Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea
-
摘要: 珠江口盆地是南海北部陆缘新生代发育的裂陷型盆地,其油气资源丰富,且地处洋陆过渡带,盆地内部断裂特征复杂.在前人研究基础上,利用高分辨率三维地震数据,结合多属性分析技术,完善了区域断裂的精细化解释.将断裂构造类型依据断裂级别与规模划分为控盆一级断裂、控凹二级断裂、控带三级断裂、控圈四级断裂和控层五级小断裂;在盆地西南段发育典型的犁式、旋转正断层等单剖面断裂样式,在地震剖面上形成阶梯状、“Y”字型等多种断层组合,其中珠三坳陷的文昌A凹陷内部常可见树枝状构造,珠二坳陷的开平凹陷广泛分布独特的卷心式断层;而在二维平面上也分布有平行式、斜交式、雁列式等多种组合类型.受新生代以来的持续右旋应力场作用,盆地西南段整体断裂走向以NE→EW→NW顺时针方向发生旋转,且断裂活动速率逐渐降低.结果表明受印度-欧亚板块碰撞、太平洋板块俯冲后撤和古南海持续南移的联合影响,盆地西南段处在伸展拉张应力场环境之下,形成了始新世-渐新世NE-NEE向、EW向和中新世NWW-NW向3组断裂发育.珠江口盆地西南段断裂构造的演化、成因机制与南海北部陆缘应力场变化均保持良好的一致性.Abstract: The Pearl River Mouth basin is a rift basin developed in the Cenozoic on the continental margin of the northern South China Sea, which is located in the ocean-continent transition zone with rich oil and gas resources. It is very important to analyze the internal fracture characteristics of the Pearl River Mouth basin. Based on previous studies, this paper uses three-dimensional high-resolution seismic data, combined with the application of coherent attribute analysis technology to refine the interpretation of regional faults. The faults are classified into the first-level basin-controlling faults, the second-level sag-controlling faults, the third-level belt-controlling faults, and the fourth-level ring-controlling faults in the area based on the level and scale of the faults. Single-section fault styles such as normal faults, form step-shaped, "Y"-shaped and other fault combinations on the seismic section. Among them, negative flower-like structures present in the Wenchang A sag in the Zhusan sag and unique core-shaped faults are widely distributed in the Kaiping depression of the Zhuer sag. During the Late Oligocene-Early Miocene, the fault direction rotated clockwise from NE→EW→NWW under the continuous right-handed stress field since the Cenozoic, and the activity intensity gradually weakened. It is also believed that affected by the collision of the India-Eurasia Plate, the subduction and retreat of the Pacific Plate and the continuous southward movement of the Paleo-South China Sea, the basin formed a typical extensional tensile stress field environment, which contributed to the development of three fault groups in NE-NEE and EW direction during the Eocene-Oligocene, and in the NWW-NW direction in Miocene. Moreover, the evolution and genetic mechanism of the fault structure in the southwestern part of the Pearl River Mouth basin are in good agreement with the changes in the stress field at the northern margin of the South China Sea.
-
图 2 珠江口盆地西部珠三坳陷构造单元划分
据李俊良等(2015)修改
Fig. 2. Division of tectonic units in the Zhu Ⅲ depression in the west of the Pearl River Mouth basin
图 11 南海及其周缘构造演化过程
据雷超等(2015)和Leyla et al.(2018)修改
Fig. 11. Tectonic evolution of the South China Sea and its surroundings
-
[1] Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077 [2] Cai, Z. R., Liu, W. L., Wan, Z. F., et al., 2010. Determination of Cenozoic Tectonic Movement in the Northern South China Sea and the Relationship between Oil-Gas Reservoir and Tectonic Movement. Marine Science Bulletin, 29(2): 161-165 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB201002010.htm [3] Cai, Z. R., Yin, Z. X., Ye, J., et al., 2015. Characteristics and Formation Mechanism of the Ladder-Like Faults towards the Sea in Pearl River Mouth Basin. China Sciencepaper, 10(3): 322-326, 330 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKZX201503017.htm [4] Cao, J. H., Xia, S. H., Sun, J. L., et al., 2014. Comparison of Fault Structure Characteristics in the Northern Pearl River Mouth Basin and Its Geological Implication. Progress in Geophysics, 29(5): 2364-2369 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201405055.htm [5] Chen, H. Z., Wu, X. J., Zhou, D., et al., 2005. Meso-Cenozoic Faults in Zhujiang River Mouth Basin and Their Geodynamic Background. Journal of Tropical Oceanography, 24(2): 52-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200502006.htm [6] Cheng, S. X., Li, S. Z., Suo, Y. H., et al., 2012. Cenozoic Tectonics and Dynamics of Basin Groups of the Northern South China Sea. Marine Geology & Quaternary Geology, 32(6): 79-93 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...79C [7] Dai, Y. D., Pang, X., Li, P. L., 1998. Dynamic Characteristics of Tectonic Evolution and Hydrocarbon Resources in Cenozoic Sedimentary Basins in the South China Sea. China Offshore Oil and Gas, 10(1): 12-18 (in Chinese with English abstract). [8] Hu, G. W., Deng, Y., Pan, G. C., et al., 2019. Application of Two-Azimuth and High-Density 3D Seismic Data in the Exploration of Wenchang Depression. Progress in Geophysics, 34(6): 2444-2450 (in Chinese with English abstract). [9] Hu, X. Q., Tang, D. Q., Wang, L. L., et al., 2017. Fault Structures in the Eastern Depression of the North Yellow Sea Basin. Geological Science and Technology Information, 36(1): 117-127 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201701015.htm [10] Jiang, H., Wang, H., Li, J. L., et al., 2009. Sequence Stratigraphic Pattern Analysis in the Zhu Ⅲ Depression, the Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 29(1): 87-93 (in Chinese with English abstract). [11] Kumar, P. C., Mandal, A., 2018. Enhancement of Fault Interpretation Using Multi-Attribute Analysis and Artificial Neural Network (ANN) Approach: A Case Study from Taranaki Basin, New Zealand. Exploration Geophysics, 49(3): 409-424. https://doi.org/10.1071/EG16072 [12] Lei, B. H., 2010. Faulted Structure and Its Controlling the Sedimentation Filling of Wenchang Sag in the Pearl River Mouth Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [13] Lei, C., Ren, J. Y., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning Ahead of a Propagating Ocean. Marine and Petroleum Geology, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022 [14] Lei, C., Ren, J. Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implications for Basin Geodynamics. Earth Science, 40(4): 744-762 (in Chinese with English abstract). http://www.researchgate.net/publication/281943186_Tectonic_province_divisions_in_the_South_China_Sea_implications_for_basin_geodynamics [15] Leyla, B. H., Zhang, J. X., Yang, L. L., 2018. Quantitative Analysis of Faults in Huizhou Sub-Basin, Pearl River Mouth Basin. Journal of Earth Science, 29(1): 169-181. https://doi.org/10.1007/s12583-018-0823-3 [16] Li, J. L., Lei, B. H., Zheng, Q. G., et al., 2015. Stress Field Evolution and Its Controls on Oil Accumulation in the Wenchang Sag. Geotectonica et Metallogenia, 39(4): 601-609 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201504004.htm [17] Liu, Y. Q., Wu, Z. P., Cheng, Y. J., et al., 2019. Spatial and Temporal Difference of Paleogene Rift Structure and Its Controlling Factors in the Northern South China Sea: A Case Study of Pearl River Mouth Basin. Journal of China University of Mining & Technology, 48(2): 367-376 (in Chinese with English abstract). [18] Lu, Y. T., Luan, X. W., Lyu, F. L., et al., 2017. Seismic Evidence and Formation Mechanism of Gas Hydrates in the Zhongjiannan Basin, Western Margin of the South China Sea. Marine and Petroleum Geology, 84: 274-288. https://doi.org/10.1016/j.marpetgeo.2017.04.005 [19] Luan, X. W., Ran, W. M., Wang, K., et al., 2019. New Interpretation for the Main Sediment Source of the Rapidly Deposited Sediment Drifts on the Northern Slope of the South China Sea. Journal of Asian Earth Sciences, 171: 118-133. https://doi.org/10.1016/j.jseaes.2018.11.004 [20] Luan, X. W., Zhang, L., 2009. Tectonic Evolution Modes of South China Sea: Passive Spreading under Complex Actions. Marine Geology & Quaternary Geology, 29(6): 59-74 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010MGQG...29...59L [21] Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635 (in Chinese with English abstract). [22] Qi, J. F., Wu, J. F., Ma, B. S., et al., 2019. The Structural Model and Dynamics Concerning Middle Section, Pearl River Mouth Basin in North Margin of South China Sea. Earth Science Frontiers, 26(2): 203-221 (in Chinese with English abstract). [23] Ran, W. M., Luan, X. W., Shao, Z. F., et al., 2019. Research on Characteristics of Growth Faults in the Southern East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 39(1): 100-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201901011.htm [24] Shi, H. S., Shu, Y., Du, J. Y., et al., 2017. Petroleum Geology of the Paleogene in the Pearl River Mouth Basin. Geological Publishing House, Beijing (in Chinese). [25] Tong, H. M., 2010. Fault Formation and Evolution Model under Uncoordinated Extension in Rift Basin. Geological Bulletin of China, 29(11): 1606-1613 (in Chinese with English abstract). [26] Wang, J. L., Zhang, X. B., Wu, J. S., et al., 2002. Integrated Geophysical Researches on Base Texture of Zhujiang River Mouth Basin. Journal of Tropical Oceanography, 21(2): 13-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200202001.htm [27] Wang, S. L., Liu, H., 2014. Seismic Reflection and Depositional System of the Enping Formation in the Kaiping Depression of the Zhujiangkou Basin. Science & Technology Review, 32(Z2): 64-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB2014Z2024.htm [28] Wu, S. M., Zhou, D., Qiu, X. L., 2001. Tectonic Setting of the Northern Margin of South China Sea. Geological Journal of China Universities, 7(4): 419-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200104005.htm [29] Xiong, Z., Jiang, Z. Q., Sun, P., et al., 2018. Characteristics and Tectonic Evolution of the Fault System in the North Sag of Northern Depression of South Yellow Sea Basin. Marine Geology & Quaternary Geology, 38(3): 75-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201803007.htm [30] Yan, Y., Xia, B., Lin, G., et al., 2005. The Sedimentary and Tectonic Evolution of the Basins in the North Margin of the South China Sea and Geodynamic Setting. Marine Geology & Quaternary Geology, 25(2): 53-61 (in Chinese with English abstract). http://www.researchgate.net/publication/288895725_The_sedimentary_and_tectonic_evolution_of_the_basins_in_the_north_margin_of_the_South_China_Sea_and_geodynamic_setting [31] Yao, B. C., Wan, L., Liu, Z. H., 2004. Dynamic Characteristics of Tectonic Evolution and Hydrocarbon Resources in Cenozoic Sedimentary Basins in the South China Sea. Earth Science, 29(5): 543-549 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405006.htm [32] Zhang, H., Luan, X. W., Ran, W. M., et al., 2020. Discussion on Fault Characteristics and Genesis of Wenchang a Sag in the West of the Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(6): 96-106 (in Chinese with English abstract). [33] Zhang, L., 2012. Tectonic Evolution of the South China Sea and a Numerical Modeling (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao (in Chinese with English abstract). [34] Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm [35] Zhang, Y. Z., Zhang, K. K., Yuan, B., et al., 2014. Fault System and Structural Style of Cenozoic and Their Controlling Effects on Hydrocarbon-Forming in Wenchang Sag. Science Technology and Engineering, 14(23): 26-31 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KXJS201423006.htm [36] Zhang, Z. Y., He, D. F., Li, Z., et al., 2018. 3D Geometry and Kinematics of the Boundary Fault in the Kaiping Depression, Pearl River Mouth Basin. Chinese Journal of Geophysics, 61(10): 4296-4307 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201810031.htm [37] 蔡周荣, 刘维亮, 万志峰, 等, 2010. 南海北部新生代构造运动厘定及与油气成藏关系探讨. 海洋通报, 29(2): 161-165. doi: 10.3969/j.issn.1001-6392.2010.02.007 [38] 蔡周荣, 殷征欣, 叶军, 等, 2015. 珠江口盆地向海阶梯状断裂特征及成因分析. 中国科技论文, 10(3): 322-326, 330. doi: 10.3969/j.issn.2095-2783.2015.03.016 [39] 曹敬贺, 夏少红, 孙金龙, 等, 2014. 珠江口盆地北部断裂构造特征对比及其地质学意义. 地球物理学进展, 29(5): 2364-2369. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405055.htm [40] 陈汉宗, 吴湘杰, 周蒂, 等, 2005. 珠江口盆地中新生代主要断裂特征和动力背景分析. 热带海洋学报, 24(2): 52-61. doi: 10.3969/j.issn.1009-5470.2005.02.007 [41] 程世秀, 李三忠, 索艳慧, 等, 2012. 南海北部新生代盆地群构造特征及其成因. 海洋地质与第四纪地质, 32(6): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206011.htm [42] 戴一丁, 庞雄, 李平鲁, 1998. 珠江口盆地开平凹陷油气聚集条件分析. 中国海上油气. 地质, 10(1): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199801002.htm [43] 胡高伟, 邓勇, 潘光超, 等, 2019. 双方位、高密度地震资料在文昌凹陷勘探中的应用. 地球物理学进展, 34(6): 2444-2450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906039.htm [44] 胡小强, 唐大卿, 王嘹亮, 等, 2017. 北黄海盆地东部坳陷断裂构造分析. 地质科技情报, 36(1): 117-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701015.htm [45] 姜华, 王华, 李俊良, 等, 2009. 珠江口盆地珠三坳陷层序地层样式分析. 海洋地质与第四纪地质, 29(1): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200901019.htm [46] 雷宝华, 2010. 珠江口盆地文昌凹陷断裂构造及其对沉积充填的控制(硕士学位论文). 北京: 中国地质大学. [47] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. doi: 10.3799/dqkx.2015.062 [48] 李俊良, 雷宝华, 郑求根, 等, 2015. 珠江口盆地文昌凹陷应力场演化及其对成藏要素的控制作用. 大地构造与成矿学, 39(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201504004.htm [49] 刘雨晴, 吴智平, 程燕君, 等, 2019. 南海北缘古近纪裂陷结构时空差异及控制因素——以珠江口盆地为例. 中国矿业大学学报, 48(2): 367-376. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201902015.htm [50] 栾锡武, 张亮, 2009. 南海构造演化模式: 综合作用下的被动扩张. 海洋地质与第四纪地质, 29(6): 59-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200906013.htm [51] 毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160 [52] 漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学. 地学前缘, 26(2): 203-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902019.htm [53] 冉伟民, 栾锡武, 邵珠福, 等, 2019. 东海陆架盆地南部生长断层活动特征. 海洋地质与第四纪地质, 39(1): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201901011.htm [54] 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社. [55] 童亨茂, 2010. "不协调伸展"作用下裂陷盆地断层的形成演化模式. 地质通报, 29(11): 1606-1613. doi: 10.3969/j.issn.1671-2552.2010.11.002 [56] 王家林, 张新兵, 吴健生, 等, 2002. 珠江口盆地基底结构的综合地球物理研究. 热带海洋学报, 21(2): 13-22. doi: 10.3969/j.issn.1009-5470.2002.02.002 [57] 王升兰, 刘晖, 2014. 珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布. 科技导报, 32(Z2): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB2014Z2024.htm [58] 吴世敏, 周蒂, 丘学林, 2001. 南海北部陆缘的构造属性问题. 高校地质学报, 7(4): 419-426. doi: 10.3969/j.issn.1006-7493.2001.04.006 [59] 熊忠, 江志强, 孙鹏, 等, 2018. 南黄海盆地北部坳陷北凹断裂特征与构造演化. 海洋地质与第四纪地质, 38(3): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201803007.htm [60] 闫义, 夏斌, 林舸, 等, 2005. 南海北缘新生代盆地沉积与构造演化及地球动力学背景. 海洋地质与第四纪地质, 25(2): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200502011.htm [61] 姚伯初, 万玲, 刘振湖, 2004. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源. 地球科学, 29(5): 543-549. doi: 10.3321/j.issn:1000-2383.2004.05.007 [62] 张豪, 栾锡武, 冉伟民, 等, 2020. 珠江口盆地西部文昌A凹陷断裂特征与成因探讨. 海洋地质与第四纪地质, 40(4): 96-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202004008.htm [63] 张亮, 2012. 南海构造演化模式及其数值模拟(博士学位论文). 青岛: 中国科学院海洋研究所. [64] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542 [65] 张迎朝, 张坤坤, 袁冰, 等, 2014. 文昌凹陷新生界断裂体系与构造样式及对油气成藏的控制作用. 科学技术与工程, 14(23): 26-31. doi: 10.3969/j.issn.1671-1815.2014.23.005 [66] 张志业, 何登发, 李智, 等, 2018. 珠江口盆地开平凹陷边界断层三维几何学与运动学. 地球物理学报, 61(10): 4296-4307. doi: 10.6038/cjg2018L0560