Technology and Mechanism of Soil Salinization Using Gravel Barrier
-
摘要: 利用碎石屏障阻断非饱和带毛细上升为土壤盐渍化改良提供了新思路.为了研究碎石屏障对盐渍化土壤改良的可行性以及碎石层结构和埋深对改良效果的影响,在河套灌区西部杭锦后旗典型盐渍化分布区建立试验地,设置了7组不同碎石屏障处理工艺开展土壤盐渍化改良试验,对试验地40 cm深度的土壤盐分、pH、阳离子交换量、交换性钠百分率等参数进行了为期一年的监测和分析.结果表明,7组不同处理中,埋设深度为60~80 cm,利用颗粒直径为1 cm和3 cm的碎石按上细下粗的结构分两层铺设的处理方法改良效果最佳;从表层到40 cm深,土壤EC值平均下降55.9%.较大的碎石屏障埋深,上细下粗的铺设方式,可提高下层碎石孔隙度,并在非饱和带深处切断毛细管,从而有效降低土壤毛细上升高度,抑制深层土壤中的盐分上移"返盐",改良效果较好.Abstract: The use of gravel barrier to block capillary action provides a new idea for soil salinization improvement. In order to demonstrate the feasibility of soil salinization improvement using gravel, a test site was established in the typical salinization distribution area of Hangjin Rear Banner in the west of Hetao irrigation area. Different structures and buried depths of gravel layers were explored to identify the improvement effect of soil salinization. Soil salinity, pH, cation exchange capacity (CEC) and the percentage of sodium exchange were monitored for one year. The results show that among the 7 groups of different treatments, the treatment with buried depth of 60-80 cm and particle diameter of 1 cm and 3 cm was the best condition. The average soil EC value of at the four depths from the surface to 40 cm decreased by 55.9%. The gravel barrier buried deeply and laid down in a fine-grained and coarse manner, which have higher porosity in the bottom layer of the gravel barrier, can cut off the capillary at the deeper depth of unsaturated zone. Therefore, it can decrease effectively the rising height of soil capillary, and inhibit the salt in the deep soils from upward, namely "salt return".
-
Key words:
- soil salinity /
- gravel barrier /
- physical improvement /
- capillary effect /
- Hetao irrigation area /
- ecology
-
表 1 不同碎石屏障工艺设计
Table 1. Process design of different gravel barriers
处理编号 埋设深度(cm) 厚度(cm) 粒径和结构 G1(CK) ‒ ‒ ‒ G2 40~60 20 0.1~3 cm,未分选 G3 60~80 20 0.1~3 cm,未分选 G4 40~60 20 1 cm和3 cm,上细下粗 G5 60~80 20 1 cm和3 cm,上细下粗 G6 40~60 20 1~3 cm,未分选 G7 60~80 20 1~3 cm,未分选 表 2 不同碎石屏障处理对土壤ESP的影响
Table 2. Effects of different gravel barriers on soil ESP
处理 ESP(%) ESP(%) ESP(%) ESP(%) 0~10 cm 10~20 cm 20~30 cm 30~40 cm 2019年 2020年 2019年 2020年 2019年 2020年 2019年 2020年 G1 30.07±0.32Aa 28.75±0.18Ba 26.81±0.31Ab 26.09±0.25Aa 25.06±0.25Ab 24.78±0.30Aa 25.81±0.60Ab 24.21±0.30Aa G2 26.04±0.51Ab 19.03±0.17Bb 28.50±0.38Aa 19.00±0.16Bb 26.02±0.58Aab 18.16±0.06Bb 25.81±0.16Ab 20.23±0.11Bb G3 23.93±0.27Ac 14.75±0.07Bc 24.76±0.20Ac 14.62±0.11Bc 26.28±0.56Aa 14.69±0.06Bd 28.17±0.59Aa 16.64±0.16Bc G4 26.09±0.08Ab 9.35±0.13Be 24.30±0.15Acd 12.61±0.06Bd 23.79±0.12Ac 10.34±0.12Bf 24.21±0.17Ad 14.35±0.11Bd G5 24.02±0.25Ac 8.87±0.07Bf 22.19±0.29Ae 8.26±0.002Bf 22.19±0.44Ad 8.57±0.01Bg 22.89±0.23Ae 10.98±0.03Bf G6 24.33±0.01Ac 14.90±0.16Bc 24.77±0.53Ac 14.55±0.10Bc 26.23±0.36Aa 15.51±0.11Bc 25.43±0.50Abc 16.89±0.05Bc G7 24.14±0.12Ac 11.40±0.12Bd 23.85±0.46Ad 10.75±0.09Be 26.55±0.60Aa 11.02±0.09Be 24.55±0.15Acd 11.97±0.04Be 注:表中数据形式为平均值±标准差;同列不同小写字母表示不同处理在P < 0.05水平差异显著;不同大写字母表示处理2年之间在P < 0.05水平差异显著. -
[1] Fu, L. C., Zhuang, D. Y., Guo, Z. Q., et al., 2020. Causes of Formation and Six Dimensional Improvement Method for Virginsaline-Alkali Land in Southeast Coastal Region of China. Journal of Zhejiang Agricultural Sciences, 61(1): 157-161 (in Chinese). [2] He, Y.P., 2020. Study on Influencing Factors of Capillary Rise Characteristics of Low Liquid Limit Silt. Geotechnical Investigation & Surveying, 48(4): 11-18 (in Chinese with English abstract). [3] Hulin, C., Mercury, L., 2019. Regeneration of Capillary Water in Unsaturated Zones. Geochimica et Cosmochimica Acta, 265: 279-291. https://doi./org/10.1016/j.gca.2019.07.058 doi: 10.1016/j.gca.2019.07.058 [4] Jia, R.L., Zhou, J.L., Zhou, Y.Z., et al., 2016. Analysis on Law of Soil Salt Accumulation under Condition of High Salinity Phreatic Water Evaporation in Arid Areas. Journal of Hydraulic Engineering, 47(2): 150-157 (in Chinese with English abstract). http://www.researchgate.net/publication/301681339_Analysis_on_law_of_soil_salt_accumulation_under_condition_of_high_salinity_phreatic_water_evaporation_in_arid_areas [5] Liu, Y., Sun, S.H., 2014. Effects of Ameliorative Measures on Physicochemical Properties of Saline Soil in Coastal Areas. Journal of Irrigation and Drainage, 33(Z1): 248-250, 272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS2014Z1056.htm [6] Luo, X. X., Liu, G. C., Xia, Y., et al., 2017. Use of Biochar-Compost to Improve Properties and Productivity of the Degraded Coastal Soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17(3): 780-789. https://doi./org/10.1007/s11368-016-1361-1 doi: 10.1007/s11368-016-1361-1 [7] Mitra, K., van Duijn, C. J., 2019. Wetting Fronts in Unsaturated Porous Media: The Combined Case of Hysteresis and Dynamic Capillary Pressure. Nonlinear Analysis: Real World Applications, 50: 316-341. https://doi./org/10.1016/j.nonrwa.2019.05.005 doi: 10.1016/j.nonrwa.2019.05.005 [8] Tang, Z.J., Zuo, H.P., Yu, J., et al., 2007. Effects of Exchangeable Sodium Percentage and Clay Content on Seal Formation on Soil Surface. Transactions of the Chinese Society of Agricultural Engineering, 23(5): 51-55 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2007/5/2007.5.009 [9] Wang, F., Qu, Z.Y., 2018. Progress Research on the Improvement Effect of Biochar on Salinized Farmland Soil. Journal of Northern Agriculture, 46(5): 68-75 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_inner-mongolia-agricultural-science-technology_thesis/0201270725252.html [10] Wei, B.H., Shen, Z. Y., Zhou, J., et al., 2020. Study on Effect and Mechanism of Improving Saline-Alkali Soil by Fenlong Tillage. Soils, 52(4): 699-703 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TURA202004007.htm [11] Xiao, Y.N., Zhong, X.L., Wang, B.C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081 (in Chinese with English abstract). [12] Xie, X. F., Pu, L. J., Zhu, M., et al., 2019. Linkage between Soil Salinization Indicators and Physicochemical Properties in a Long-Term Intensive Agricultural Coastal Reclamation Area, Eastern China. Journal of Soils and Sediments, 19(11): 3699-3707. https://doi./org/10.1007/10.1007/s11368-019-02333-3 doi: 10.1007/10.1007/s11368-019-02333-3 [13] Xu, H.L., Zhou, A.G., Xiao, G.Q., et al., 2000. Arid Trend and Eco-Environmental Effect of Water-Salt Imbalance in Northwest China. Earth Science, 25(5): 499-504 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005012.htm [14] Yin, H.M., Hu, J., Wang, Q.Q., et al., 2017. Advance and Prospect of the Research on Improvement by Dry Farming Measures of Saline-Alkali Soils in Western Songnen Plain of China. Chinese Journal of Soil Science, 48(1): 236-242 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRTB201701032.htm [15] Zangiabadi, M., Gorji, M., Shorafa, M., et al., 2020. Effect of Soil Pore Size Distribution on Plant-Available Water and Least Limiting Water Range as Soil Physical Quality Indicators. Pedosphere, 30(2): 253-262. https://doi./org/10.1016/S1002-0160(17)60473-9 doi: 10.1016/S1002-0160(17)60473-9 [16] Zeng, H.B., Su, C.L., Xie, X.J., et al., 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277 (in Chinese with English abstract). [17] Zhang, X., Qu, J. S., Li, H., et al., 2020. Biochar Addition Combined with Daily Fertigation Improves overall Soil Quality and Enhances Water-Fertilizer Productivity of Cucumber in Alkaline Soils of a Semi-Arid Region. Geoderma, 363: 114170. https://doi./org/10.1016/j.geoderma.2019.114170 doi: 10.1016/j.geoderma.2019.114170 [18] Zhang, Y.C., Hong, M., Zhao, B., et al., 2019. Effects of Different Measures on the Improvement of Severe Saline Soil in Hetao Irrigation Area. Journal of Soil and Water Conservation, 33(5): 309-315, 322 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRFL201902006.htm [19] Zhao, W., Zhou, Q., Tian, Z. Z., et al., 2020a. Apply Biochar to Ameliorate Soda Saline-Alkali Land, Improve Soil Function and Increase Corn Nutrient Availability in the Songnen Plain. Science of the Total Environment, 722: 137428. https://doi./org/10.1016/j.scitotenv.2020.137428 doi: 10.1016/j.scitotenv.2020.137428 [20] Zhao, Y. G., Li, Y., Wang, S. J., et al., 2020b. Combined Application of a Straw Layer and Flue Gas Desulphurization Gypsum to Reduce Soil Salinity and Alkalinity. Pedosphere, 30(2): 226-235. https://doi./org/10.1016/S1002-0160(17)60480-6 doi: 10.1016/S1002-0160(17)60480-6 [21] Zhou, M., Liu, X. B., Meng, Q. F., et al., 2019. Additional Application of Aluminum Sulfate with Different Fertilizers Ameliorates Saline-Sodic Soil of Songnen Plain in Northeast China. Journal of Soils and Sediments, 19(10): 3521-3533. https://doi./org/10.1007/s11368-019-02311-9 doi: 10.1007/s11368-019-02311-9 [22] Zhou, X., Xia, W. J., Zhao, Y., 2012. Study on Chloride Ion Erosion of Concrete under Saline Soil Environment. Highway Transportation Technology (Application Technology Edition), 8(12): 294-298 (in Chinese). [23] 付力成, 庄定云, 郭志强, 等, 2020. 东南沿海新生盐碱地的形成原因及六维改良法探讨. 浙江农业科学, 61(1): 157-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202001047.htm [24] 何艳平, 2020. 低液限粉土毛细上升特征的影响因素研究. 工程勘察, 48(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202004003.htm [25] 贾瑞亮, 周金龙, 周殷竹, 等, 2016. 干旱区高盐度潜水蒸发条件下土壤积盐规律分析. 水利学报, 47(2): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602003.htm [26] 刘云, 孙书洪, 2014. 不同改良方法对滨海盐碱地修复效果的影响. 灌溉排水学报, 33(Z1): 248-250, 272. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS2014Z1056.htm [27] 唐泽军, 左海萍, 于键, 等, 2007. ESP值和黏粒含量对土壤表面封闭作用的影响. 农业工程学报, 23(5): 51-55. doi: 10.3321/j.issn:1002-6819.2007.05.009 [28] 王凡, 屈忠义, 2018. 生物炭对盐渍化农田土壤的改良效果研究进展. 北方农业学报, 46(5): 68-75. doi: 10.3969/j.issn.2096-1197.2018.05.11 [29] 韦本辉, 申章佑, 周佳, 等, 2020. 粉垄耕作改良盐碱地效果及机理. 土壤, 52(4): 699-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202004007.htm [30] 肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067 [31] 徐恒力, 周爱国, 肖国强, 等, 2000. 西北地区干旱化趋势及水盐失衡的生态环境效应. 地球科学, 25(5): 499-504. http://www.earth-science.net/article/id/977 [32] 殷厚民, 胡建, 王青青, 等, 2017. 松嫩平原西部盐碱土旱作改良研究进展与展望. 土壤通报, 48(1): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201701032.htm [33] 曾邯斌, 苏春利, 谢先军, 等, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259 [34] 张宇晨, 红梅, 赵巴音那木拉, 等, 2019. 不同措施对河套灌区重度盐渍土改良效果. 水土保持学报, 33(5): 309-315, 322. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201905045.htm [35] 周欣, 夏文俊, 赵阳, 2012. 盐渍土环境下考虑毛细作用氯离子侵蚀混凝土研究. 公路交通科技(应用技术版), 8(12): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201212091.htm