学报, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  483
    • HTML全文浏览量:  315
    • PDF下载量:  15
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-05
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回