• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    老挝西北部二叠纪砂岩碎屑锆石U-b年代学、地球化学特征及其构造意义

    邱曦 王岳军 钱鑫 张玉芝 VongpaseuthSenebouttalath

    邱曦, 王岳军, 钱鑫, 张玉芝, VongpaseuthSenebouttalath, 2021. 老挝西北部二叠纪砂岩碎屑锆石U-b年代学、地球化学特征及其构造意义. 地球科学, 46(11): 3910-3925. doi: 10.3799/dqkx.2020.379
    引用本文: 邱曦, 王岳军, 钱鑫, 张玉芝, VongpaseuthSenebouttalath, 2021. 老挝西北部二叠纪砂岩碎屑锆石U-b年代学、地球化学特征及其构造意义. 地球科学, 46(11): 3910-3925. doi: 10.3799/dqkx.2020.379
    Qiu Xi, Wang Yuejun, Qian Xin, Zhang Yuzhi, Vongpaseuth Senebouttalath, 2021. Detrital Zircon U-Pb Geochronology and Geochemical Characteristics of Permian Sandstones in NW Laos and Its Tectonic Implications. Earth Science, 46(11): 3910-3925. doi: 10.3799/dqkx.2020.379
    Citation: Qiu Xi, Wang Yuejun, Qian Xin, Zhang Yuzhi, Vongpaseuth Senebouttalath, 2021. Detrital Zircon U-Pb Geochronology and Geochemical Characteristics of Permian Sandstones in NW Laos and Its Tectonic Implications. Earth Science, 46(11): 3910-3925. doi: 10.3799/dqkx.2020.379

    老挝西北部二叠纪砂岩碎屑锆石U-b年代学、地球化学特征及其构造意义

    doi: 10.3799/dqkx.2020.379
    基金项目: 

    国家自然科学基金项目 41830211

    国家自然科学基金项目 U1701641

    国家自然科学基金项目 42072256

    国家自然科学基金项目 41972235

    广东省基础与应用基础研究基金项目 2018B030312007

    广东省基础与应用基础研究基金项目 2019B1515120019

    详细信息
      作者简介:

      邱曦(1996-), 男, 硕士研究生, 从事沉积大地构造和地球化学的研究.ORCID: 0000-0001-8829-2228.E-mail: qiux28@mail2.sysu.edu.cn

      通讯作者:

      钱鑫, E-mail: qianx3@mail.sysu.edu.cn

    • 中图分类号: P595

    Detrital Zircon U-Pb Geochronology and Geochemical Characteristics of Permian Sandstones in NW Laos and Its Tectonic Implications

    • 摘要: 老挝西北部的沉积演化历史一直未能很好地界定.因此,在老挝西北部地区出露较好的二叠纪地层中采集了4个砂岩样品,并系统开展了岩石学、地球化学和碎屑锆石U-Pb年代学的研究.岩相学表明该套样品主要包括了长石石英砂岩、岩屑砂岩和杂砂岩.全岩地球化学结果显示这些砂岩样品以高SiO2(64.9%~91.2%)、高Al2O3(5.0%~17.4%)和高CIA(59.6~89.9)为特征,说明它们经历了中等至强的风化作用.另外,样品的微量元素地球化学特征也暗示其物源主要为来自岛弧环境和活动大陆边缘的长英质岩石,并伴有少量再循环沉积物.碎屑锆石U-Pb年代学结果显示出这4个样品具有1 880~1 870 Ma、1 470~1 450 Ma、890~860 Ma、450~415 Ma和275~252 Ma的5个主要年龄峰,其中275~252 Ma为最大的沉积年龄,因此,可以将研究区地层时代限定在不早于晚二叠世.综合前人研究及与邻近盆地碎屑锆石U-Pb年龄谱系的对比,认为前志留纪的锆石大多来自于扬子板块古老基底的再循环沉积物,志留纪至二叠纪的碎屑锆石主要来源于长山带、昌宁-孟连带、临沧-素可泰岩浆岩带和邻近金三角地区,证明了印支板块北缘与思茅地块在古特提斯演化时期为一个整体,在二叠纪时期具有扬子板块的亲缘性.

       

    • 图  1  中南半岛构造纲要简图

      修改自Sone and Metcalfe(2008)Wang et al.(2018)Qian et al.(2020);审图号为GS(2021)5443号

      Fig.  1.  Tectonic sketch map of Indo-China Peninsula

      图  2  老挝西北部地区地质简图

      修改自Qian et al.(2020)

      Fig.  2.  Simplified geological map of northwestern Laos

      图  3  老挝西北部地区地层及岩性柱状图

      Fig.  3.  Stratigraphic and lithologic column of northwestern Laos

      图  4  老挝西北部地区砂岩样品显微镜下照片

      Q.石英;Pl.斜长石;L.岩屑

      Fig.  4.  Microscopic photographs for the sandstones from northwestern Laos

      图  5  代表性锆石阴极发光(CL)照片

      Fig.  5.  Cathodoluminescence images (CL) of the representative zircon grains of samples

      图  6  老挝西北部地区二叠纪砂岩碎屑锆石U-Pb谐和图及年龄频谱图

      Fig.  6.  U-Pb concordia diagrams and histograms of U-Pb ages of detrital zircons from study area

      图  7  老挝西北部地区砂岩样品主量元素分类图

      Blatt et al.(1980)

      Fig.  7.  Chemical classification diagram of sandstone samples based on major elements

      图  8  老挝西北部二叠纪砂岩球粒陨石标准化(a)和澳大利亚后太古代页岩(PAAS)标准化(b)稀土元素配分图解

      球粒陨石标准值引自Sun and McDonough(1989);PAAS据Taylor and McLennan(1985);大陆岛弧杂砂岩和活动大陆边缘杂砂岩数据来自Bhatia(1986)

      Fig.  8.  Chondrite (a) and post-Archean Australian shale (PAAS) (b) normalized rare earth element distribution patterns for the samples from study area

      图  9  老挝西北部地区二叠纪砂岩风化特征A-CN-K图

      Nesbitt and Young(1982)

      Fig.  9.  A-CN-K diagram for evaluating Permian sandstones weathering process of northwestern Laos

      图  10  老挝西北部地区二叠纪砂岩构造环境的判别图La/Th-Hf判别图(a), La-Th-Sc判别图(b), Th-Sc-Zr/10判别图(c)

      a.据Floyd and Leveridge(1987);b.据Bhatia(1983)Bhatia and Crook(1986);c.据Bhatia(1983)Bhatia and Crook(1986)

      Fig.  10.  Diagrams for discriminating tectonic settings of Permian sandstones from northwestern Laos

      图  11  老挝西北部地区碎屑锆石U-Pb同位素年龄特征与邻区对比

      Fig.  11.  Detrital zircon U-Pb age distribution for NW Laos region, comparing with those from Muang Xai basin (Wang et al., 2017b), Simao basin (Wang et al., 2014), western margin of South China (Xu et al., 2019) and Lhasa terrane (Leier et al., 2007)

    • [1] Ba, J., Zhang, L., He, C., et al., 2018. Zircon and Monazite Ages Constraints on Devonian Magmatism and Granulite-Facies Metamorphism in the Southern Qaidam Block: Implications for Evolution of Proto-and Paleo-Tethys in East Asia. Journal of Earth Science, 29(5): 1132-1150. https://doi.org/10.1007/s12583-018-0853-x
      [2] Bhatia, M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. doi: 10.1086/628815
      [3] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292
      [4] Blatt, H., Middleton, G.V., Murray, R.C., 1980. Origin of Sedimentary Rocks. Pretice-Hall, New Jersey.
      [5] Bock, B., McLennan, S.M., Hanson, G.N., 1998. Geochemistry and Provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45: 635-655. doi: 10.1046/j.1365-3091.1998.00168.x
      [6] Cawood, P.A., Nemchin, A.A., Freeman, M., et al., 2003. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux along a Modern River System and Implications for Provenance Studies. Earth and Planetary Science Letters, 210: 259-268. doi: 10.1016/S0012-821X(03)00122-5
      [7] Chen, Y.L., Luo, Z.H., Zhao, J.X., et al., 2004. Genesis of the Mianning Kangding Complex in Sichuan Province from Zircon SHRIMP Age and Petrogeochemical Characteristic. Science in China (Series D: Earth Sciences), 34(8): 687-697 (in Chinese).
      [8] Cox, R., Lowe, D.R., Cullers, R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59: 2919-2940. doi: 10.1016/0016-7037(95)00185-9
      [9] Cullers, R.L., 1994. The Controls on the Major and Trace Element Variation of Shale, Siltstone and Sandstone of Pennsylvanian-Permian Age from Uplifted Continental Blocks in Colorado to Platform Sediments in Kansas, U.S.A. . Geochimica et Cosmochimica Acta, 58: 4955-4972. doi: 10.1016/0016-7037(94)90224-0
      [10] Cullers, R.L., Basu, A., Suttner, L.J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, U.S.A. . Chemical Geology, 70(4): 335-348. doi: 10.1016/0009-2541(88)90123-4
      [11] Deng, J., Wang, C.M., Zi, J.W., et al., 2018. Constraining Subduction-Collision Processes of the Paleo-Tethys along the Changning-Menglian Suture: New Zircon U-Pb Ages and Sr-Nd-Pb-Hf-O Isotopes of the Lincang Batholith. Gondwana Research, 62: 75-92. doi: 10.1016/j.gr.2017.10.008
      [12] Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1/2): 115-125. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0012821X09005469&originContentFamily=serial&_origin=article&_ts=1493864661&md5=de8d075e418b9ca85f230e9f3efcc2d9
      [13] Du, L. L, Guo, J.H., Nutman, A.P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at~860 Ma on the Western Margin of the Yangtze Block: Evidence from the Guandaoshan Pluton. Lithos, 196-197: 67-82. doi: 10.1016/j.lithos.2014.03.002
      [14] Fan, W.M., Peng, T.P., Wang, Y.J., 2009. Triassic Magmatism in the Southern Lancangjiang Zone, Southwestern China and Its Constraints on the Tectonic Evolution of Paleo-Tethys. Earth Science Frontiers, 16(6): 291-302 (in Chinese with English abstract).
      [15] Fan, W.M., Wang, Y.J., Zhang, A.M., et al., 2010. Permian Arc-back-Arc Basin Development along the Ailaoshan Tectonic Zone: Geochemical, Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks, Southwest China. Lithos, 119: 553-568. doi: 10.1016/j.lithos.2010.08.010
      [16] Fedo, C.M., Nesbitt, H.W., Young, G.M., et al., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23: 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
      [17] Fedo, C.M., Sircombe, K.N., Rainbird, R.G., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53: 277-303. doi: 10.2113/0530277
      [18] Feng, Q.L., Chonglakmani, C., Helmcke, D., et al., 2005. Correlation of Triassic Stratigraphy between the Simao and Lampang-Phrase Basins: Implications for the Tectonopaleogeography of Southeast Asia. Journal of Asian Earth Sciences, 24: 777-785. doi: 10.1016/j.jseaes.2004.11.008
      [19] Ferrari, O.M., Hochard, C., Stampfli, G.M., 2008. An Alternative Plate Tectonic Model for the Paleozoic-Early Mesozoic Paleotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451: 346-365. doi: 10.1016/j.tecto.2007.11.065
      [20] Fildani, A., Cope, T.D., Graham, S.A., et al., 2003. Initiation of the Magallanes Foreland Basin: Timing of the Southernmost Patagonian Andes Orogeny Revised by Detrital Zircon Provenance Analysis. Geology, 31(12): 1081-1084. doi: 10.1130/G20016.1
      [21] Floyd, P.A., Leveridge, B.E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531
      [22] Gardiner, N.J., Roberts, N.M.W., Morley, C.K., et al., 2016a. Did Oligocene Crustal Thickening Precede Basin Development in Northern Thailand? A Geochronological Reassessment of DoiInthanon and DoiSuthep. Lithos, 240-243: 69-83. doi: 10.1016/j.lithos.2015.10.015
      [23] Gardiner, N.J., Searle, M.P., Morley, C.K., et al., 2016b. The Closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New Insights from Zircon U-Pb and Hf Isotope Data. Gondwana Research, 39: 401-422. doi: 10.1016/j.gr.2015.03.001
      [24] Gehrels, G.E., Stewart, J.H., Ketner, K.B., 2002. Cordilleran-Margin Quartzites in Baja California-Implications for Tectonic Transport. Earth and Planetary Science Letters, 199: 201-210. doi: 10.1016/S0012-821X(02)00542-3
      [25] Griffine, W.L., Powell, W.J., Pearson, N.J., et al., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. Laser Ablatio-ICP-MS in the Earth Sciences. Mineral. Assoc. Canada Short Curse Series, 40: 204-207. http://ci.nii.ac.jp/naid/20001269558
      [26] Hoskin, P.W.O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027
      [27] Huang, J.Q., Chen, B.W., 1987. Evolution of the Tethys Sea in China and Its Adjacent Regions. Geological Publishing House, Beijing (in Chinese).
      [28] Jian, P., Liu, D.Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113: 767-784. doi: 10.1016/j.lithos.2009.04.006
      [29] Leier, A.L., Kapp, P., Gehrels, G.E., et al., 2007. Detrital Zircon Geochronology of Carboniferous-Cretaceous Strata in the Lhasa Terrane, Southern Tibet. Basin Research, 19: 361-378. https://doi.org/10.1111/j.1365-2117.2007.00330.x
      [30] Li, S. B., He, H. Y., Qian, X., et al., 2018. Carboniferous Arc Setting in Central Hainan: Geochronological and Geochemical Evidences on the Andesitic and Dacitic Rocks. Journal of Earth Science, 29(2): 265-279. doi: 10.1007/s12583-017-0936-0
      [31] Ludwig, K.R., 2001. Using Isoplot/EX, Version 2.49. In: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley, 1-55.
      [32] McLennan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Mineralogical Society of America Reviews in Mineralogy, 21: 169-200. http://www.researchgate.net/publication/303145235_Rare_earth_elements_and_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes
      [33] McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21-40. doi: 10.1130/SPE284
      [34] Metcalfe, I., 1984. Southeast Asia. Publication-International Union of Geological Sciences, 16: 213-243.
      [35] Metcalfe, I., 2000. The Bentong-Raub Suture Zone. Journal of Asian Earth Sciences, 18: 691-712. doi: 10.1016/S1367-9120(00)00043-2
      [36] Metcalfe, I., 2006. Paleozoic and Mesozoic Tectonic Evolution and Paleogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9: 24-46. doi: 10.1016/j.gr.2005.04.002
      [37] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020
      [38] Metcalfe, I., Henderson, C.M., Wakita, K., 2017. Lower Permian Conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, Northern Thailand. Gondwana Research, 44: 54-66. doi: 10.1016/j.gr.2016.12.003
      [39] Morley, C.K., 2007. Variation in Late Cenozoic-Recent Strike-Slip and Oblique-Exetensional Geometries, within Indochina: The Influence of Pre-Existing Fabrics. Journal of Structural Geology, 29: 405-437. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S019181410600174X&originContentFamily=serial&_origin=article&_ts=1475093625&md5=15918bcc1d4d48fae0a3c0679e00f408
      [40] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. doi: 10.1038/299715a0
      [41] Qian, X., Feng, Q.L., Wang, Y.J., et al., 2016. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60-75. doi: 10.1016/j.lithos.2015.07.019
      [42] Qian, X., Feng, Q.L., Yang, W.Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342-357. doi: 10.1016/j.jseaes.2014.11.035
      [43] Qian, X., Wang, Y.J., Srithai, B., et al., 2017. Geochronological and Geochemical Constraints on the Intermediate-Acid Volcanic Rocks along the Chiang Khong-Lampang-Tak Igneous Zone in NW Thailand and Their Tectonic Implications. Gondwana Research, 45: 87-99. doi: 10.1016/j.gr.2016.12.011
      [44] Qian, X., Wang, Y.J., Zhang, Y.Z., et al., 2019. Petrogenesis of Permian-Triassic Felsic Igneous Rocks along the Truong Son Zone in Northern Laos and Their Paleotethyan Assembly. Lithos, 328-329: 101-114. doi: 10.1016/j.lithos.2019.01.006
      [45] Qian, X., Wang, Y.J., Zhang, Y.Z., et al., 2020. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in Northwestern Lao PDR: Geochronological and Geochemical Evidence. Gondwana Research, 84: 163-176. doi: 10.1016/j.gr.2020.03.002
      [46] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000. First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28: 11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
      [47] Roddaz, M., Viers, J., Brusset, S., et al., 2006. Controls on Weathering and Provenance in the Amazonian Foreland Basin: Insights from Major and Trace Element Geochemistry of Neogene Amazonian Sediments. Chemical Geology, 226: 31-45. doi: 10.1016/j.chemgeo.2005.08.010
      [48] Rossignol, C., Bourquin, S., Poujol, M., et al., 2016. The Volcaniclastic Series from the Luang Prabang Basin, Laos: A Witness of a Triassic Magmatic Arc?. Journal of Asian Earth Sciences, 120: 159-183. doi: 10.1016/j.jseaes.2016.02.001
      [49] Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland SE Asia: New Insights for Paleo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340: 166-179. doi: 10.1016/j.crte.2007.09.008
      [50] Sone, M., Metcalfe, I., Chaodumrong, P., 2012. The Chanthaburi Terrane of Southeastern Thailand: Stratigraphic Confrmation as a Disrupted Segment of the Sukhothai Arc. Journal of Asian Earth Sciences, 61: 16-32. doi: 10.1016/j.jseaes.2012.08.021
      [51] Srichan, W., Crawford, A.J., Berry, R.F., 2009. Geochemistry and Geochronology of Late Triassic Volcanic Rocks in the Chiang Khong Region, Northern Thailand. Island Arc, 18: 32-51. doi: 10.1111/j.1440-1738.2008.00660.x
      [52] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [53] Sun, W.H., Zhou, M.F., Yan, D.P., et al., 2008. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167: 213-236. doi: 10.1016/j.precamres.2008.08.001
      [54] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication, Berkeley.
      [55] Thanh, T.D., Janvier, P., Phuong, T.H., 1996. Fish Suggests Continental Connections between the Indochina and South China Blocks in Middle Devonian Time. Geology, 24: 571-574. doi: 10.1130/0091-7613(1996)024<0571:FSCCBT>2.3.CO;2
      [56] Udchachon, M., Thassanapak, H., Feng, Q. L., et al., 2011. Geochemical Constraints on the Depositional Environment of Upper Devonian Radiolarian Cherts from Loei, North-Eastern Thailand. Frontiers of Earth Science, 5(2): 178-190. https://doi.org/10.1007/s11707-011-0153-6
      [57] Ueno, K., Hisada, K., 2001. The Nan-Uttaradit-Sa Kaeo Suture as a Main Paleotethyan Suture in Thailand: Is It Real?. Gondwana Research, 4: 804-806. doi: 10.1016/S1342-937X(05)70590-6
      [58] Ueno, K., Kamata, Y., Uno, K., et al., 2018. The Sukhothai Zone (Permian-Triassic Island-Arc Domain of Southeast Asia) in Northern Laos: Insights from Triassic Carbonates and Foraminifers. Gondwana Research, 61: 88-99. doi: 10.1016/j.gr.2018.04.013
      [59] Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190-194. http://www.ucl.ac.uk/~ucfbpve/papers/VermeeschChemGeol2012.pdf
      [60] Wang, H., Lin, F.C., Li, X.Z., et al., 2015. The Division of Tectonic Units and Tectonic Evolution in Laos and Its Adjacent Regions. Geology in China, 42(1): 71-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201501005.htm
      [61] Wang, L.C., Liu, C.L., Gao, X., et al., 2014. Provenance and Paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, Southeastern Tibetan Plateau: Whole-Rock Geochemistry, U-Pb Geochronology, and Hf Isotopic Constraints. Sedimentary Geology, 304: 44-58. doi: 10.1016/j.sedgeo.2014.02.003
      [62] Wang, L.J., Yu, J.H., Griffin, W.L., et al., 2012. Early Crustal Evolution in the Western Yangtze Block: Evidence from U-Pb and Lu-Hf Isotopes on Detrital Zircons from Sedimentary Rocks. Precambrian Research, 222-223: 368-385. doi: 10.1016/j.precamres.2011.08.001
      [63] Wang, S.F., Mo, Y.S., Wang, C., et al., 2016a. Paleotethyan Evolution of the Indochina Block as Deduced from Granites in Northern Laos. Gondwana Research, 38: 183-196. doi: 10.1016/j.gr.2015.11.011
      [64] Wang, Y.J., He, H.Y., Cawood, P.A., et al., 2016b. Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications. Lithos, 266-267: 264-286. doi: 10.1016/j.lithos.2016.09.012
      [65] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23: 1273-1305. doi: 10.1016/j.gr.2012.02.019
      [66] Wang, Y.J., He, H.Y., Zhang, Y.Z., et al., 2017a. Origin of Permian OIB-Like Basalts in NW Thailand and Implication on the Paleotethyan Ocean. Lithos, 274-275: 93-105. doi: 10.1016/j.lithos.2016.12.021
      [67] Wang, Y. L., Wang, L. C., Wei, Y. S., et al., 2017b. Provenance and Paleogeography of the Mesozoic Strata in the Muang Xai Basin, Northern Laos: Petrology, Whole-Rock Geochemistry, and U-Pb Geochronology Constraints. International Journal of Earth Sciences, 106(4): 1409-1427. https://doi.org/10.1007/s00531-017-1469-6
      [68] Wang, Y.J., Qian, X., Cawood, P.A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. doi: 10.1016/j.earscirev.2017.09.013
      [69] Wang, Y.J., Yang, T.X., Zhang, Y.Z., et al., 2020. Late Paleozoic Back-Arc Basin in the Indochina Block: Constraints from the Mafic Rocks in the Nan and Luang Prabang Tectonic Zones, Southeast Asia. Journal of Asian Earth Sciences, 195: 1-20. http://www.sciencedirect.com/science/article/pii/S1367912020301140
      [70] Wang, Y.J., Zhang, Y.Z., Qian, X., et al., 2021. Ordo-Silurian Assemblage in the Indochina Interior: Geochronological, Elemental, and Sr-Nd-Pb-Hf-O Isotopic Constraints of Early Paleozoic Granitoids in South Laos. Geological Society of America Bulletin, 133(1-2): 325-346. doi: 10.1130/B35605.1
      [71] Wronkiewicz, D.J., Condie, K.C., 1989. Geochemistry and Provenance of Sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-Old Continental Craton. Geochimica et Cosmochimica Acta, 53(7): 1537-1549. doi: 10.1016/0016-7037(89)90236-6
      [72] Wu, F.Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
      [73] Wu, Y. B., Zheng, Y. F., 2004. Mineralogical Study of Zircon Genesis and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      [74] Xu, J., Xia, X.P., Lai, C.K., et al., 2019. When Did the Paleotethys Ailaoshan Ocean Close: New Insights from Detrital Zircon U-Pb Age and Hf Isotopes. Tectonics, 38: 1798-1823. doi: 10.1029/2018TC005291
      [75] Yang, W.Q., Qian, X., Feng, Q.L., et al., 2016. Zircon U-Pb Geochronologic Evidence for the Evolution of Nan-Uttaradit Suture Zone in Northern Thailand. Journal of Asian Earth Sciences, 27: 378-390. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZDDY201603004
      [76] Yao, J.L., Shu, L.S., Cawood, P.A., et al., 2017. Constraining Timing and Tectonic Implications of Neoproterozoic Metamorphic Event in the Cathaysia Block, South China. Precambrian Research, 293: 1-12. doi: 10.1016/j.precamres.2017.01.032
      [77] Zhang, L.M., Zhang, Y.Z., Cui, X., et al., 2019. Mesoproterozoic Rifting of SW Hainan Revealed from Gneissic Granites and Metasedimentary Rocks in the Baoban Complex. Precambrian Research, 325: 69-87. doi: 10.1016/j.precamres.2019.02.013
      [78] Zheng, Y. F., 2003. Neoproterozoic Magmatism and Global Change. Chinese Science Bulletin, 48(16): 1705-1720 (in Chinese). doi: 10.1360/csb2003-48-16-1705
      [79] Zhong, D.L., 1998. The Gutethys Orogenic Belt in Western Yunnan and Sichuan. Science Press, Beijing, 1-231 (in Chinese).
      [80] Zhong, W.F., Feng, Q.L., Chonglakmani, C., et al., 2012. Permian Triassic Stratigraphic Correlation between Laos and Yunnan and Its Tectonic Significance. Earth Science, 37(S2): 73-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S2015.htm
      [81] 陈岳龙, 罗照华, 赵俊香, 等, 2004. 从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因. 中国科学(D辑: 地球科学), 34(8): 687-697. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200408000.htm
      [82] 范蔚茗, 彭头平, 王岳军, 2009. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录. 地学前缘, 16(6): 291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031
      [83] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社.
      [84] 王宏, 林方成, 李兴振, 等, 2015. 老挝及邻区构造单元划分与构造演化. 中国地质, 42(1): 71-84. doi: 10.3969/j.issn.1000-3657.2015.01.006
      [85] 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm
      [86] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [87] 郑永飞, 2003. 新元古代岩浆活动与全球变化. 科学通报, 48(16): 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001
      [88] 钟大赉, 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-231.
      [89] 钟维敷, 冯庆来, Chonglakmani, C., 等, 2012. 老挝与云南二叠纪三叠纪地层对比及其构造意义. 地球科学, 37(S2): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2015.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  713
    • HTML全文浏览量:  253
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-19
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回