• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间:来自激光原位方解石U-Pb年龄的证据

    徐豪 郭小文 曹自成 王斌 刘永立 陈家旭 张旭友 罗涛

    徐豪, 郭小文, 曹自成, 王斌, 刘永立, 陈家旭, 张旭友, 罗涛, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间:来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
    引用本文: 徐豪, 郭小文, 曹自成, 王斌, 刘永立, 陈家旭, 张旭友, 罗涛, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间:来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
    Xu Hao, Guo Xiaowen, Cao Zicheng, Wang Bin, Liu Yongli, Chen Jiaxu, Zhang Xuyou, Luo Tao, 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
    Citation: Xu Hao, Guo Xiaowen, Cao Zicheng, Wang Bin, Liu Yongli, Chen Jiaxu, Zhang Xuyou, Luo Tao, 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376

    运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间:来自激光原位方解石U-Pb年龄的证据

    doi: 10.3799/dqkx.2020.376
    基金项目: 

    国家自然科学基金项目 41872139

    详细信息
      作者简介:

      徐豪(1999-), 男, 博士, 主要从事油气成藏机理研究.ORCID: 0000-0002-6265-4697.E-mail: 1169998692@qq.com

      通讯作者:

      郭小文, Email: guoxw@cug.edu.cn

    • 中图分类号: P618.13

    Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation

    • 摘要: 碳酸盐矿物中的同期烃类包裹体共生盐水包裹体均一温度变化范围较大,导致采用流体包裹体均一温度结合储层埋藏史和热演化史确定的油气成藏时间具有多解性.以塔里木盆地塔河油田奥陶系碳酸盐岩油气藏为例,基于方解石脉体中发育的流体包裹体岩相学、荧光分析和显微测温,结合激光原位方解石U-Pb定年结果,提出利用同期烃类包裹体共生盐水包裹体最小均一温度确定油气成藏时间,并确定塔河油田奥陶系碳酸盐岩储层油气充注期次和时间.塔河油田奥陶系储层共存在4期油充注,第1期至第3期油充注时间分别与3期方解石脉体形成时间一致,第4期油充注发生于3期方解石脉形成之后.对发育原生烃类包裹体的方解石脉进行激光原位U-Pb同位素绝对定年,结果指示采用同期油包裹体共生盐水包裹体最小均一温度确定的油气充注时间与方解石脉形成时间一致,说明采用同期盐水包裹体最小均一温度确定的油气充注时间更可靠.运用同期油包裹体共生盐水包裹体最小均一温度得到,塔河地区奥陶系碳酸盐岩油气藏4期油气充注时间分别对应加里东、海西、印支和燕山构造运动时期.

       

    • 图  1  塔里木盆地塔河油田构造位置和样品井位

      Fig.  1.  Structure location and location of sampling wells in the Tahe oilfield, Tarim basin

      图  2  塔河油田碳酸盐岩样品中方解石脉的透射光和阴极发光照片

      a,b. T1样品缝洞充填方解石透射光和阴极发光照片;c,d. T2样品微粉晶高角度方解石透射光和阴极发光照片;e,f. T3样品溶洞充填方解石透射光和阴极发光照片;g,h. T4样品缝洞充填方解石透射光和阴极发光照片

      Fig.  2.  Calcite vein images under transmitted light and cathodoluminescence in carbonatite samples of Tahe oilfield

      图  3  塔河油田奥陶系油包裹体透射光、荧光照片以及荧光光谱图

      a,c. T1样品缝洞充填方解石中发育的金黄色原生油包裹体透射光和荧光照片及荧光光谱图;d,f. T2样品方解石中发育的深黄色原生油包裹体透射光和荧光照片及荧光光谱图;g,i. T3样品方解石中发育的黄色原生油包裹体透射光和荧光照片及荧光光谱图;j,l. T4样品方解石中发育的蓝色次生油包裹体透射光和荧光照片及荧光光谱图

      Fig.  3.  Fluorescent, transmitted light photos and fluorescent spectrum of oil inclusions in the Ordovician of Tahe oilfield

      图  4  塔河油田碳酸盐岩中油包裹体共生盐水包裹体均一温度分布和均一温度-盐度关系

      Fig.  4.  Distribution of homogenization temperature and relationship between homogenization temperature and salinity for aqueous inclusions associated with oil inclusions developed in the carbonatite samples of Tahe oilfield

      图  5  塔河油田S118井和AT5井样品中方解石脉的稀土元素配分模式

      Fig.  5.  Rare earth element distribution pattern for calcite vein in carbonatite samples of well S118 and well AT5, Tahe oilfield

      图  6  塔河油田S118井和AT5井样品中方解石脉激光原位U-Pb同位素年龄

      Fig.  6.  In-situ calcite vein U-Pb isotope ages by laser ablation in carbonatite samples of well S118 and well AT5, Tahe oilfield

      图  7  塔河油田单个油包裹体荧光光谱λmaxQ650/500相关关系

      Fig.  7.  Plot of relationship between Q650/500 and λmax of individual oil inclusion in Tahe oilfield

      图  8  塔河油田奥陶系流体包裹体均一温度-埋藏史投影示意图

      刘永立等(2017)修改

      Fig.  8.  Schematic diagram of burial curve projected with homogenization temperatures of fluid inclusions in the Ordovician of Tahe oilfield

      表  1  塔河油田奥陶系采样清单

      Table  1.   Sampling list in Ordovician of Tahe oilfield

      样品编号 井号 层位 深度(m) 岩性描述
      T1 TS302X O1-2y 6 583.1 灰色泥晶灰岩
      T2 S118 O2yj 5 920.0 微粉晶灰岩
      T3 AT5 O2yj 6 524.7 大型溶洞巨晶方解石
      T4 S94 O1 5 959.7 黄灰色泥晶灰岩
      下载: 导出CSV

      表  2  塔河油田奥陶系T2、T3样品方解石脉稀土元素含量

      Table  2.   REE contents of calcite veins of the Ordovician in Tahe oilfield

      样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Ce异常 Eu异常
      T2-1 0.008 7 0.003 8 0.005 3 0.006 5 0.009 4 0.011 5 0.015 0 0.008 9 0.010 0 0.020 9 0.008 1 0.008 0 0.005 6 0.002 2 0.002 5 0.557 1 0.965 7
      T2-2 0.011 2 0.003 8 0.004 6 0.005 6 0.006 0 0.008 5 0.012 2 0.007 5 0.008 7 0.018 8 0.008 1 0.006 1 0.003 7 0.002 1 0.001 4 0.522 1 0.995 5
      T2-3 0.003 7 0.001 6 0.002 2 0.003 0 0.004 6 0.006 3 0.007 9 0.006 3 0.006 4 0.013 5 0.006 2 0.004 6 0.003 3 0.001 8 0.000 7 0.546 2 1.038 4
      T2-4 0.003 8 0.001 7 0.002 3 0.003 0 0.004 8 0.006 5 0.007 9 0.006 9 0.006 3 0.014 3 0.005 1 0.005 5 0.003 9 0.001 7 0.001 1 0.585 4 1.054 7
      T2-5 0.028 4 0.008 4 0.009 9 0.011 7 0.012 7 0.013 0 0.016 9 0.011 5 0.008 6 0.021 5 0.008 2 0.007 0 0.004 8 0.002 7 0.001 4 0.502 7 0.886 3
      T2-6 0.017 8 0.005 4 0.006 5 0.007 4 0.008 0 0.010 2 0.013 2 0.008 1 0.007 5 0.018 9 0.007 3 0.005 8 0.003 3 0.001 9 0.000 6 0.500 8 0.992 9
      T2-7 0.013 0 0.004 0 0.004 7 0.006 0 0.007 7 0.010 0 0.017 0 0.012 4 0.012 2 0.030 7 0.011 8 0.009 3 0.005 3 0.002 7 0.002 2 0.509 4 0.873 4
      T2-8 0.028 9 0.010 3 0.012 8 0.015 9 0.013 2 0.016 2 0.021 4 0.013 7 0.012 3 0.026 0 0.011 4 0.011 0 0.005 9 0.002 6 0.001 8 0.534 4 0.963 9
      T2-9 0.011 4 0.003 8 0.004 7 0.006 0 0.005 0 0.006 5 0.008 7 0.005 9 0.005 0 0.011 4 0.004 8 0.004 1 0.003 4 0.001 8 0.001 2 0.527 8 0.980 0
      T2-10 0.010 8 0.003 7 0.004 6 0.006 1 0.007 7 0.010 2 0.012 5 0.008 5 0.008 1 0.019 5 0.008 2 0.005 6 0.005 5 0.002 2 0.001 0 0.530 2 1.035 7
      T2-11 0.006 4 0.002 9 0.003 7 0.005 0 0.006 9 0.009 5 0.011 9 0.009 9 0.009 6 0.018 9 0.008 3 0.007 6 0.003 6 0.002 4 0.002 3 0.594 4 1.051 6
      T2-12 0.002 6 0.001 3 0.001 4 0.001 8 0.002 7 0.004 4 0.005 8 0.004 4 0.004 6 0.011 1 0.004 9 0.003 8 0.002 8 0.001 7 0.001 6 0.687 9 1.096 5
      T2-13 0.004 7 0.002 4 0.002 6 0.003 5 0.004 7 0.006 6 0.008 7 0.006 9 0.006 9 0.016 4 0.006 5 0.005 6 0.004 0 0.002 3 0.001 3 0.693 6 1.021 9
      T2-14 0.004 1 0.002 1 0.002 7 0.003 2 0.005 4 0.006 6 0.010 0 0.005 7 0.006 2 0.014 5 0.005 5 0.005 1 0.003 6 0.002 0 0.002 5 0.622 6 0.895 7
      T2-15 0.009 9 0.005 0 0.006 7 0.008 9 0.013 7 0.016 8 0.022 7 0.016 5 0.018 4 0.034 1 0.014 9 0.013 7 0.007 2 0.004 4 0.003 4 0.618 5 0.950 8
      T2-16 0.004 9 0.002 2 0.003 0 0.004 0 0.005 8 0.007 2 0.009 8 0.007 5 0.007 8 0.016 7 0.007 5 0.005 4 0.004 8 0.002 7 0.001 6 0.578 7 0.953 5
      T2-17 0.007 0 0.003 5 0.004 1 0.005 4 0.006 4 0.008 4 0.011 9 0.008 7 0.008 4 0.017 8 0.007 7 0.007 1 0.004 6 0.002 3 0.002 2 0.650 0 0.963 5
      T2-18 0.002 9 0.001 3 0.001 7 0.002 5 0.004 1 0.004 4 0.005 4 0.004 3 0.004 5 0.008 8 0.004 6 0.003 4 0.003 0 0.001 4 0.000 9 0.585 7 0.948 8
      T2-19 0.004 1 0.002 4 0.002 9 0.003 8 0.006 4 0.007 5 0.010 6 0.007 9 0.009 0 0.018 3 0.008 2 0.007 3 0.003 0 0.002 5 0.001 5 0.685 7 0.912 6
      T2-20 0.017 4 0.007 6 0.010 1 0.013 4 0.013 0 0.015 3 0.019 0 0.012 8 0.012 2 0.022 3 0.013 1 0.009 9 0.005 5 0.004 3 0.003 1 0.573 4 0.972 8
      T2-21 0.008 4 0.003 1 0.003 8 0.004 9 0.005 4 0.005 6 0.008 8 0.006 1 0.006 5 0.013 7 0.006 1 0.004 8 0.003 5 0.002 4 0.002 1 0.537 5 0.816 3
      T2-22 0.011 7 0.004 1 0.005 3 0.006 6 0.006 4 0.008 2 0.013 9 0.008 9 0.009 1 0.020 6 0.009 7 0.007 2 0.004 7 0.001 8 0.002 2 0.516 7 0.874 5
      T2-23 0.005 4 0.002 4 0.003 2 0.004 2 0.005 9 0.008 1 0.010 8 0.008 0 0.007 7 0.017 3 0.006 8 0.006 1 0.003 7 0.002 2 0.002 2 0.583 0 1.005 1
      T3-1 0.160 2 0.193 0 0.205 5 0.235 7 0.327 7 0.301 2 0.355 8 0.306 3 0.295 9 0.355 9 0.268 6 0.234 4 0.215 1 0.177 3 0.155 9 1.063 3 0.882 0
      T3-2 0.277 7 0.303 0 0.324 5 0.361 4 0.487 7 0.444 4 0.527 5 0.432 0 0.431 6 0.512 6 0.364 0 0.314 0 0.279 3 0.212 8 0.179 4 1.009 4 0.876 2
      T3-3 0.286 4 0.312 2 0.330 7 0.364 2 0.477 1 0.427 8 0.533 0 0.434 5 0.432 5 0.533 7 0.368 1 0.337 5 0.289 1 0.225 2 0.187 5 1.014 4 0.848 2
      T3-4 0.282 5 0.311 6 0.317 4 0.358 1 0.469 9 0.427 8 0.523 2 0.423 4 0.416 2 0.502 6 0.361 2 0.315 8 0.271 6 0.206 0 0.167 0 1.040 5 0.862 8
      T3-5 0.252 4 0.277 9 0.294 5 0.331 8 0.448 6 0.433 3 0.510 7 0.426 4 0.465 8 0.488 1 0.361 3 0.340 4 0.298 8 0.229 1 0.184 8 1.019 4 0.905 3
      T3-6 0.073 0 0.094 3 0.114 3 0.136 9 0.202 0 0.195 7 0.235 8 0.203 6 0.215 2 0.242 6 0.192 0 0.174 7 0.165 4 0.146 8 0.133 7 1.032 9 0.896 8
      T3-7 0.233 5 0.268 6 0.311 9 0.357 8 0.532 8 0.495 4 0.605 8 0.534 8 0.528 8 0.616 3 0.454 1 0.398 9 0.356 5 0.288 3 0.238 3 0.995 3 0.871 9
      T3-8 0.212 3 0.257 5 0.289 8 0.333 9 0.492 8 0.446 3 0.563 9 0.482 6 0.485 7 0.577 4 0.420 2 0.384 2 0.339 5 0.283 7 0.232 1 1.038 3 0.846 6
      T3-9 0.128 5 0.159 5 0.176 0 0.207 0 0.308 3 0.289 8 0.376 2 0.334 5 0.340 8 0.408 9 0.316 5 0.290 5 0.282 5 0.254 6 0.217 1 1.060 8 0.851 0
      T3-10 0.117 2 0.143 0 0.165 7 0.190 7 0.293 5 0.263 9 0.349 8 0.309 9 0.331 4 0.384 4 0.294 2 0.278 2 0.277 0 0.250 7 0.220 8 1.025 9 0.823 6
      T3-11 0.170 3 0.213 9 0.246 9 0.287 7 0.436 4 0.395 4 0.500 0 0.447 2 0.463 7 0.523 7 0.404 1 0.379 3 0.369 4 0.347 5 0.302 8 1.043 5 0.846 4
      T3-12 0.244 7 0.298 2 0.349 5 0.402 8 0.620 5 0.549 1 0.692 1 0.628 2 0.629 7 0.705 2 0.545 5 0.500 0 0.469 9 0.434 0 0.373 0 1.019 8 0.837 9
      T3-13 0.252 9 0.295 2 0.325 6 0.369 6 0.539 6 0.475 9 0.596 1 0.522 9 0.529 7 0.605 9 0.455 1 0.410 9 0.378 5 0.348 2 0.301 8 1.028 9 0.839 1
      T3-14 0.283 8 0.315 1 0.332 3 0.375 9 0.499 5 0.453 7 0.544 8 0.448 6 0.448 9 0.524 1 0.381 4 0.325 6 0.285 2 0.221 3 0.184 8 1.026 1 0.869 7
      T3-15 0.275 4 0.300 8 0.317 3 0.352 1 0.461 1 0.423 1 0.507 1 0.423 8 0.419 4 0.500 7 0.356 7 0.314 4 0.273 3 0.212 1 0.173 9 1.017 4 0.875 1
      T3-16 0.273 6 0.299 6 0.316 4 0.356 0 0.469 5 0.425 0 0.493 3 0.412 9 0.403 0 0.480 0 0.334 7 0.294 7 0.245 7 0.192 6 0.153 8 1.018 4 0.883 0
      T3-17 0.258 1 0.287 8 0.297 1 0.326 4 0.425 4 0.394 9 0.478 5 0.401 8 0.382 9 0.470 7 0.327 9 0.289 8 0.244 2 0.192 6 0.152 2 1.039 4 0.875 3
      T3-18 0.298 4 0.320 4 0.326 6 0.364 5 0.471 4 0.428 7 0.510 9 0.417 2 0.402 4 0.495 9 0.348 2 0.301 8 0.264 2 0.200 7 0.166 1 1.026 1 0.873 6
      下载: 导出CSV
    • [1] Barker, C. E., Goldstein, R. H., 1990. Fluid-Inclusion Technique for Determining Maximum Temperature in Calcite and Its Comparison to the Vitrinite Reflectance Geothermometer. Geology, 18(10): 1003. https://doi.org/10.1130/0091-7613(1990)0181003:fitfdm>2.3.co;2 doi: 10.1130/0091-7613(1990)0181003:fitfdm>2.3.co;2
      [2] Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum Type Determination through Homogenization Temperature and Vapour Volume Fraction Measurements in Fluid Inclusions. Geofluids, 8(1): 46-59. https://doi.org/10.1111/j.1468-8123.2007.00204.x
      [3] Chen, H.H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, 35(3): 584-590 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201403026.htm
      [4] Chen, H.H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819 (in Chinese with English abstract). http://www.cqvip.com/QK/95357X/201406/663850490.html
      [5] Coogan, L. A., Parrish, R. R., Roberts, N. M. W., 2016. Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust: Insight from In Situ U-Pb Dating. Geology, 44(2): 147-150. https://doi.org/10.1130/g37212.1 doi: 10.1130/G37212.1
      [6] Gao, B., Liu, W.H., Fan, M., et al., 2006. Study on Geochemical Tracking for the Periods of Reservoir-Forming of Oil and Gas in the Tahe Oilfield. Petroleum Geology & Experiment, 28(3): 276-280 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200603016.htm
      [7] Gao, J., He, S., He, Z.L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1): 33-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201401006.htm
      [8] Goldstein, R.H., 1986. Reequilibration of Fluid Inclusions in Low-Temperature Calcium-Carbonate Cement. Geology, 14(9): 792. https://doi.org/10.1130/0091-7613(1986)14792:rofiil>2.0.co;2 doi: 10.1130/0091-7613(1986)14792:rofiil>2.0.co;2
      [9] Goldstein, R.H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1/2/3/4): 159-193. https://doi.org/10.1016/S0024-4937(00)00044-X
      [10] Gong, S., George, S. C., Volk, H., et al., 2007. Petroleum Charge History in the Lunnan Low Uplift, Tarim Basin, China-Evidence from Oil-Bearing Fluid Inclusions. Organic Geochemistry, 38(8): 1341-1355. https://doi.org/10.1016/j.orggeochem.2007.02.014
      [11] Guo, X.W., Chen, J.X., Yuan, S.Q., et al., 2020. Constraint of In-Situ Calcite U-Pb Dating by Laser Ablation on Geochronology of Hydrocarbon Accumulation in Petroliferous Basins: A Case Study of Dongying Sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284-291 (in Chinese with English abstract).
      [12] Hamilton, P. J., Kelley, S., Fallick, A.E., 1989. K-Ar Dating of Illite in Hydrocarbon Reservoirs. Clay Minerals, 24(2): 215-231. https://doi.org/10.1180/claymin.1989.024.2.08
      [13] Kang, Y.Z., 2002. New Theory of Marine Oil Formation and Discover of Tahe Oilfield, Northern Tarim Basin. Journal of Geomechanics, 8(3): 201-206 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZLX200203001.htm
      [14] Kerkhof, A.M., Hein, U.F., 2001. Fluid Inclusion Petrography. Lithos, 55(1/2/3/4): 27-47. https://doi.org/10.1016/S0024-4937(00)00037-2
      [15] Lacazette, A., 1990. Application of Linear Elastic Fracture Mechanics to the Quantitative Evaluation of Fluid-Inclusion Decrepitation. Geology, 18(8): 782. https://doi.org/10.1130/0091-7613(1990)0180782:aolefm>2.3.co;2 doi: 10.1130/0091-7613(1990)0180782:aolefm>2.3.co;2
      [16] Lee, M., Aronson, J.L., Savin, S.M., 1985. K/Ar Dating of Time of Gas Emplacement in Rotliegendes Sandstone, Netherlands. AAPG Bulletin, 69(9): 1381-1385. https://doi.org/10.1306/ad462c68-16f7-11d7-8645000102c1865d doi: 10.1306/ad462c68-16f7-11d7-8645000102c1865d
      [17] Li, Y.T., Qi, L.X., Zhang, S.N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJDL201911002.htm
      [18] Li, Y.Z., Xu, C.H., 2004. Significance and Discovery History of Tahe Oilfield of the Tarim Basin. Petroleum Geology & Expeximent, 26(2): 180-186 (in Chinese with English abstract). http://www.researchgate.net/publication/288027209_Significance_and_discovery_history_of_Tahe_Oilfield_of_the_Tarim_Basin
      [19] Liu, E.T., Zhao, J.X., Pan, S.Q., et al., 2019. A New Technology of Basin Fluid Geochronology: In Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903002.htm
      [20] Liu, D.H., 1995. Fluid Inclusion Studies: An Effective Means for Basin Fluid Investigation. Earth Science Frontiers, 2(4): 149-154 (in Chinese with English abstract). http://www.researchgate.net/publication/313070887_Fluid_inclusion_studies_-_An_effective_means_for_basin_fluid_investigation
      [21] Liu, L., He, S., Zhai, G.Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm
      [22] Liu, Y.L., Luo, M.X., Xia, Y.T., et al., 2017. Geochemical Evidence for Hydrocarbon Accumulation in Deep Ordovician in TS3 Well Block, Tahe Oil Field. Petroleum Geology & Experiment, 39(3): 377-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201703013.htm
      [23] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [24] Mark, D. F., Green, P. F., Parnell, J., et al., 2008. Late Palaeozoic Hydrocarbon Migration through the Clair Field, West of Shetland, UK Atlantic Margin. Geochimica et Cosmochimica Acta, 72(10): 2510-2533. https://doi.org/10.1016/j.gca.2007.11.037
      [25] Parnell, J., Swainbank, I., 1990. Pb-Pb Dating of Hydrocarbon Migration into a Bitumen-Bearing Ore Deposit, North Wales. Geology, 18(10): 1028. https://doi.org/10.1130/0091-7613(1990)0181028:ppdohm>2.3.co;2 doi: 10.1130/0091-7613(1990)0181028:ppdohm>2.3.co;2
      [26] Ping, H. W., Chen, H. H., George, S.C., et al., 2019. Relationship between the Fluorescence Color of Oil Inclusions and Thermal Maturity in the Dongying Depression, Bohai Bay Basin, China: Part 1. Fluorescence Evolution of Oil in the Context of Hydrous Pyrolysis Experiments with Increasing Maturity. Marine and Petroleum Geology, 100: 1-19. https://doi.org/10.1016/j.marpetgeo.2018.10.053
      [27] Prezbindowski, D. R., Larese, R.E., 1987. Experimental Stretching of Fluid Inclusions in Calcite: Implications for Diagenetic Studies. Geology, 15(4): 333. https://doi.org/10.1130/0091-7613(1987)15333:esofii>2.0.co;2 doi: 10.1130/0091-7613(1987)15333:esofii>2.0.co;2
      [28] Qian, Y.X., 2002. Chemical Composition of Fluid Inclusions from the Lower Ordovician Reservoirs in the Tahe Oil Field. Chinese Journal of Geology, 37(z1): 22-28 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZKX2002S1003&dbcode=CJFD&year=2002&dflag=pdfdown
      [29] Rao, D., Qin, J.Z., Xu, J., et al., 2014. Accumulation Periods of Ordovician Reservoirs in Tahe Oil Field. Petroleum Geology & Experiment, 36(1): 83-88, 101 (in Chinese with English abstract).
      [30] Roberts, N.M.W., Walker, R.J., 2016. U-Pb Geochronology of Calcite-Mineralized Faults: Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin. Geology, 44(7): 531-534. https://doi.org/10.1130/g37868.1
      [31] Selby, D., Creaser, R.A., Dewing, K., et al., 2005. Evaluation of Bitumen as a 187Re-187Os Geochronometer for Hydrocarbon Maturation and Migration: A Test Case from the Polaris MVT Deposit, Canada. Earth and Planetary Science Letters, 235(1/2): 1-15. https://doi.org/10.1016/j.epsl.2005.02.018
      [32] Shang, P., Chen, H.H., Hu, S.Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026 (In Chinese with English abstract).
      [33] Wang, C.G., Wang, T.G., He, F.Q., et al., 2005. Stable Carbon Isotope and Its Significance in Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin. Xinjiang Petroleum Geology, 26(2): 155-157 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_xinjiang-petroleum-geology_thesis/0201218708511.html
      [34] Wang, T. G., He, F. Q., Wang, C. J., et al., 2008. Oil Filling History of the Ordovician Oil Reservoir in the Major Part of the Tahe Oilfield, Tarim Basin, NW China. Organic Geochemistry, 39(11): 1637-1646. https://doi.org/10.1016/j.orggeochem.2008.05.006
      [35] Yan, X.B., Zhang, T., 2004. Discussion on Forming Mechanism of the Large-Scale Carbonate Rock Subtle Reservoir in the Tahe Oilfield. Geological Review, 50(4): 370-376 (in Chinese with English abstract). http://www.researchgate.net/publication/292701811_Discussion_on_forming_mechanism_of_the_large-scale_carbonate_rock_subtle_reservoir_in_the_Tahe_oilfield
      [36] Yin, H.P., Qian, Y.X., Chen, Q.L., et al., 2009. Approaching to Chemical Composition and Application of Raman Spectrum of Fluid Inclusion-Taking the Lower Ordovician Reservoirs in Tahe as an Example. Petroleum Geology & Experiment, 31(3): 282-286, 291 (in Chinese with English abstract).
      [37] Yu, S., Pan, C. C., Wang, J. J., et al., 2011. Molecular Correlation of Crude Oils and Oil Components from Reservoir Rocks in the Tazhong and Tabei Uplifts of the Tarim Basin, China. Organic Geochemistry, 42(10): 1241-1262. https://doi.org/10.1016/j.orggeochem.2011.08.002
      [38] Yun, L., Jiang, H.S., 2007. Hydrocarbon Accumulation Conditions and Enrichment Rules in Tahe Oilfield. Oil & Gas Geology, 28(6): 768-775 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200706011.htm
      [39] Zhao, C.J., Kang, Z.H., Hou, Y.H., et al., 2020. Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 45(11): 4118-4127 (in Chinese with English abstract).
      [40] Zhu, B. Q., Zhang, J. L., Tu, X. L., et al., 2001. Pb, Sr, and Nd Isotopic Features in Organic Matter from China and Their Implications for Petroleum Generation and Migration. Geochimica et Cosmochimica Acta, 65(15): 2555-2570. https://doi.org/10.1016/S0016-7037(01)00608-1
      [41] 陈红汉, 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403026.htm
      [42] 陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
      [43] 高波, 刘文汇, 范明, 等, 2006. 塔河油田成藏期次的地球化学示踪研究. 石油实验地质, 28(3): 276-280. doi: 10.3969/j.issn.1001-6112.2006.03.015
      [44] 高键, 何生, 何治亮, 等, 2014. 中扬子京山地区方解石脉成因及其对油气保存的指示意义. 石油与天然气地质, 35(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401006.htm
      [45] 郭小文, 陈家旭, 袁圣强, 等, 2020. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例. 石油学报, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
      [46] 康玉柱, 2002. 海相成油新理论与塔河大油田的发现. 地质力学学报, 8(3): 201-206. doi: 10.3969/j.issn.1006-6616.2002.03.002
      [47] 李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. doi: 10.7623/syxb201912006
      [48] 黎玉战, 徐传会, 2004. 塔里木盆地塔河油田发现历程及其意义. 石油实验地质, 26(2): 180-186. doi: 10.3969/j.issn.1001-6112.2004.02.010
      [49] 刘德汉, 1995. 包裹体研究: 盆地流体追踪的有力工具. 地学前缘, 2(4): 149-154. doi: 10.3321/j.issn:1005-2321.1995.04.003
      [50] 刘恩涛, 2019. 盆地流体年代学研究新技术——激光原位方解石U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958
      [51] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      [52] 刘永立, 罗明霞, 夏永涛, 等, 2017. 塔河油田塔深3井区奥陶系深层油气成藏的地球化学证据. 石油实验地质, 39(3): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201703013.htm
      [53] 钱一雄, 2002. 塔河油田下奥陶统储层中流体包裹体成份. 地质科学, 37(z1): 22-28. doi: 10.3321/j.issn:0563-5020.2002.z1.003
      [54] 饶丹, 秦建中, 许锦, 等, 2014. 塔河油田奥陶系油藏成藏期次研究. 石油实验地质, 36(1): 83-88, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201401015.htm
      [55] 尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油气特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
      [56] 王传刚, 王铁冠, 何发歧, 等, 2005. 塔河油田原油稳定碳同位素特征及其成藏意义. 新疆石油地质, 26(2): 155-157. doi: 10.3969/j.issn.1001-3873.2005.02.010
      [57] 闫相宾, 张涛, 2004. 塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨. 地质论评, 50(4): 370-376. doi: 10.3321/j.issn:0371-5736.2004.04.006
      [58] 殷和平, 钱一雄, 陈强路, 等, 2009. 流体包裹体主要成分及谱学特征研究: 以塔河油区下奥陶统储层为例. 石油实验地质, 31(3): 282-286, 291. doi: 10.3969/j.issn.1001-6112.2009.03.014
      [59] 云露, 蒋华山, 2007. 塔河油田成藏条件与富集规律. 石油与天然气地质, 28(6): 768-775. doi: 10.3321/j.issn:0253-9985.2007.06.010
      [60] 赵晨君, 康志宏, 侯阳红, 等, 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 45(11): 4118-4127. doi: 10.3799/dqkx.2019.274
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  660
    • HTML全文浏览量:  159
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-08
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回