The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea
-
摘要: 岩浆在被动大陆边缘的张-破裂过程中起到决定性作用.南海东北部陆缘发育厚度达10 km的下地壳高速体,其成因机制长期存在争议,影响了对南海东北部陆缘构造归属的界定.为了分析南海共轭陆缘的张破裂机制,本文调研了国内外最新研究进展,系统分析了南海南北陆缘的地壳结构和岩浆活动特点,提出:南海陆缘和海盆中发育有大量岩浆活动,但东西陆缘存在较大差异,底侵高速体东厚西薄,推测为同张裂成因.根据地壳结构与底侵岩浆的量,将被动陆缘划分为5个子类,南海陆缘东侧为多岩浆型,向西变为少岩浆型.东西差异除与伸展速率有关,可能还与东侧陆缘发生了板缘破裂,而西侧陆缘发生了板内破裂有关.Abstract: Magma plays a key role in the rifting and breakup process of passive continental margin. Up to 10 km thick high velocity lower crust (HVLC) developed in the northeastern margin. Long term controversy toward its formation mechanism makes the margin classification difficult. In order to analyze the rifting and breakup mechanism of the SCS conjugate margins, this paper reviews the recent research progress of global margins, based on which the crustal structure and magmatic activity of the SCS are summarized. It is concluded that large amounts of magmatic activity occurred in the SCS with discrepancy between the eastern and western margins. The HVLC is thicker in the east and thinner or even absent in the west. It is speculated that the HVLC is of syn-rift underplating. According to the crustal structure and the amount of underplated magma, we suggest that the passive continental margin can be divided into 5 subclasses. The eastern continental margin of the SCS is of magma-robust type, and the middle and western margins are of magma-intermediate and magma-deficient types, respectively.In addition to the stretching rate, plate-edge rifting in the east and plate-interior rifting in the west continental margin may also contribute to the large difference in the amount of magmatic underplating.
-
图 1 贫岩浆型和富岩浆型被动大陆边缘结构特征示意剖面
据Franke(2013)修改
Fig. 1. The diagram showing the main profile features of magma-poor and magma-rich margins
图 2 Ⅰ型(a)和Ⅱ型(b)破裂剖面模式
Huismans and Beaumont(2011, 2014).Ⅰ型破裂特点:断裂切割深度大,地壳断裂区域窄,隆凹结构不对称,地壳早于地幔破裂,洋陆过渡带上有地幔剥露和蛇纹石化,拉张过程中岩浆量有限,洋盆发育和正常地壳厚度出现较晚;Ⅱ型破裂特点:地壳强烈减薄区域宽,同张裂早期盆地沉积发育断裂,同张裂晚期沉积不变形,晚期沉积发育在浅水凹陷中,同张裂沉降亏损,无地幔剥露但有同张裂岩浆活动,存在岩浆底侵速度异常体,地壳破裂后很快发育正常洋壳
Fig. 2. Diagram of type Ⅰ (a) and type Ⅱ (b) breakup in magma-poor margin
图 3 南海陆缘与海盆中岩浆活动与下地壳高速体分布
岩浆分布及其活动时间据Zhang et al. (2016)、Fan et al.(2017, 2019)和Deng et al. (2019); 侵入岩席和(或)岩墙等出现的范围大致在红色虚线至洋盆区域(Song et al., 2017),但南部陆缘由于地震剖面覆盖限制,其范围不准确.黑色实线为OBS(ocean bottom seismometer)测线(剖面图见图 4),红色粗实线是剖面上揭示了下地壳高速体的范围;深蓝色实线为多道地震剖面(见图 5)
Fig. 3. The distribution of magmatic activity and high velocity lower crust in the South China Sea
图 4 南海陆缘地壳结构与下地壳高速体分布剖面
图中数据单位:km/s. a. 剖面OBST3,据Lester et al. (2014);b. 剖面OBS 2001,据Wang et al. (2006);c. 剖面ESP-E,据Nissen et al.(1995);d.剖面OBS2006-3,据卫小冬等(2011);e. 剖面OBS 1993,据Yan et al.(2001);f. 剖面OBS973-2,据阮爱国等(2011);g. 剖面OBS2006-1,据Ding et al.(2012);h.剖面OBH-IV,据Qiu et al.(2001);i. 剖面OBS2011-1,据Huang et al.(2019);j. 剖面OBS973-1,据丘学林等(2011);k. 剖面,据Pichot et al.(2014)
Fig. 4. The crustal structure and the distribution of high velocity lower crust in the profile
图 5 反射地震剖面上观察到的岩浆底侵、侵入岩墙和岩席特征
据Sun et al.(2019a)修改.a.原始剖面;b.构造解释线描图;c, d.局部放大图,图件c和d在剖面中的位置见图a中的矩形框
Fig. 5. Magmatic underplating, intruding dikes and sills observed on multi-channel reflection seismic profile
图 6 被动大陆边缘根据张‒破裂期间的岩浆量进行的陆缘分类模式
图a、e据Franke(2013)修改;图b~d根据南海陆缘及其他被动陆缘的特征绘制
Fig. 6. The suggested five types of passive continental margin according to the amount of magmatism involved in rifting and breakup
图 7 双层和三层(含软弱中下地壳)地壳发生伸展破裂的结构(a~h)和热状态(i)特征对比
a~d.双层地壳;e~h. 三层地壳;CTF. 地壳减薄因子;图i据Li et al.(2019)修改,其中f为强度与正常地壳相比的比例因子
Fig. 7. The comparison of rifting structure (a—h) and thermal situation (i) between two-layer and three-layer (with weak middle to lower crust) crust
图 8 南海北部陆缘盆地拉张产生岩浆量与张裂时间和张裂程度关系
底图据Bown and White(1995);珠江口盆地的拉张因子据张云帆等(2007, 2014)、Zhang et al. (2020b);琼东南盆地拉张因子据Qiu et al.(2013)
Fig. 8. The relationship between magmatic production and rifting period versus stretching factor in SCS.
图 9 南海北部陆缘破裂位置及其与中生代俯冲系统关系分析
据Li et al.(2020)修改.a. 南海共轭陆缘及其与中生代火山弧和弧前盆地的关系,其中东部陆缘破裂位置发生在中生代弧前盆地区,西侧陆缘破裂发生在火山之间;b. 根据数值模拟绘制的南海东部陆缘在弧前盆发生板缘破裂模式,板缘破裂常伴有俯冲板片的断裂和拆沉;c. 根据数值模拟绘制的南海西部陆缘沿火山弧/弧间发生板内破裂模式;d. 推测中生代俯冲阶段南海北部陆缘的状态,新生代时,沿着正常厚度的岩石圈破裂为板内破裂,沿着减薄的弧前区破裂为板缘破裂
Fig. 9. The breakup location of SCS and its relationship to Pre-Cenozoic subduction system
-
[1] Bai, Y. L., Wu, S. G., Liu, Z., et al., 2015. Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 661: 121-135. https://doi.org/10.1016/j.tecto.2015.08.028 [2] Bayrakci, G., Minshull, T. A., Sawyer, D. S., et al., 2016. Fault-Controlled Hydration of the Upper Mantle during Continental Rifting. Nature Geoscience, 9(5): 384-388. https://doi.org/10.1038/ngeo2671 [3] Becker, K., Franke, D., Trumbull, R., et al., 2014. Asymmetry of High-Velocity Lower Crust on the South Atlantic Rifted Margins and Implications for the Interplay of Magmatism and Tectonics in Continental Breakup. Solid Earth, 5(2): 1011-1026. https://doi.org/10.5194/se-5-1011-2014 [4] Bialas, R. W., Buck, W. R., Qin, R., 2010. How much Magma is Required to Rift a Continent?. Earth and Planetary Science Letters, 292(1-2): 68-78. https://doi.org/10.1016/j.epsl.2010.01.021 [5] Boillot, G., Beslier, M. O., Girardeau, J., 1995. Nature, Structure and Evolution of the Ocean-Continent Boundary: The Lesson of the West Galicia Margin (Spain). In: Banda, E., Torne, M., Talwani, M., eds., Rifted Ocean-Continent Boundaries. Springer, Dordrecht. [6] Boillot, G., Grimaud, S., Mauffret, A., et al., 1980. Ocean-Continent Boundary off the Iberian Margin: A Serpentinite Diapir West of the Galicia Bank. Earth and Planetary Science Letters, 48(1): 23-34. https://doi.org/10.1016/0012-821X(80)90166-1 [7] Bown, J. W., White, R. S., 1995. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 100(B9): 18011-18029. https://doi.org/10.1029/94JB01478 [8] Braun, J., Beaumont, C., 1989. A Physical Explanation of the Relation between Flank Uplifts and the Breakup Unconformity at Rifted Continental Margins. Geology, 17(8): 760-764. https://doi.org/10.1130/0091-7613(1989)0170760: apeotr>2.3.co;2 doi: 10.1130/0091-7613(1989)0170760:apeotr>2.3.co;2 [9] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280 [10] Bronner, A., Sauter, D., Manatschal, G., et al., 2011. Magmatic Breakup as an Explanation for Magnetic Anomalies at Magma-Poor Rifted Margins. Nature Geoscience, 4(8): 549-553. https://doi.org/10.1038/NGEO1201 [11] Brune, S., Williams, S. E., Butterworth, N. P., et al., 2016. Abrupt Plate Accelerations Shape Rifted Continental Margins. Nature, 536(7615): 201-204. https://doi.org/10.1038/nature18319 [12] Buck, W. R., 1991. Modes of Continental Lithospheric Extension. Journal of Geophysical Research: Solid Earth, 96(B12): 20161-20178. https://doi.org/10.1029/91jb01485 [13] Buck, W. R., 2006. The Role of Magma in the Development of the Afro-Arabian Rift System. In: Yirgu, G., Ebinger, C. J., Maguire, P. K. H., eds., The Afar Volcanic Province within the East African Rift System. Geological Society of London, London. [14] Buck, W.R., 2004. Consequences of Asthenospheric Variability on Continental Rifting. In: Karner, G. D., Taylor, B., Driscoll, N. W., et al., eds., Rheology and Deformation of the Lithosphere at Continental Margins. Columbia University Press, New York. [15] Calvès, G., Schwab, A. M., Huuse, M., et al., 2011. Seismic Volcanostratigraphy of the Western Indian Rifted Margin: The Pre-Deccan Igneous Province. Journal of Geophysical Research Atmospheres, 116(B1): B01101. https://doi.org/10.1029/2010jb000862 [16] Cao, J.H., Sun, J.L., Xu, H.L., et al., 2014. Seismological Features of the Littoral Fault Zone in the Pearl River Estuary. Chinese Journal of Geophysics, 57(2): 498-508 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201402015.htm [17] Clerc, C., de Ringenbach, J. C., Jolivet, L., et al., 2018. Rifted Margins: Ductile Deformation, Boudinage, Continentward-Dipping Normal Faults and the Role of the Weak Lower Crust. Gondwana Research, 53: 20-40. https://doi.org/10.1016/j.gr.2017.04.030 [18] Clift, P., Lin, J., Barckhausen, U., 2002. Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-Up in the South China Sea. Marine and Petroleum Geology, 19(8): 951-970. https://doi.org/10.1016/S0264-8172(02)00108-3 [19] Davis, M., Kusznir, N, 2004. Depth-Dependent Lithospheric Stretching at Rifted Continental Margins. In: Karner, G. D., ed., Proceedings of NSF Rifted Margins Theoretical Institute. Columbia University Press, New York. [20] Davy, R. G., Minshull, T. A., Bayrakci, G., et al., 2016. Continental Hyperextension, Mantle Exhumation, and Thin Oceanic Crust at the Continent-Ocean Transition, West Iberia: New Insights from Wide-Angle Seismic. Journal of Geophysical Research: Solid Earth, 121(5): 3177-3199. https://doi.org/10.1002/2016jb012825 [21] Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11: 4583. https://doi.org/10.1038/s41467-020-18448-y [22] Deng, P., Mei, L. F., Liu, J., et al., 2019. Episodic Normal Faulting and Magmatism during the Syn-Spreading Stage of the BaiyunSag in Pearl River Mouth Basin: Response to the Multi-Phase Seafloor Spreading of the South China Sea. Marine Geophysical Research, 40(1): 33-50. https://doi.org/10.1007/s11001-018-9352-9 [23] Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026 [24] Ding, W. W., Li, J. B., Clift, P. D., et al., 2016. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013 [25] Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. ActaGeologicaSinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x [26] Duncan, R. A., Larsen, H. C., Allan, J. F., 1996. Proc. ODP, Init. Repts., vol. 163. Ocean Drilling Program, College Station. [27] Eccles, J. D., White, R. S., Christie, P. A. F., 2011. The Composition and Structure of Volcanic Rifted Continental Margins in the North Atlantic: Further Insight from Shear Waves. Tectonophysics, 508(1-4): 22-33. https://doi.org/10.1016/j.tecto.2010.02.001 [28] Eldholm, O., Thiede, J., Taylor, B., 1987. Proc. ODP, Sci. Results. Ocean Drilling Program, College Station. [29] Eldholm, O., Thiede, J., Taylor, E., 1989. Evolution of the VøringVolcanic Margin. Proceedings of the Ocean Drilling Program, 104 Scientific Results. Ocean Drilling Program, College Station. [30] Fan, C. Y., Xia, S. H., Cao, J. H., et al., 2019. Lateral Crustal Variation and Post-Rift Magmatism in the Northeastern South China Sea Determined by Wide-Angle Seismic Data. Marine Geology, 410: 70-87. https://doi.org/10.1016/j.margeo.2018.12.007 [31] Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of IntraplateSeamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016gc006792 [32] Fialko, Y. A., Rubin, A. M., 1999. Thermal and Mechanical Aspects of Magma Emplacement in Giant Dike Swarms. Journal of Geophysical Research: Solid Earth, 104(B10): 23033-23049. https://doi.org/10.1029/1999jb900213 [33] Fountain, D. M., Boundy, T. M., Austrheim, H., et al., 1994. Eclogite-FaciesShear Zones—Deep Crustal Reflectors?. Tectonophysics, 232(1-4): 411-424. https://doi.org/10.1016/0040-1951(94)90100-7 [34] Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003 [35] Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020 [36] Fyfe, W. S., 1992. Magma Underplating of Continental Crust. Journal of Volcanology and Geothermal Research, 50(1-2): 33-40. https://doi.org/10.1016/0377-0273(92)90035-C [37] Gao, J. W., Bangs, N., Wu, S. G., et al., 2019. Post-Seafloor Spreading Magmatism and Associated Magmatic Hydrothermal Systems in the Xisha Uplift Region, Northwestern South China Sea. Basin Research, 31(4): 688-708. https://doi.org/10.1111/bre.12338 [38] Geoffroy, L., Burov, E. B., Werner, P., 2015. Volcanic Passive Margins: Another Way to Break up Continents. Scientific Reports, 5: 14828. https://doi.org/10.1038/srep14828 [39] Gernigon, L., de Ringenbach, J. C., Planke, S., et al., 2004. Deep Structures and Breakup along Volcanic Rifted Margins: Insights from Integrated Studies along the Outer Vøring Basin (Norway). Marine and Petroleum Geology, 21(3): 363-372. https://doi.org/10.1016/j.marpetgeo.2004.01.005 [40] Gillard, M., Tugend, J., Müntener, O., et al., 2019. The Role of Serpentinization and Magmatism in the Formation of Decoupling Interfaces at Magma-Poor Rifted Margins. Earth-Science Reviews, 196: 102882. https://doi.org/10.1016/j.earscirev.2019.102882 [41] Hao, T. Y., Xu, Y., Sun, F. L., et al., 2011. Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3098-3116 (in Chinese with English abstract). doi: 10.1002/cjg2.1679/full [42] Hou, W. A., Li, C. F., Wan, X. L., et al., 2019. Crustal S-Wave Velocity Structure across the Northeastern South China Sea Continental Margin: Implications for Lithology and Mantle Exhumation. Earth andPlanetary Physics, 3(4): 314-329. https://doi.org/10.26464/epp2019033 [43] Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2013. Geochronology and Geochemistry of Cenozoic Basalts from Eastern Guangdong, SE China: Constraints on the Lithosphere Evolution Beneath the Northern Margin of the South China Sea. Contributions to Mineralogy and Petrology, 165(3): 437-455. https://doi.org/10.1007/s00410-012-0816-7 [44] Huang, H. B., Qiu, X. L., Zhang, J. Z., et al., 2019. Low-Velocity Layers in the Northwestern Margin of the South China Sea: Evidence from Receiver Functions of Ocean-Bottom Seismometer Data. Journal of Asian Earth Sciences, 186: 104090. https://doi.org/10.1016/j.jseaes.2019.104090 [45] Huismans, R. S., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988 [46] Huismans, R. S., Beaumont, C., 2014. Rifted Continental Margins: The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407: 148-162. https://doi.org/10.1016/j.epsl.2014.09.032 [47] Jokat, W., Hagen, C., 2017. Crustal Structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a Hotspot?. Tectonophysics, 716: 21-32. https://doi.org/10.1016/j.tecto.2016.08.011 [48] Larsen, H. C., Saunders, A. D., 1998. Tectonism and Volcanism at the Southeast Greenland Rifted Margin: A Record of Plume Impact and Later Continental Rupture. Ocean Drilling Program, College Station. [49] Larsen, H. C., Saunders, A. D., Clift, P. D., 1994. Proc. ODP, Init. Repts, vol. 152. Ocean Drilling Program, College Station. [50] Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin. 131(7-8): 1059-1074. https: //doi.org/10.1130/b35001.1 [51] Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610 [52] Lester, R., van Avendonk, H. J. A., McIntosh, K., et al., 2014. Rifting and Magmatism in the Northeastern South China Sea from Wide-Angle Tomography and Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 119(3): 2305-2323. https://doi.org/10.1002/2013jb010639 [53] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 [54] Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007GC001806 [55] Li, F. C., Sun, Z., Pang, X., et al., 2019. Low-Viscosity Crustal Layer Controls the Crustal Architecture and Thermal Distribution at Hyperextended Margins: Modeling Insight and Application to the Northern South China Sea Margin. Geochemistry, Geophysics, Geosystems, 20(7): 3248-3267. https://doi.org/10.1029/2019GC008200 [56] Li, F. C., Sun, Z., Yang, H. F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8): 6215-6235. https://doi.org/10.1029/2017jb014861 [57] Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by SubductionDirection Reversal: ANumerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020TC006409 [58] Li, J. B., 2011. Dynamics of the Continental Margins of South China Sea: Scientific Experiments and Research Progresses. Chinese Journal of Geophysics, 54(12): 2993-3003 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-geophysics_thesis/0201253049035.html [59] Li, S. Z., Suo, Y. H., Liu, X., et al., 2012. Basic Structural Pattern and Tectonic Models of the South China Sea: Problems, Advances and Controversies. Marine Geology and Quaternary Geology, 32(6): 35-53 (in Chinese with English abstract). http://www.researchgate.net/publication/275900896_Basic_structural_pattern_and_tectonic_models_of_the_South_China_Sea_problems_advances_and_controversies [60] Lin, J., Xu, Y. G., Sun, Z., et al., 2019. Mantle Upwelling Beneath the South China Sea and Links to Surrounding Subduction Systems. National Science Review, 6(5): 877-881. https://doi.org/10.1093/nsr/nwz123 [61] Liu, A., Wu, G. Z., Wu, S. M., 2008. A Discussion on the Origin of High Velocity Layer in the Lower Crust of Northeast South China Sea. Geological Review, 54(5): 609-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200805008.htm [62] Manatschal, G., Bernoulli, D., 1999. Architecture and Tectonic Evolution of Nonvolcanic Margins: Present-Day Galicia and Ancient Adria. Tectonics, 18(6): 1099-1119. https://doi.org/10.1029/1999TC900041 [63] Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635 (in Chinese with English abstract). [64] McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7 [65] Morgan, P. J., Parmentier, E. M., Lin, J., 1987. Mechanisms for the Origin of Mid-Ocean Ridge Axial Topography: Implications for the Thermal and Mechanical Structure of Accreting Plate Boundaries. Journal of Geophysical Research Atmospheres, 92(B12): 12823. https://doi.org/10.1029/jb092ib12p12823 [66] Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407-22433. https://doi.org/10.1029/95jb01866 [67] Peace, A. L., Welford, J. K., Geng, M. X., et al., 2018. Rift-Related Magmatism on Magma-Poor Margins: Structural and Potential-Field Analyses of the Mesozoic Notre Dame Bay Intrusions, Newfoundland, Canada and Their Link to North Atlantic Opening. Tectonophysics, 745: 24-45. https://doi.org/10.1016/j.tecto.2018.07.025 [68] Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., et al., 2006. The Rift to Drift Transition at Non-Volcanic Margins: Insights from Numerical Modelling. Earth and Planetary Science Letters, 244(1-2): 458-473. https://doi.org/10.1016/j.epsl.2006.01.059 [69] Pérez-Gussinyé, M., Reston, T. J., 2001. Rheological Evolution during Extension at NonvolcanicRifted Margins: Onset of Serpentinization and Development of Detachments Leading to Continental Breakup. Journal of Geophysical Research: Solid Earth, 106(B3): 3961-3975. https://doi.org/10.1029/2000jb900325 [70] Pichot, T., Delescluse, M., Chamot-Rooke, N., et al., 2014. Deep Crustal Structure of the Conjugate Margins of the SW South China Sea from Wide-Angle Refraction Seismic Data. Marine and Petroleum Geology, 58: 627-643. https://doi.org/10.1016/j.marpetgeo.2013.10.008 [71] Planke, S., Rasmussen, T., Rey, S. S., et al., 2005. Seismic Characteristics and Distribution of Volcanic Intrusions and Hydrothermal Vent Complexes in the Vøring and Møre Basins. Geological Society, London, PetroleumGeology Conference Series, 6(1): 833-844. https://doi.org/10.1144/0060833 [72] Planke, S., Symonds, P. A., Alvestad, E., et al., 2000. Seismic Volcanostratigraphy of Large-Volume Basaltic Extrusive Complexes on Rifted Margins. Journal of Geophysical Research: Solid Earth, 105(B8): 19335-19351. https://doi.org/10.1029/1999jb900005 [73] Qin, R., Buck, W. R., 2008. Why Meter-Wide Dikes at Oceanic Spreading Centers?. Earth and PlanetaryScience Letters, 265(3-4): 466-474. https://doi.org/10.1016/j.epsl.2007.10.044 [74] Qiu, N., Wang, Z. F., Xie, H., et al., 2013. Geophysical Investigations of Crust-Scale Structural Model of the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3-4): 259-279. https://doi.org/10.1007/s11001-013-9182-8 [75] Qiu, X. L., Ye, S. Y., Wu, S. M., et al., 2001. Crustal Structure across the Xisha Trough, Northwestern South China Sea. Tectonophysics, 341(1-4): 179-193. https://doi.org/10.1016/S0040-1951(01)00222-0 [76] Qiu, X. L., Zhao, M. H., Ao, W., et al., 2011. OBS Survey and Crustal Structure of the Southwest Sub-Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(12): 3117-3128 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqwlxb201112012.aspx [77] Ren, J. B., Wang, L. L., Yan, Q. S., et al., 2013. Geochemical Characteristics and Its Geological Implications for Basalts in Volcaniclastic Rock from Daimao Seamount. Earth Science, 38(Suppl. 1): 10-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1002.htm [78] Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501009 [79] Reston, T. J., 2009. The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A Synthesis. Tectonophysics, 468(1-4): 6-27. https://doi.org/10.1016/j.tecto.2008.09.002 [80] Reynolds, P., Holford, S., Schofield, N., et al., 2017. The Shallow Depth Emplacement of Mafic Intrusions on a Magma-Poor Rifted Margin: An Example from the Bight Basin, Southern Australia. Marine and Petroleum Geology, 88: 605-616. https://doi.org/10.1016/j.marpetgeo.2017.09.008 [81] Roberts, D. G., Backman, J., Morton, A. C., et al., 1984. Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the West Margin of Rockall Plateau, Initial Reports of the Deep Sea Drilling Project 81. Ocean Drilling Program, College Station. [82] Ros, E., Pérez-Gussinyé, M., Araújo, M., et al., 2017. Lower Crustal Strength Controls on Melting and Serpentinization at Magma-Poor Margins: Potential Implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12): 4538-4557. https://doi.org/10.1002/2017GC007212 [83] Royden, L., Keen, C. E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51(2): 343-361. https://doi.org/10.1016/0012-821X(80)90216-2 [84] Ruan, A. G., Niu, X. W., Qiu, X. L., et al., 2011. A Wide Angle Ocean Bottom Seismometer Profile across Liyue Bank, the Southern Margin of South China Sea. Chinese Journal of Geophysics, 54(12): 3139-3149(in Chinese). http://www.researchgate.net/publication/243971470_A_Wide_Angle_Ocean_Bottom_Seismometer_Experiment_Across_Liyue_Bank_the_Southern_Margin_of_the_South_China_Sea [85] Ryberg, T., Geissler, W. H., Jokat, W., et al., 2017. Uppermost Mantle and Crustal Structure at Tristan da Cunha Derived from Ambient Seismic Noise. Earth and Planetary Science Letters, 471: 117-124. https://doi.org/10.1016/j.epsl.2017.04.049 [86] Savva, D., Pubellier, M., Franke, D., et al., 2014. Different Expressions of Rifting on the South China Sea Margins. Marine and Petroleum Geology, 58: 579-598. https://doi.org/10.1016/j.marpetgeo.2014.05.023 [87] Schmiedel, T., Kjoberg, S., Planke, S., et al., 2017. Mechanisms of Overburden Deformation Associated with the Emplacement of the Tulipan Sill, Mid-Norwegian Margin. Interpretation, 5(3): SK23-SK38. https://doi.org/10.1190/int-2016-0155.1 [88] Song, X. X., Li, C. F., Yao, Y. J., et al., 2017. Magmatism in the Evolution of the South China Sea: Geophysical Characterization. Marine Geology, 394: 4-15. https://doi.org/10.1016/j.margeo.2017.07.021 [89] Sotin, C., Parmentier, E. M., 1989. Dynamical Consequences of Compositional and Thermal Density Stratification Beneath Spreading Centers. Geophysical Research Letters, 16(8): 835-838. https://doi.org/10.1029/gl016i008p00835 [90] Sun, Z., Jian, Z., Stock, J. M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368. International Ocean Discovery Program, College Station. [91] Sun, Z., Lin, J., Qiu, N., et al., 2019a. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116 [92] Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019b. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584 [93] Sun, Z., Lin, J., Wang, P. X., et al., 2020. International Collaboration of Ocean Exploration in the South China Sea Enhanced by International Ocean Discovery Program Expeditions 367/368/368x. Journal of Tropical Oceanography, 39(6): 18-29 (in Chinese with English abstract). [94] Sun, Z., Liu, S. Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201601001.htm [95] Sun, Z., Zhao, Z. X., Li, J. B., et al., 2011. Tectonic Analysis of the Breakup and Bollision Unconformities in the Nansha Block. Chinese Journal of Geophysics, 54(12): 3196-3209 (in Chinese). doi: 10.1002/cjg2.1685/full [96] Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002 [97] Sun, Z., Zhong, Z. H., Zhou, D., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science in China (Series D), 36(9): 797-810 (in Chinese). [98] Tugend, J., Gillard, M., Manatschal, G., et al., 2018. Reappraisal of the Magma-Rich VersusMagma-Poor Rifted Margin Archetypes. Geological Society, London, Special Publications, SP476.9.https://doi.org/10.1144/sp476.9 [99] vanKeken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. SubductionFactory: 4. Depth-Dependent Flux of H2O from SubductingSlabs Worldwide. Journalof Geophysical Research Atmospheres, 116(B1): B01401. https://doi.org/10.1029/2010jb007922 [100] Wan, K. Y., Xia, S. H., Cao, J. H., et al., 2017. Deep Seismic Structure of the Northeastern South China Sea: Origin of a High-Velocity Layer in the Lower Crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831-2858. https://doi.org/10.1002/2016jb013481 [101] Wan, L., Zeng, W. J., Wu, N. Y., et al., 2009. Geotransect from Xisha Trough in the Northern Continental Slope of the South China Sea to Hengchun Peninsular in Taiwan. Geology in China, 36(3): 564-572 (in Chinese with English abstract). http://www.researchgate.net/publication/287691622_Geotransect_from_Xisha_Trough_in_the_northern_continental_slope_of_the_South_China_Sea_to_Hengchun_Peninsular_in_Taiwan [102] Wang, L. J., Sun, Z., Yang, J. H., et al., 2019a. Seismic Characteristics and Evolution of Post-Rift Igneous Complexes and Hydrothermal Vents in the LingshuiSag (QiongdongnanBasin), Northwestern South China Sea. Marine Geology, 418: 106043. https://doi.org/10.1016/j.margeo.2019.106043 [103] Wang, L. J., Zhu, J. T., Zhuo, H. T., et al., 2020. Seismic Characteristics and Mechanism of Fluid Flow Structures in the Central Depression of Qiongdongnan Basin, Northern Margin of South China Sea. International Geology Review, 62(7-8): 1108-1130. https://doi.org/10.1080/00206814.2019.1695002 [104] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019b. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting VsIntra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135 [105] Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Series D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001 [106] Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039 [107] Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 53(1): 177-233. https://doi.org/10.1093/petrology/egr061 [108] Wei, X. D., Ruan, A. G., Zhao, M. H., et al., 2011. A Wide Angle OBS Profile across Dongsha Uplift and Chaoshan Depression in the Mid Northern South China Sea. Chinese Journal of Geophysics, 54(12): 3325-3335 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqwlxb201112030 [109] White, R., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research Atmospheres, 94(B6): 7685-7729. https://doi.org/10.1029/jb094ib06p07685 [110] Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085 [111] Wu, S. M., Zhou, D., Qiu, X. L., 2001. Tectonic Setting of the Northern Margin of South China Sea. Geological Journal of China Universities, 7(4): 419-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200104005.htm [112] Xia, S. H., Zhao, F., Zhao, D. P., et al., 2018. Crustal Plumbing System of Post-Rift Magmatism in the Northern Margin of South China Sea: New Insights from Integrated Seismology. Tectonophysics, 744: 227-238. https://doi.org/10.1016/j.tecto.2018.07.002 [113] Xie, Z. Y., Sun, L. T., Pang, X., et al., 2017. Origin of the Dongsha Event in the South China Sea. Marine Geophysical Research, 38(4): 357-371. https://doi.org/10.1007/s11001-017-9321-8 [114] Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1 [115] Yan, P., Liu, H. L., 2002. Analysis on Deep Crust Sounding Results in Northern Margin of South China Sea. Journal of Tropical Oceanography, 21(2): 1-12 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026539877 [116] Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338(1): 1-21. https://doi.org/10.1016/S0040-1951(01)00062-2 [117] Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005 [118] Yang, T., Shen, Y., 2005. P-Wave Velocity Structure of the Crust and Uppermost Mantle Beneath Iceland from Local Earthquake Tomography. Earth and Planetary Science Letters, 235(3-4): 597-609. https://doi.org/10.1016/j.epsl.2005.05.015 [119] Yao, B. C., 1998. Crust Structure of the Northern Margin of the South China Sea and Its Tectonic Significance. Marine Geology and Quaternary Geology, 18(2): 1-16 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ802.000.htm [120] Yao, B., Wang, G. Y., 1983. The Crustal Structure of the South China Sea. Science in China (Series B), 13(2): 177-186 (in Chinese). [121] Yao, B., Zeng, W., J., Chen, Y. Z., et al., 1994a. The Crustal Structure in the Eastern Part of the Northern Margin of the South China Sea. Acta Geophysica Sinica, 37(1): 27-35 (in Chinese with English abstract). [122] Yao, B., Zeng, W., J., Chen, Y. Z., et al., 1994b. The Crustal Structure in the Western Part of the Northern Margin of the South China Sea. Acta Oceanologica Sinica, 16(3): 86-93 (in Chinese with English abstract). [123] Yu, M. M., Yan, Y., Huang, C. Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017GL076872 [124] Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10(1): 1-10. https://doi.org/10.1038/s41598-020-65174-y [125] Zhang, C. M., Sun, Z., Manatschal, G., et al., 2020a. Syn-Rift Magmatic Characteristics and Evolution at a Sediment-Rich Margin: Insights from High-Resolution Seismic Data from the South China Sea. Gondwana Research, 91: 81-96. https://doi.org/10.1016/j.gr.2020.11.012 [126] Zhang, C., Su, M., Pang, X., et al., 2019. Tectono-Sedimentary Analysis of the Hyperextended Liwan Sag Basin (Midnorthern Margin of the South China Sea). Tectonics, 38(2): 470-491. https://doi.org/10.1029/2018TC005063 [127] Zhang, G. L., Luo, Q., Zhao, J., et al., 2018. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145-155. https://doi.org/10.1016/j.epsl.2018.02.040 [128] Zhang, Q., Wu, S. G., Dong, D. D., 2016. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea: Evidence from Seismic Profiles. Marine Geophysical Research, 37(2): 71-94. https://doi.org/10.1007/s11001-016-9266-3 [129] Zhang, Y. F., Sun, Z., Pang, X., 2014. The Relationship between Extension of Lower Crust and Displacement of the Shelf Break. Science in China (Series D), 44(3): 488-496 (in Chinese). [130] Zhang, Y. F., Sun, Z., Zhang, J. Y., et al., 2020b. The Structure, Depositional Style and Accumulation Characteristics of Continental Margin with Diachronous Breakup in the Northern South China Sea. International Geology Review, 62(7-8): 1006-1018. https://doi.org/10.1080/00206814.2019.1631219 [131] Zhang, Y. F., Sun, Z., Zhou, D., et al., 2007. The Thinning Feature in Cenozoic and Its Dynamic Significance of the Northern Continental Margin of the South China Sea. Science in China (Series D), 37(12): 1609-1616 (in Chinese). [132] Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm [133] Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004 [134] Zhu, W. L., Zhong, K., Li, Y. C., et al., 2012. Characteristics of Hydrocarbon Accumulation and Exploration Potential of the Northern South China Sea Deepwater Basins. Chinese Science Bulletin, 57(20): 1833-1841 (in Chinese). doi: 10.1360/csb2012-57-20-1833 [135] 曹敬贺, 孙金龙, 徐辉龙, 等, 2014. 珠江口海域滨海断裂带的地震学特征. 地球物理学报, 57(2): 498-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402015.htm [136] 郝天珧, 徐亚, 孙福利, 等, 2011. 南海共轭大陆边缘构造属性的综合地球物理研究. 地球物理学报, 54(12): 3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011 [137] 李家彪, 2011. 南海大陆边缘动力学: 科学实验与研究进展. 地球物理学报, 54(12): 2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 [138] 李三忠, 索艳慧, 刘鑫, 等, 2012. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm [139] 刘安, 武国忠, 吴世敏, 2008. 南海东北部下地壳高速层的成因探讨. 地质论评, 54(5): 609-616. doi: 10.3321/j.issn:0371-5736.2008.05.005 [140] 毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160 [141] 丘学林, 赵明辉, 敖威, 等, 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012 [142] 任江波, 王嘹亮, 鄢全树, 等, 2013. 南海玳瑁海山玄武质火山角砾岩的地球化学特征及其意义. 地球科学, 38(增刊1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1002.htm [143] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm [144] 阮爱国, 牛雄伟, 丘学林, 等, 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014 [145] 孙珍, 林间, 汪品先, 等, 2020. 国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果. 热带海洋学报, 39(6): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202006002.htm [146] 孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm [147] 孙珍, 赵中贤, 李家彪, 等, 2011. 南沙地块内破裂不整合与碰撞不整合的构造分析. 地球物理学报, 54(12): 3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019 [148] 孙珍, 钟志洪, 周蒂, 等, 2006. 南海的发育机制研究——相似模拟证据. 中国科学(D辑), 36(9): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm [149] 万玲, 曾维军, 吴能友, 等, 2009. 南海北部陆缘西沙海槽-台湾恒春半岛地学断面. 中国地质, 36(3): 564-572. doi: 10.3969/j.issn.1000-3657.2009.03.006 [150] 汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm [151] 卫小冬, 阮爱国, 赵明辉, 等, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12): 3325-3335. doi: 10.3969/j.issn.0001-5733.2011.12.030 [152] 吴世敏, 周蒂, 丘学林, 2001. 南海北部陆缘的构造属性问题. 高校地质学报, 7(4): 419-426. doi: 10.3969/j.issn.1006-7493.2001.04.006 [153] 阎贫, 刘海龄, 2002. 南海北部陆缘地壳结构探测结果分析. 热带海洋学报, 21(2): 1-12. doi: 10.3969/j.issn.1009-5470.2002.02.001 [154] 姚伯初, 1998. 南海北部陆缘的地壳结构及构造意义. 海洋地质与第四纪地质, 18(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ802.000.htm [155] 姚伯初, 王光宇, 1983. 南海海盆的地壳结构. 中国科学(B辑), 13(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198302009.htm [156] 姚伯初, 曾维军, 陈艺中, 等, 1994a. 南海北部陆缘东部的地壳结构. 地球物理学报, 37(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX401.003.htm [157] 姚伯初, 曾维军, 陈艺中, 等, 1994b. 南海北部陆缘西部的地壳结构. 海洋学报, 16(3): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC403.009.htm [158] 张云帆, 孙珍, 庞雄, 2014. 珠江口盆地白云凹陷下地壳伸展与陆架坡折的关系. 中国科学(D辑), 44(3): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403009.htm [159] 张云帆, 孙珍, 周蒂, 等, 2007. 南海北部陆缘新生代地壳减薄特征及其动力学意义. 中国科学(D辑), 37(12): 1609-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712007.htm [160] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542 [161] 朱伟林, 钟锴, 李友川, 等, 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833-1841. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220004.htm