Influence Mechanism of Micro-Heterogeneity on Conglomerate Reservoir Densification: A Case Study of Upper Permian Wutonggou Formation in DN8 Area of Dongdaohaizi Sag, Junggar Basin
-
摘要:
为研究砂砾岩储层微观非均质性特征,了解微观非均质性与储层致密化的关系,建立储层致密化评价标准,定量评价储层致密化程度.通过铸体薄片、扫描电镜、矿物XRD分析、高压压汞等资料,结合前人研究成果,对盆内东道海子凹陷DN8井区上二叠统梧桐沟组储层进行研究.结果表明,储层微观非均质性包括岩石学非均质性、孔喉非均质性及裂缝非均质性.岩石学非均质性中,岩石结构成熟度差异导致的岩石结构非均质性制约储层的初始物性;砾石、同沉积填隙物中塑性岩屑、胶结物类型及其含量的差异影响储层压实及胶结后的致密程度.溶蚀作用后,成岩-孔隙演化过程差异导致的孔喉非均质性及裂缝发育密度决定的裂缝非均质性影响了储层现今的致密程度.提出以成岩综合指数与地层脆性指数综合表征储层致密化程度,并将致密化程度分为3级.Ⅰ级致密化程度成岩综合指数大于4.0、地层脆性指数大于0.8;Ⅱ级致密化程度成岩综合指数介于3.0~4.0、地层脆性指数介于0.3~0.8;Ⅲ级致密化程度成岩综合指数小于3.0、地层脆性指数小于0.3.Ⅰ级致密储层孔喉结构最好、物性最高、微观非均质性最弱,为研究区有利储层.
Abstract:The quantitative evaluation criterion for the conglomerate reservoir was established on the basis of studying the micro heterogeneity characteristics of reservoir, in order to understand micro heterogeneity and quantitatively evaluate the degree of densification for the conglomerate reservoir of the Upper Permain Wutonggou Formation int DN8 area of the Dongdaohaizi sag, eastern Junggar basin, based on identification of blue epoxy resin-impregnated thin sections, analysis of scanning electron microscope (SEM), X-ray diffraction (XRD) of minerals, high-pressure capillary pressure, combined with previous research results. The results show that the micro heterogeneity of reservoir mainly includes petrological heterogeneity, pore throat heterogeneity and fracture heterogeneity. In petrological heterogeneity, the rock structural heterogeneity caused by the difference of rock structural maturity restricts the initial physical property of reservoir. The degree of reservoir densification is affected by types and contents of gravels, cuttings in synsedimentary interstitial matterial and cements after compaction and cementation. The degree of current reservoir densification is affected by the pore throat heterogeneity and fracture heterogeneity, which caused by the difference of diagenesis-pore evolution process after dissolution and the fracture development density. The diagenetic comprehensive parameter (DCP) and formation brittleness index (FBI) are thus put forward to characterize densification degree of the reservoir, which can be divided into three grades. The DCP is greater than 4.0 and the FBI is greater than 0.8 in the first grade of densification. The DCP is between 3.0-4.0 and the FBI is between 0.3-0.8 in the second grade of densification, and the DCP is less than 3.0 and the FBI is less than 0.3 in the third grade of densification. The tight reservoir of the first grade is with the best pore throat structure and the highest quality, thus of the weakest micro heterogeneity, which is the favorable conglomerate reservoir in the study area.
-
图 2 DN8井区梧桐沟组砂砾岩类型三角图(图版据桑隆康等,2012)
1.砾岩;2.泥质砾岩;3.砂泥质砾岩;4.泥砂质砾岩;5.砂质砾岩;6.砾质泥岩;7.含砂砾质泥岩;8.含泥砾质砂岩;9.砾质砂岩;10.含砾泥岩;11.含砾砂质泥岩;12.含砾泥质砂岩;13.含砾砂岩
Fig. 2. Diagram showing sandy conglomerate types and components from the Wutonggou Formation in DN8 area
图 4 DN8井区梧桐沟组储层胶结物镜下特征
a.DN11井,4 727.00 m,蜂窝状伊/蒙混层矿物胶结孔隙,扫描电镜;b. DN081井,4 028.20 m,针叶状绿泥石膜附着于孔隙表面,扫描电镜;c.DN12井,3 447.57 m,丝状伊利石胶结孔隙,扫描电镜;d. DN1井,2 666.50 m,粒间充填书页状高岭石,扫描电镜;e. DN2,2 612.65 m,方解石胶结孔隙,正交偏光;f. DN081井,4 028.20 m,粒间充填的嵌晶状方解石胶结物,扫描电镜;g. DN13,4 107.65 m,无色浊沸石胶结孔隙,单偏光;h. DN13井,4 105.23 m,板柱状浊沸石胶结孔隙;i. DN13,4 107.65 m,石英二级加大边,单偏光
Fig. 4. Microscopic characteristics of the cements in the Wutonggou Formation reservoir
图 5 DN8井区梧桐沟组储层微观孔喉非均质性特征
c.DN13井,4 103.50 m,砂质砾岩,以粒间溶孔为主,面孔率为8.23%,平均孔隙直径226.12 μm,喉道宽度介于0.91~49.50 μm,平均为27.70 μm,平均孔喉比为3.82,平均配位数为1.41; d.DN081井,4 020.07 m,砂质砾岩,以粒间溶孔为主,面孔率为2.76%,平均孔隙直径121.76 μm,喉道宽度介于0.91~47.52 μm,平均为15.56 μm,平均孔喉比为4.92,平均配位数为0.56; e.DN8井,3 957.76 m,砂质砾岩,以粒间溶孔为主,面孔率为0.85%,平均孔隙直径70.20 μm,喉道宽度介于1.58~45.98 μm,平均为11.81 μm,平均孔喉比为5.33,平均配位数为0.13; f.Ⅰ型曲线,门槛压力为0.16 MPa, 最大进汞饱和度为86.56%,压汞曲线形态低平宽缓; g.Ⅱ型曲线,门槛压力为0.32 MPa, 最大进汞饱和度为67.10%,压汞曲线形态较为窄小; h.Ⅲ型曲线,门槛压力为0.85 MPa, 最大进汞饱和度为51.48%,压汞曲线形态高陡窄小
Fig. 5. Characteristics of micro pore throat heterogeneity of the Wutonggou Formation reservoir in DN8 area
图 6 DN8井区梧桐沟组储层岩心及成像测井照片
a.DN1井,2 647.41 m,含砾砂岩,发育倾斜裂缝,裂缝密度为5.56条/m;b. DN2井,2 613.40 m,含砾砂岩,发育高角度裂缝及水平裂缝,裂缝密度为4.00~7.69 m/条;c. DN2井,2 611.95 m,含砾砂岩,发育高角度裂缝,裂缝密度为2.86 m/条;d. DN12井,3 503.00~3 504.00 m,砂岩,发育高角度裂缝,孔隙度为7.76%,渗透率为1.95×10-3 μm2;e. DN14井,4 000.00~4 008.00 m,砂质砾岩,发育高角度裂缝,孔隙度为5.70%,渗透率为2.00×10-3 μm2;f. DN8井,3 957.00~3 958.00 m,砂质砾岩,发育高角度裂缝,孔隙度为7.90%,渗透率为4.40×10-3 μm2;g. DN081井,4 021.00~4 023.00 m,砂质砾岩,发育高角度裂缝,孔隙度为10.43%,渗透率为24.78×10-3 μm2
Fig. 6. Photos from the core and imaging logging of the Wutonggou Formation reservoir in DN8 area
图 10 DN8井区梧桐沟组储层致密化过程模式(埋藏热史图乔锦琪,2017)
Fig. 10. Model showing reservoir densification process of the Wutonggou Formation in DN8 area
表 1 DN8井区梧桐沟组储层压汞曲线参数统计
Table 1. Statistics of capillary pressure parameters from the Wutonggou Formation reservoir in DN8 area
曲线形态 孔隙度(%) 渗透率(10-3 μm2) 分选系数 变异系数 中值压力(MPa) 中值半径(mm) 最大孔喉半径(mm) 排驱压力(MPa) 最大进汞饱和度(%) 退汞效率(%) 微观非均质性 样品数(个) Ⅰ型 9.96~12.74(10.79) 0.86~21.50(10.36) 0.95~1.82(1.24) 0.07~0.15(0.10) 2.53~16.56(6.36) 0.05~0.48(0.17) 0.69~2.48(1.08) 0.10~2.69(0.67) 55.02~95.46(74.63) 20.55~50.22(33.39) 弱 6 Ⅱ型 7.15~10.80(8.67) 0.25~5.44(1.09) 0.58~3.59(1.94) 0.04~0.35(0.17) 3.66~19.33(7.87) 0.01~0.31(0.13) 0.35~2.01(0.64) 0.25~3.44(1.86) 30.62~89.63(54.13) 8.81~48.87(27.43) 中 60 Ⅲ型 1.54~7.21(5.92) 0.01~1.32(0.19) 0.91~3.45(2.21) 0.04~0.42(0.27) 2.99~19.38(9.31) 0.01~0.11(0.06) 0.27~2.32(0.46) 0.50~5.11(2.74) 15.05~60.71(40.39) 9.54~39.78(19.97) 强 37 注:括号内为平均值. 表 2 DN8井区梧桐沟组储层致密化程度综合评价
Table 2. Comprehensive evaluation for the reservoir densification of Wutonggou Formation in DN8 area
致密化程度 地层脆性指数 渗透率(10-3 μm2) 成岩综合指数 孔隙度/% 面孔率/% 压汞曲线类型 微观非均质性 储层类型 Ⅰ级 > 0.8 > 10 > 4 > 10 > 8 Ⅰ类 弱 低孔、低渗 Ⅱ级 0.3~0.8 1~10 3~4 8~10 5~8 Ⅱ类 中 特低孔、特低渗 Ⅲ级 < 0.3 < 1 < 3 < 8 < 5 Ⅲ类 强 超低孔、超低渗及致密 注:不同类型压汞曲线所对应孔喉结构参数见表 1. -
[1] Beard, D.C., Weyl, P.K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2): 349-369. https://doi.org/10.1306/819a4272-16c5-11d7-8645000102c1865d [2] Du, S.H., Pang, S., Chai, G.S., et al., 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction"Method. Earth Science, 45(1): 276-284(in Chinese with English abstract). [3] Gier, S., Worden, R. H., Johns, W. D., et al., 2008. Diagenesis and Reservoir Quality of Miocene Sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology, 25(8): 681-695. https://doi.org/10.1016/j.marpetgeo.2008.06.001 [4] Guo, M.Z., Shou, J.F., Xu, Y., et al., 2016. Distribution and Controlling Factors of Permian Zeolite Cements in Zhongguai-Northwest Margin of Junggar Basin. Acta Petrolei Sinica, 37(6): 695-705(in Chinese with English abstract). http://www.researchgate.net/publication/305375068_Distribution_and_controlling_factors_of_Permian_zeolite_cements_in_Zhongguai-Northwest_margin_of_Junggar_Basin [5] Hao, J., 2018. Microscopic Heterogeneity Characteristics of Tight Sandstone Reservoirs-Microscopic Comparison of Chang 6 Reservoirs in Wuqi and Surrounding Area(Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [6] Kong, X.X., Xiao, D.S., Jiang, S., et al., 2020. Application of the Combination of High-Pressure Mercury Injection and Nuclear Magnetic Resonance to the Classification and Evaluation of Tight Sandstone Reservoirs: A Case Study of the Linxing Block in the Ordos Basin. Natural Gas Industry, 40(3): 38-47(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854020300826 [7] Lai, J., Wang, G.W., Chai, Y., et al., 2014. Mechanism Analysis and Quantitative Assessment of Pore Structure for Tight Sandstone Reservoirs: An Example from Chang 8 Oil Layer in the Jiyuan Area of Ordos Basin. Acta Geologica Sinica, 88(11): 2119-2130(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201411009.htm [8] Li, H., Wang, Q.B., Pang, X.J., et al., 2019. Fracture Generation and Reservoir Evaluation of Tight Glutenite Reservoir: A Case Study of Second Member of Shahejie Formation in Huanghekou Depression. Geological Science and Technology Information, 38(1): 176-185(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201901019.htm [9] Li, L., 2016. Sedimentary System and Favorable Reservoir Prediction of Wutonggou Formation in the Northern Slope of the Dongdaohaizi Sag (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract). [10] Li, M., Hou, Y.D., Luo, J.L., et al., 2016. Burial, Diagenesis, Hydrocarbon Charging Evolution Process and Quantitative Analysis of Porosity Evolution: A Case Study from He8 Tight Sand Gas Reservoir of the Upper Paleozoic in Eastern Ordos Basin. Oil & Gas Geology, 37(6): 882-892(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201218329332.html [11] Liang, H.W., Wu, S.H., Wang, J., et al., 2013. Effects of Base-Level Cycle on Mouth Bar Reservoir Micro-Heterogeneity: A Case Study of Es2-9 Member of Shahejie Formation Mouth Bar Reservoirs in Shengtuo Oilfield. Petroleum Exploration and Development, 40(4): 436-442(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380413600592 [12] Liu, N., Tang, Q.Y., Liu, J., et al., 2019. Microscopic Heterogeneity of Toutunhe Formation and Its Relationship with Crucial Short-Term Base Level Cycle in Fudong Slope Area, Junggar Basin. Petroleum Geology & Experiment, 41(2): 234-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201902012.htm [13] Liu, Y. F., Hu, W. X., Cao, J., et al., 2018. Diagenetic Constraints on the Heterogeneity of Tight Sandstone Reservoirs: A Case Study on the Upper Triassic Xujiahe Formation in the Sichuan Basin, Southwest China. Marine and Petroleum Geology, 92(4): 650-669. https://doi.org/10.1016/j.marpetgeo.2017.11.027 [14] Liu, Y.K., Wang, Y.P., Tang, H.M., et al., 2014. Application of Capillary Pressure Curves and Fractal Theory to Reservoir Classification. Lithologic Reservoirs, 26(3): 89-92, 100(in Chinese with English abstract). http://www.cqvip.com/QK/88054A/201403/50043954.html [15] Luo, J.L., Liu, X.S., Fu, X.Y., et al., 2014. Impact of Petrologic Components and Their Diagenetic Evolution on Tight Sandstone Reservoir Quality and Gas Yield: A Case Study from He8 Gas-Bearing Reservoir of Upper Paleozoic in Northern Ordos Basin. Earth Science, 39(5): 537-545(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201405004.htm [16] Luo, J.L., Luo, X.R., Bai, Y.B., et al., 2016. Impact of Differential Diagenetic Evolution on the Chronological Tightening and Pore Evolution of Tight Sandstone Reservoirs: A Case Study from the Chang-7 Tight Turbidite Sandstone Reservoir in the Southwestern Ordos Basin. Journal of Earth Sciences and Environment, 38(1): 79-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201601011.htm [17] Qiao, J.Q., 2017. Hydrocarbon Accumulation Characteristics of the Permian Reserviors in the Eastern Dongdaohaizi Sag, Junggar Basin(Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). [18] Rahner, M.S., Halisch, M., Fernandes, C.P., et al, 2018. Fractal Dimensions of Pore Spaces in Unconventional Reservoir Rocks Using X-Ray Nano- and Micro-Computed Tomography. Journal of Natural Gas Science and Engineering, 55(7): 298-311. https://doi.org/10.1016/j.jngse.2018.05.011 [19] Ren, D.Z., Sun, W., Qu, X.F., et al., 2016. Characteristic of Diagenesis and Pore Dense Evolution of Chang 6 Reservoir of Triassic Yanchang Formation, Ordos Basin. Journal of Central South University (Science and Technology), 47(8): 2706-2714(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201608023.htm [20] Sang, L.K., Ma, C.Q., Wang, G.Q., et al., 2012. Petrology (Second Edition). Geological Publishing House, Beijing, 349 (in Chinese). [21] Shan, X., Guo, H.J., Guo, X.G., et al., 2019. Influencing Factors and Quantitative Assessment of Pore Structure in Low Permeability Reservoir: A Case Study of 2nd Member of Permian Upper Urho Formation in Jinlong 2 Area, Junggar Basin. Journal of Jilin University (Earth Science Edition), 49(3): 637-649(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201903002.htm [22] Shi, X.P., 2010. The Study on Sequence Stratigraphy and Lithologic-Oil-Gas Reservoir Exploration for the Wutonggou Formation in Dinan Uplift of Junggar Basin(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [23] Sun, T., Zhang, Z.Q., Shi, Y.M., et al., 2020. Characterization of Nanoscale Pore Distribution in Tight Sandstone Reservoir Based on Nitrogen Adsorption. Special Oil & Gas Reservoirs, 27(2): 145-151(in Chinese with English abstract). [24] Sun, X.C., 2017. Study on Fault Development Characteristics of the Dinan 8 Well Area in the Dongdaohaizi Sag(Dissertation). Southwest Petroleum University, Chengdu(in Chinese with English abstract). [25] Sun, X.D., Li, Y.Q., Dai, Q.W., 2014. Laser Scanning Confocal Microscope in Micropores Study. Journal of Chinese Electron Microscopy Society, 33(2): 123-128(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXV201402006.htm [26] Wang, A., Zhong, D. K., Zhu, H. H., et al., 2019. Diagentic Features of Illite in Upper Triassic Chang-7 Tight Oil Sandstones, Ordos Basin. Geosciences Journal, 23(2): 281-298. https://doi.org/10.1007/s12303-018-0033-0 [27] Wang, Y. J., Jia, D., Pan, J. G., et al., 2018. Multiple-Phase Tectonic Superposition and Reworking in the Junggar Basin of Northwestern China-Implications for Deep-Seated Petroleum Exploration. AAPG Bulletin, 102(8): 1489-1521. https://doi.org/10.1306/10181716518 [28] Wu, J.Y., Lü, Z, X., Qing, Y.H., et al, 2020. Genesis of Authigenic Chlorite in Tight Oil Reservoirs and Its Influence on Physical Properties: A Case Study of Shaximiao Formation in NE of Central Sichuan Basin. Lithologic Reservoirs, 32(1): 76-85 (in Chinese with English abstract). [29] Xie, Q.C., Feng, B., Song, P., et al., 2019. Fractal Characteristics of Microscopic Pore-Throat Structures of Chang 7 Tight Sandstone Reservoirs, Heshui Area, Ordos Basin. Fault-Block Oil & Gas Field, 26(2): 215-219(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DKYT201902018.htm [30] Xu, H.L., 2016. Study on Reservoir Heterogeneity Based on BP Neural Network Technology(Dissertation). Yangtze University, Jingzhou(in Chinese with English abstract). [31] Xu, Y.H., Yang, X.H., Mei, L.F., et al., 2020. Diagenetic Characteristics and Porosity Evolution of Low Permeability Sandstone Reservoir in Zhuhai Formation, Wenchang A Sag. Earth Science, 45(6): 2172-2185(in Chinese with English abstract). [32] Yan, M., Zhang, Y.F., Li, Y.L., 2016. Quantitative Reservoir Evaluation Based on K-Means Cluster Analysis and Bayes Discriminant Analysis: A Case Study on Reservoir in the 4th Member of Quantou Formation in Daan Oilfield. Journal of Shenzhen University Science and Engineering, 33(2): 211-220(in Chinese with English abstract). doi: 10.3724/SP.J.1249.2016.02211 [33] Yu, J.W., Tang, Q.Y., Wu, J., et al., 2020. Cyclic Sequences and Microscopic Heterogeneity of Reservoirs in the Qigu Formation of the Fudong Slope Area. Journal of Southwest Petroleum University (Science & Technology Edition), 42(2): 37-47(in Chinese with English abstract). [34] Yu, F.L., 2015. Hydrocarbon Accumulation Laws Research in Wutonggou Formation of Dongdaohaizi Sag(Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract). [35] Yuan, X.Q., Yao, G.Q., Yang, X.H., et al., 2019. Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag. Earth Science, 44(3): 909-918(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903018.htm [36] Zhang, H., Chen, G., Zhu, Y.S., et al., 2017. Quantitative Characterization of Microscopic Pore Throat Structure in Tight Sandstone Oil Reservoirs: A Case Study of Chang 7 Reservoir in Xin'anbian Oil Field, Ordos Basin. Petroleum Geology & Experiment, 39(1): 112-119(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201701017.htm [37] Zhang, H.X., Chen, S.J., Yang, D.S., et al., 2017. Oil-Gas Source Correlation around Dongdaohaizi Sag for Hydrocarbon Exploration Potential Analysis. Acta Sedimentologica Sinica, 35(2): 393-404(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201702016.htm [38] Zhao, C.L., Hu, A.M., Chen B.Y., et al., 1998. Petroleum and Natural Gas Industry Standard of the People's Republic of China, Oil and Gas Reservoir Evaluation Method (SY/T6285-1997). Petroleum Industry Press, Beijing, 16 (in Chinese). [39] Zheng, L.J., Cao, Y.C., Jiang, Z.X., et al., 2015. Quantitative Characterization of Porosities of Paleogene Glutenites in the Northern Minfeng Sub-Sag of Dongying Sag. Acta Petrolei Sinica, 36(5): 573-583 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201505006.htm [40] Zhu, N., Cao, Y.C., Xi, K.L., et al., 2019. Diagenesis and Physical Properties Evolution of Sandy Conglomerate Reservoirs: A Case Study of Triassic Baikouquan Formation in Northern Slope Zone of Mahu Despression. Journal of China University of Mining & Technology, 48(5): 1102-1118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201905018.htm [41] 杜书恒, 庞姗, 柴光胜, 等, 2020. 用"伞式解构"方法剖析致密储层微观各向异性. 地球科学, 45(1): 276-284. doi: 10.3799/dqkx.2018.567 [42] 郭沫贞, 寿建峰, 徐洋, 等, 2016. 准噶尔盆地中拐-西北缘地区二叠系沸石胶结物分布与控制因素. 石油学报, 37(6): 695-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201606001.htm [43] 郝杰, 2018. 致密砂岩储层微观非均质性表征: 吴起及邻区长6储层微观对比研究(博士学位论文). 西安: 西北大学. [44] 孔星星, 肖佃师, 蒋恕, 等, 2020. 联合高压压汞和核磁共振分类评价致密砂岩储层: 以鄂尔多斯盆地临兴区块为例. 天然气工业, 40(3): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003007.htm [45] 赖锦, 王贵文, 柴毓, 等, 2014. 致密砂岩储层孔隙结构成因机理分析及定量评价: 以鄂尔多斯盆地姬塬地区长8油层组为例. 地质学报, 88(11): 2119-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411009.htm [46] 李欢, 王清斌, 庞小军, 等, 2019. 致密砂砾岩储层裂缝形成及储层评价: 以黄河口凹陷沙二段为例. 地质科技情报, 38(1): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm [47] 李珑, 2016. 东道海子凹陷北斜坡梧桐沟组沉积体系及有利储层预测(硕士学位论文). 成都: 西南石油大学. [48] 李杪, 侯云东, 罗静兰, 等, 2016. 致密砂岩储层埋藏-成岩-油气充注演化过程与孔隙演化定量分析: 以鄂尔多斯盆地东部上古生界盒8段天然气储层为例. 石油与天然气地质, 37(6): 882-892. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606012.htm [49] 梁宏伟, 吴胜和, 王军, 等, 2013. 基准面旋回对河口坝储集层微观非均质性影响: 以胜坨油田三区沙二段9砂层组河口坝储集层为例. 石油勘探与开发, 40(4): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304006.htm [50] 柳妮, 唐群英, 刘静, 等, 2019. 准噶尔盆地阜东斜坡头屯河组微观非均质性与重点短期基准面旋回. 石油实验地质, 41(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201902012.htm [51] 刘义坤, 王永平, 唐慧敏, 等, 2014. 毛管压力曲线和分形理论在储层分类中的应用. 岩性油气藏, 26(3): 89-92, 100. doi: 10.3969/j.issn.1673-8926.2014.03.015 [52] 罗静兰, 刘新社, 付晓燕, 等, 2014. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响: 以鄂尔多斯盆地上古生界盒8天然气储层为例. 地球科学, 39(5): 537-545. doi: 10.3799/dqkx.2014.051 [53] 罗静兰, 罗晓容, 白玉彬, 等, 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响: 以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例. 地球科学与环境学报, 38(1): 79-92. doi: 10.3969/j.issn.1672-6561.2016.01.008 [54] 乔锦琪, 2017. 准噶尔盆地东道海子凹陷东部二叠系油气成藏条件研究(硕士学位论文). 北京: 中国石油大学. [55] 任大忠, 孙卫, 屈雪峰, 等, 2016. 鄂尔多斯盆地延长组长6储层成岩作用特征及孔隙度致密演化. 中南大学学报(自然科学版), 47(8): 2706-2714. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201608023.htm [56] 桑隆康, 马昌前, 王国庆, 等, 2012. 岩石学(第二版). 北京: 地质出版社, 349. [57] 单祥, 郭华军, 郭旭光, 等, 2019. 低渗透储层孔隙结构影响因素及其定量评价: 以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例. 吉林大学学报(地球科学版), 49(3): 637-649. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201903002.htm [58] 石新朴, 2010. 准噶尔盆地滴南凸起二叠系梧桐沟组层序地层与岩性油气藏勘探(博士学位论文). 北京: 中国地质大学. [59] 孙彤, 张志强, 师永民, 等, 2020. 基于氮吸附的致密砂岩储层纳米级孔隙分布表征. 特种油气藏, 27(2): 145-151. doi: 10.3969/j.issn.1006-6535.2020.02.023 [60] 孙先达, 李宜强, 戴琦雯, 2014. 激光扫描共聚焦显微镜在微孔隙研究中的应用. 电子显微学报, 33(2): 123-128. doi: 10.3969/j.1000-6281.2014.02.005 [61] 孙晓晨, 2017. 东道海子凹陷滴南8井区断裂发育特征研究(硕士学位论文). 成都: 西南石油大学. [62] 谢启超, 冯波, 宋鹏, 等, 2019. 合水地区长7致密砂岩储层微观孔喉结构分形特征. 断块油气田, 26(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201902018.htm [63] 徐燕红, 杨香华, 梅廉夫, 等, 2020. 文昌A凹陷珠海组低渗砂岩成岩特征与孔隙演化. 地球科学, 45(6): 2172-2185. doi: 10.3799/dqkx.2020.055 [64] 许宏龙, 2016. 基于BP神经网络技术的储层非均质性研究(硕士学位论文). 荆州: 长江大学. [65] 闫明, 张云峰, 李易霖, 2016. 基于K-均值聚类与贝叶斯判别的储层定量评价: 以大安油田泉四段储层为例. 深圳大学学报(理工版), 33(2): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201602014.htm [66] 于枫林, 2015. 东道海子凹陷梧桐沟组油气成藏规律研究(硕士学位论文). 大庆: 东北石油大学. [67] 于景维, 唐群英, 吴军, 等, 2020. 阜东斜坡齐古基准面旋回与储集层微观非均质性. 西南石油大学学报(自然科学版), 42(2): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202002004.htm [68] 袁晓蔷, 姚光庆, 杨香华, 等, 2019. 自生粘土矿物对文昌A凹陷深部储层的制约. 地球科学, 44(3): 909-918. doi: 10.3799/dqkx.2018.368 [69] 张浩, 陈刚, 朱玉双, 等, 2017. 致密油储层微观孔隙结构定量表征: 以鄂尔多斯盆地新安边油田长7储层为例. 石油实验地质, 39(1): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701017.htm [70] 张焕旭, 陈世加, 杨迪生, 等, 2017. 东道海子凹陷周缘构造油气源对比及勘探潜力分析. 沉积学报, 35(2): 393-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201702016.htm [71] 赵澄林, 胡爱梅, 陈碧钰, 等, 1998. 中华人民共和国石油天然气行业标准, 油气储层评价方法(SY/T6285-1997). 北京: 石油工业出版社, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX402.021.htm [72] 郑丽婧, 操应长, 姜在兴, 等, 2015. 东营凹陷民丰北带古近系砂砾岩体孔隙度量化表征. 石油学报, 36(5): 573-583. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505006.htm [73] 朱宁, 操应长, 葸克来, 等, 2019. 砂砾岩储层成岩作用与物性演化: 以玛湖凹陷北斜坡区三叠系百口泉组为例. 中国矿业大学学报, 48(5): 1102-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905018.htm