• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于碎石屏障的土壤盐渍化改良技术及机理研究

    陶彦臻 苏春利 谢先军 曾邯斌 潘洪捷 闫福贵

    陶彦臻, 苏春利, 谢先军, 曾邯斌, 潘洪捷, 闫福贵, 2021. 基于碎石屏障的土壤盐渍化改良技术及机理研究. 地球科学, 46(11): 4118-4126. doi: 10.3799/dqkx.2020.377
    引用本文: 陶彦臻, 苏春利, 谢先军, 曾邯斌, 潘洪捷, 闫福贵, 2021. 基于碎石屏障的土壤盐渍化改良技术及机理研究. 地球科学, 46(11): 4118-4126. doi: 10.3799/dqkx.2020.377
    Tao Yanzhen, Su Chunli, Xie Xianjun, Zeng Hanbin, Pan Hongjie, Yan Fugui, 2021. Technology and Mechanism of Soil Salinization Using Gravel Barrier. Earth Science, 46(11): 4118-4126. doi: 10.3799/dqkx.2020.377
    Citation: Tao Yanzhen, Su Chunli, Xie Xianjun, Zeng Hanbin, Pan Hongjie, Yan Fugui, 2021. Technology and Mechanism of Soil Salinization Using Gravel Barrier. Earth Science, 46(11): 4118-4126. doi: 10.3799/dqkx.2020.377

    基于碎石屏障的土壤盐渍化改良技术及机理研究

    doi: 10.3799/dqkx.2020.377
    基金项目: 

    内蒙古自治区河套灌区盐碱地生物修复与综合开发研究项目 2019046338

    详细信息
      作者简介:

      陶彦臻(1997-), 男, 在读硕士生, 主要研究方向为水文地球化学与生态环境.ORCID: 0000-0001-9313-7791.E-mail: 1150148580@qq.com

      通讯作者:

      苏春利, E-mail: chl.su@cug.edu.cn

    • 中图分类号: P95

    Technology and Mechanism of Soil Salinization Using Gravel Barrier

    • 摘要: 利用碎石屏障阻断非饱和带毛细上升为土壤盐渍化改良提供了新思路.为了研究碎石屏障对盐渍化土壤改良的可行性以及碎石层结构和埋深对改良效果的影响,在河套灌区西部杭锦后旗典型盐渍化分布区建立试验地,设置了7组不同碎石屏障处理工艺开展土壤盐渍化改良试验,对试验地40 cm深度的土壤盐分、pH、阳离子交换量、交换性钠百分率等参数进行了为期一年的监测和分析.结果表明,7组不同处理中,埋设深度为60~80 cm,利用颗粒直径为1 cm和3 cm的碎石按上细下粗的结构分两层铺设的处理方法改良效果最佳;从表层到40 cm深,土壤EC值平均下降55.9%.较大的碎石屏障埋深,上细下粗的铺设方式,可提高下层碎石孔隙度,并在非饱和带深处切断毛细管,从而有效降低土壤毛细上升高度,抑制深层土壤中的盐分上移"返盐",改良效果较好.

       

    • 图  1  试验小区平面布置图

      Fig.  1.  Layout of test area

      图  2  不同碎石屏障处理对土壤EC值的影响

      使用单因素方差分析,不同小写字母表示不同处理在P < 0.05水平差异显著;不同大写字母表示处理2年之间在P < 0.05水平差异显著;下同

      Fig.  2.  Effect of different gravel barrier treatments on soil EC value

      图  3  不同碎石屏障处理对土壤pH的影响

      Fig.  3.  Effects of different gravel barriers on soil pH

      图  4  不同碎石屏障处理对土壤ESP的影响

      Fig.  4.  Effects of different gravel barriers on soil ESP

      图  5  不同碎石屏障处理对土壤SAR的影响

      Fig.  5.  Effects of different gravel barriers on soil SAR

      图  6  碎石屏障阻隔毛细作用机理示意

      Fig.  6.  Schematic diagram of capillary action mechanism of gravel barrier

      表  1  不同碎石屏障工艺设计

      Table  1.   Process design of different gravel barriers

      处理编号 埋设深度(cm) 厚度(cm) 粒径和结构
      G1(CK)
      G2 40~60 20 0.1~3 cm,未分选
      G3 60~80 20 0.1~3 cm,未分选
      G4 40~60 20 1 cm和3 cm,上细下粗
      G5 60~80 20 1 cm和3 cm,上细下粗
      G6 40~60 20 1~3 cm,未分选
      G7 60~80 20 1~3 cm,未分选
      下载: 导出CSV

      表  2  不同碎石屏障处理对土壤ESP的影响

      Table  2.   Effects of different gravel barriers on soil ESP

      处理 ESP(%) ESP(%) ESP(%) ESP(%)
      0~10 cm 10~20 cm 20~30 cm 30~40 cm
      2019年 2020年 2019年 2020年 2019年 2020年 2019年 2020年
      G1 30.07±0.32Aa 28.75±0.18Ba 26.81±0.31Ab 26.09±0.25Aa 25.06±0.25Ab 24.78±0.30Aa 25.81±0.60Ab 24.21±0.30Aa
      G2 26.04±0.51Ab 19.03±0.17Bb 28.50±0.38Aa 19.00±0.16Bb 26.02±0.58Aab 18.16±0.06Bb 25.81±0.16Ab 20.23±0.11Bb
      G3 23.93±0.27Ac 14.75±0.07Bc 24.76±0.20Ac 14.62±0.11Bc 26.28±0.56Aa 14.69±0.06Bd 28.17±0.59Aa 16.64±0.16Bc
      G4 26.09±0.08Ab 9.35±0.13Be 24.30±0.15Acd 12.61±0.06Bd 23.79±0.12Ac 10.34±0.12Bf 24.21±0.17Ad 14.35±0.11Bd
      G5 24.02±0.25Ac 8.87±0.07Bf 22.19±0.29Ae 8.26±0.002Bf 22.19±0.44Ad 8.57±0.01Bg 22.89±0.23Ae 10.98±0.03Bf
      G6 24.33±0.01Ac 14.90±0.16Bc 24.77±0.53Ac 14.55±0.10Bc 26.23±0.36Aa 15.51±0.11Bc 25.43±0.50Abc 16.89±0.05Bc
      G7 24.14±0.12Ac 11.40±0.12Bd 23.85±0.46Ad 10.75±0.09Be 26.55±0.60Aa 11.02±0.09Be 24.55±0.15Acd 11.97±0.04Be
      注:表中数据形式为平均值±标准差;同列不同小写字母表示不同处理在P < 0.05水平差异显著;不同大写字母表示处理2年之间在P < 0.05水平差异显著.
      下载: 导出CSV
    • [1] Fu, L. C., Zhuang, D. Y., Guo, Z. Q., et al., 2020. Causes of Formation and Six Dimensional Improvement Method for Virginsaline-Alkali Land in Southeast Coastal Region of China. Journal of Zhejiang Agricultural Sciences, 61(1): 157-161 (in Chinese).
      [2] He, Y.P., 2020. Study on Influencing Factors of Capillary Rise Characteristics of Low Liquid Limit Silt. Geotechnical Investigation & Surveying, 48(4): 11-18 (in Chinese with English abstract).
      [3] Hulin, C., Mercury, L., 2019. Regeneration of Capillary Water in Unsaturated Zones. Geochimica et Cosmochimica Acta, 265: 279-291. https://doi./org/10.1016/j.gca.2019.07.058 doi: 10.1016/j.gca.2019.07.058
      [4] Jia, R.L., Zhou, J.L., Zhou, Y.Z., et al., 2016. Analysis on Law of Soil Salt Accumulation under Condition of High Salinity Phreatic Water Evaporation in Arid Areas. Journal of Hydraulic Engineering, 47(2): 150-157 (in Chinese with English abstract). http://www.researchgate.net/publication/301681339_Analysis_on_law_of_soil_salt_accumulation_under_condition_of_high_salinity_phreatic_water_evaporation_in_arid_areas
      [5] Liu, Y., Sun, S.H., 2014. Effects of Ameliorative Measures on Physicochemical Properties of Saline Soil in Coastal Areas. Journal of Irrigation and Drainage, 33(Z1): 248-250, 272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS2014Z1056.htm
      [6] Luo, X. X., Liu, G. C., Xia, Y., et al., 2017. Use of Biochar-Compost to Improve Properties and Productivity of the Degraded Coastal Soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17(3): 780-789. https://doi./org/10.1007/s11368-016-1361-1 doi: 10.1007/s11368-016-1361-1
      [7] Mitra, K., van Duijn, C. J., 2019. Wetting Fronts in Unsaturated Porous Media: The Combined Case of Hysteresis and Dynamic Capillary Pressure. Nonlinear Analysis: Real World Applications, 50: 316-341. https://doi./org/10.1016/j.nonrwa.2019.05.005 doi: 10.1016/j.nonrwa.2019.05.005
      [8] Tang, Z.J., Zuo, H.P., Yu, J., et al., 2007. Effects of Exchangeable Sodium Percentage and Clay Content on Seal Formation on Soil Surface. Transactions of the Chinese Society of Agricultural Engineering, 23(5): 51-55 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2007/5/2007.5.009
      [9] Wang, F., Qu, Z.Y., 2018. Progress Research on the Improvement Effect of Biochar on Salinized Farmland Soil. Journal of Northern Agriculture, 46(5): 68-75 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_inner-mongolia-agricultural-science-technology_thesis/0201270725252.html
      [10] Wei, B.H., Shen, Z. Y., Zhou, J., et al., 2020. Study on Effect and Mechanism of Improving Saline-Alkali Soil by Fenlong Tillage. Soils, 52(4): 699-703 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TURA202004007.htm
      [11] Xiao, Y.N., Zhong, X.L., Wang, B.C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081 (in Chinese with English abstract).
      [12] Xie, X. F., Pu, L. J., Zhu, M., et al., 2019. Linkage between Soil Salinization Indicators and Physicochemical Properties in a Long-Term Intensive Agricultural Coastal Reclamation Area, Eastern China. Journal of Soils and Sediments, 19(11): 3699-3707. https://doi./org/10.1007/10.1007/s11368-019-02333-3 doi: 10.1007/10.1007/s11368-019-02333-3
      [13] Xu, H.L., Zhou, A.G., Xiao, G.Q., et al., 2000. Arid Trend and Eco-Environmental Effect of Water-Salt Imbalance in Northwest China. Earth Science, 25(5): 499-504 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005012.htm
      [14] Yin, H.M., Hu, J., Wang, Q.Q., et al., 2017. Advance and Prospect of the Research on Improvement by Dry Farming Measures of Saline-Alkali Soils in Western Songnen Plain of China. Chinese Journal of Soil Science, 48(1): 236-242 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRTB201701032.htm
      [15] Zangiabadi, M., Gorji, M., Shorafa, M., et al., 2020. Effect of Soil Pore Size Distribution on Plant-Available Water and Least Limiting Water Range as Soil Physical Quality Indicators. Pedosphere, 30(2): 253-262. https://doi./org/10.1016/S1002-0160(17)60473-9 doi: 10.1016/S1002-0160(17)60473-9
      [16] Zeng, H.B., Su, C.L., Xie, X.J., et al., 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277 (in Chinese with English abstract).
      [17] Zhang, X., Qu, J. S., Li, H., et al., 2020. Biochar Addition Combined with Daily Fertigation Improves overall Soil Quality and Enhances Water-Fertilizer Productivity of Cucumber in Alkaline Soils of a Semi-Arid Region. Geoderma, 363: 114170. https://doi./org/10.1016/j.geoderma.2019.114170 doi: 10.1016/j.geoderma.2019.114170
      [18] Zhang, Y.C., Hong, M., Zhao, B., et al., 2019. Effects of Different Measures on the Improvement of Severe Saline Soil in Hetao Irrigation Area. Journal of Soil and Water Conservation, 33(5): 309-315, 322 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRFL201902006.htm
      [19] Zhao, W., Zhou, Q., Tian, Z. Z., et al., 2020a. Apply Biochar to Ameliorate Soda Saline-Alkali Land, Improve Soil Function and Increase Corn Nutrient Availability in the Songnen Plain. Science of the Total Environment, 722: 137428. https://doi./org/10.1016/j.scitotenv.2020.137428 doi: 10.1016/j.scitotenv.2020.137428
      [20] Zhao, Y. G., Li, Y., Wang, S. J., et al., 2020b. Combined Application of a Straw Layer and Flue Gas Desulphurization Gypsum to Reduce Soil Salinity and Alkalinity. Pedosphere, 30(2): 226-235. https://doi./org/10.1016/S1002-0160(17)60480-6 doi: 10.1016/S1002-0160(17)60480-6
      [21] Zhou, M., Liu, X. B., Meng, Q. F., et al., 2019. Additional Application of Aluminum Sulfate with Different Fertilizers Ameliorates Saline-Sodic Soil of Songnen Plain in Northeast China. Journal of Soils and Sediments, 19(10): 3521-3533. https://doi./org/10.1007/s11368-019-02311-9 doi: 10.1007/s11368-019-02311-9
      [22] Zhou, X., Xia, W. J., Zhao, Y., 2012. Study on Chloride Ion Erosion of Concrete under Saline Soil Environment. Highway Transportation Technology (Application Technology Edition), 8(12): 294-298 (in Chinese).
      [23] 付力成, 庄定云, 郭志强, 等, 2020. 东南沿海新生盐碱地的形成原因及六维改良法探讨. 浙江农业科学, 61(1): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202001047.htm
      [24] 何艳平, 2020. 低液限粉土毛细上升特征的影响因素研究. 工程勘察, 48(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202004003.htm
      [25] 贾瑞亮, 周金龙, 周殷竹, 等, 2016. 干旱区高盐度潜水蒸发条件下土壤积盐规律分析. 水利学报, 47(2): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602003.htm
      [26] 刘云, 孙书洪, 2014. 不同改良方法对滨海盐碱地修复效果的影响. 灌溉排水学报, 33(Z1): 248-250, 272. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS2014Z1056.htm
      [27] 唐泽军, 左海萍, 于键, 等, 2007. ESP值和黏粒含量对土壤表面封闭作用的影响. 农业工程学报, 23(5): 51-55. doi: 10.3321/j.issn:1002-6819.2007.05.009
      [28] 王凡, 屈忠义, 2018. 生物炭对盐渍化农田土壤的改良效果研究进展. 北方农业学报, 46(5): 68-75. doi: 10.3969/j.issn.2096-1197.2018.05.11
      [29] 韦本辉, 申章佑, 周佳, 等, 2020. 粉垄耕作改良盐碱地效果及机理. 土壤, 52(4): 699-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202004007.htm
      [30] 肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      [31] 徐恒力, 周爱国, 肖国强, 等, 2000. 西北地区干旱化趋势及水盐失衡的生态环境效应. 地球科学, 25(5): 499-504. http://www.earth-science.net/article/id/977
      [32] 殷厚民, 胡建, 王青青, 等, 2017. 松嫩平原西部盐碱土旱作改良研究进展与展望. 土壤通报, 48(1): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201701032.htm
      [33] 曾邯斌, 苏春利, 谢先军, 等, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
      [34] 张宇晨, 红梅, 赵巴音那木拉, 等, 2019. 不同措施对河套灌区重度盐渍土改良效果. 水土保持学报, 33(5): 309-315, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201905045.htm
      [35] 周欣, 夏文俊, 赵阳, 2012. 盐渍土环境下考虑毛细作用氯离子侵蚀混凝土研究. 公路交通科技(应用技术版), 8(12): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201212091.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  387
    • HTML全文浏览量:  311
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-17
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回