Hydrochemical Characteristics and Salt-Formation Elements Sources of Li-Rich Brines in Kushui Lake, West Kunlun
-
摘要: 苦水湖是近年来在青藏高原西昆仑山腹地新发现的富锂盐湖,查明其水化学组成特征对丰富青藏高原盐湖型锂矿床基础资料具有重要的现实意义.然而受区域自然地理条件限制,对包含该盐湖卤水及补给水系的基础性研究还很少.综合运用Piper三线图、Gibbs图解和离子比例关系分析方法探讨了湖表卤水及湖周补给水系水化学组成、演化及主要离子来源.结果表明,由"补给源"到"汇",各离子组成发生了显著变化,水化学类型由碳酸钙镁型向硫酸钠亚型过渡转变,水化学的演化由岩石风化控制向蒸发结晶控制演变.根据离子比例关系,识别出3个主要离子来源:东北径流补给以碳酸盐岩、硅酸岩风化溶质来源为主;南部甜水海水系以盐岩溶解补给为主;湖周冷泉中的溶质则可能主要来自于同生沉积卤水与浅层地下水混合,或长英质火山岩、碳酸盐岩等的深部水-岩作用淋滤.Abstract: Kushui lake is a newfound lithium-rich salt lake in the West Kunlun Mountain hinterland of Tibetan plateau. It is of great significance to find out the characteristics of hydrochemical composition for enriching the basic data of the Li-rich brines deposits on the Tibetan plateau. However, limited by the regional physical and geographical conditions, the basic research on the brine and recharge water system of the salt lake has not been reported yet. Piper diagram, Gibbs diagram and ion ratio analysis method were comprehensively used to discuss the chemical composition, evolution and main ion sources of the surface brine and the peripheral recharge system. The results show that from "source" to "sink", not only the composition of each ion is changed significantly but also the hydrochemical type shows transition from carbonate-type to sodium sulfate subtype, and the evolution of hydrochemistry in water changes from rock weathering control to evaporation crystallization control. According to the ion content ratio relationship, three main ion sources were identified. (1)The weathering products of carbonate and silicate are the main solute in the recharge water system of northeastern Kushui lake. (2)The Tianshui lake recharge water system in the southern part of the lake mainly supplies evaporate dissolved substances. (3)There may be solute sources in the cold spring around the lake from mixed fluid of syn-sedimentary brine and shallow groundwater, or the leaching products of felsic volcanic rocks and carbonatite.
-
表 1 苦水湖湖表卤水及湖周补给水系水化学组成
Table 1. Chemical compositions of the Kushui lake surface brine and recharge water systems
样品 pH 主要离子平均含量(mg/L) TDS(g/L) Na+ Ca2+ K+ Mg2+ HCO3‒ SO42‒ Cl‒ B2O3 Br‒ Li+ Rb+ Sr+ 南部甜水海补给样品 8.2 434.4 71.5 10.1 58.1 159.9 236.9 694.0 2.30 0.29 0.33 0.00 3.22 1.69
冷泉补给样品8.7 685.3 126.6 54.0 239.5 940.2 668.8 96.9 14.18 0.48 2.02 0.02 3.35 3.62
东北部径流补给样品8.4 104.3 43.0 7.7 69.2 220.9 165.3 183.9 0.67 0.14 0.13 0.00 1.44 0.85
径流区样品8.5 1 577.1 52.7 84.9 203.9 435.2 405.7 2 637.4 22.34 0.88 4.06 0.10 1.99 5.38 排泄区样品 8.3 12 941.3 126.7 712.0 1 970.1 694.8 4 283.7 22 406.5 224.70 4.12 6.31 0.32 0.07 44.57 湖表卤水样品 7.3 79 630.6 295.0 2 986.9 7 021.1 1 403.7 12 500.8 135 290.1 1 074.50 47.80 160.10 3.00 5.63 240.63 黄河水 7.9 57.0 64.1 3.4 26.2 218.0 105.8 64.2 ‒ ‒ ‒ ‒ ‒ 0.45 黄海水 ‒ 9 890.0 380.0 340.0 1 190.0 130.0 2 420.0 17 530.0 13.86 61.10 0.17 0.11 7.82 32.00 注:黄河水据何姜毅等(2017)、黄海水据陈郁华(1983);TZ+=Na++2Ca2++2Mg2++K+,TZ‒=HCO3‒+Cl‒+2SO42‒+NO3‒+F‒,测试样品NICB均小于5%(NICB=(TZ+‒TZ‒)/TZ+×100%),水中可溶性的阴阳离子达到平衡,水质分析结果可靠. -
[1] Araoka, D., Kawahata, H., Takagi, T., et al., 2014. Lithium and Strontium Isotopic Systematics in Playas in Nevada, USA: Constraints on the Origin of Lithium. Mineralium Deposita, 49(3): 371-379. https://doi.org/10.1007/s00126-013-0495-y [2] Boschetti, T., Cortecci, G., Barbieri, M., et al., 2007. New and Past Geochemical Data on Fresh to Brine Waters of the Salar de Atacama and Andean Altiplano, Northern Chile. Geofluids, 7(1): 33-50. https://doi.org/10.1111/j.1468-8123.2006.00159.x [3] Capaccioni, B., Aguilera, F., Tassi, F., et al., 2011. Geochemical and Isotopic Evidences of Magmatic Inputs in the Hydrothermal Reservoir Feeding the Fumarolic Discharges of Tacora Volcano (Northern Chile). Journal of Volcanology and Geothermal Research, 208(3/4): 77-85. https://doi.org/10.1016/j.jvolgeores.2011.09.015 [4] Chen, Y.H., 1983. Sequence of Salt Separation and Regularity of Some Trace Elements Distribution during Isothermal Evaporation (25℃) of the Huanghai Sea Water. Acta Geologica Sinica, 57(4): 379-390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198304005.htm [5] Feth, J. H., Gibbs, R. J., 1971. Mechanisms Controlling World Water Chemistry: Evaporation-Crystallization Process. Science, 172(3985): 870-872. https://doi.org/10.1126/science.172.3985.870 [6] Ge, C.L., Liu, D.L., Wang, S.G., et al., 2017. The Characteristics and Tectonic Implications of the Western Extension of the Karakax Fault, West Kunlun. Acta Petrologica Sinica, 33(12): 3942-3956 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201712017.htm [7] Godfrey, L. V., Chan, L. H., Alonso, R. N., et al., 2013. The Role of Climate in the Accumulation of Lithium-Rich Brine in the Central Andes. Applied Geochemistry, 38: 92-102. https://doi.org/10.1016/j.apgeochem.2013.09.002 [8] Godfrey, L. V., Herrera, C., Gamboa, C., et al., 2019. Chemical and Isotopic Evolution of Groundwater through the Active Andean Arc of Northern Chile. Chemical Geology, 518: 32-44. https://doi.org/10.1016/j.chemgeo.2019.04.011 [9] Gong, J.J., Yang, J.Z., Hu, S.Q., et al., 2020. Application of Geochemical Data in Analysis of Geological Background and Metallogenic Conditions: A Case Study of Northwest China. Earth Science, 45(4): 1388-1402 (in Chinese with English abstract). [10] He, J.Y., Zhang, D., Zhao, Z.Q., 2017. Spatial and Temporal Variations in Hydrochemical Composition of River Water in Yellow River Basin, China. Chinese Journal of Ecology, 36(5): 1390-1401 (in Chinese with English abstract). http://www.researchgate.net/publication/329266072_Spatial_and_temporal_variations_in_hydrochemical_composition_of_river_water_in_yellow_river_basin_China [11] Hofstra, A. H., Todorov, T. I., Mercer, C. N., et al., 2013. Silicate Melt Inclusion Evidence for Extreme Pre-Eruptive Enrichment and Post-Eruptive Depletion of Lithium in Silicic Volcanic Rocks of the Western United States: Implications for the Origin of Lithium-Rich Brines. Economic Geology, 108(7): 1691-1701. https://doi.org/10.2113/econgeo.108.7.1691 [12] Huh, Y., Chan, L. H., Zhang, L. B., et al., 1998. Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget. Geochimica et Cosmochimica Acta, 62(12): 2039-2051. https://doi.org/10.1016/S0016-7037(98)00126-4 [13] Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geology Reviews, 48: 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006 [14] Li, K., Gao, Y.B., Teng, J.X., et al., 2019. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang. Northwestern Geology, 52(4): 206-221 (in Chinese with English abstract) [15] Li, T.W., Tan, H.B., Fan, Q.S., 2006. Hydrochemical Characteristics and Origin Analysis of the Underground Brines in West Qaidam Basin. Journal of Salt Lake Research, 14(4): 26-32 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yhyj200604005 [16] Liu, L.J., Wang, D.H., Liu, X.F., et al., 2017. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2): 263-278 (in Chinese with English abstract). http://www.researchgate.net/publication/320189362_The_main_types_distribution_features_and_present_situation_of_exploration_and_development_for_domestic_and_foreign_lithium_mine [17] Liu, X.F., Zheng, M.P., Qi, W., 2007. Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Tibet, China. Acta Geologica Sinica, 81(12): 1709-1715 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE200712012&dbcode=CJFD&year=2007&dflag=pdfdown [18] Luo, Y.B., Zheng, M.P., Ren, Y.Q., 2017. Metallogenic Correlation of Special Salt Lake and Hydrotherm, Qinghai-Tibet Plateau, China. Science & Technology Review, 35(12): 44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201712013.htm [19] Peng, H.L., He, N.Q., Wang, M.C., et al., 2018. Geological Characteristics and Metallogenic Regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang. Northwestern Geology, 51(3): 146-154 (in Chinese with English abstract). [20] Risacher, F., Fritz, B., 2009. Origin of Salts and Brine Evolution of Bolivian and Chilean Salars. Aquatic Geochemistry, 15(1/2): 123-157. https://doi.org/10.1007/s10498-008-9056-x [21] Risacher, F., Fritz, B., Hauser, A., 2011. Origin of Components in Chilean Thermal Waters. Journal of South American Earth Sciences, 31(1): 153-170. https://doi.org/10.1016/j.jsames.2010.07.002 [22] Rissmann, C., Leybourne, M., Benn, C., et al., 2015. The Origin of Solutes within the Groundwaters of a High Andean Aquifer. Chemical Geology, 396: 164-181. https://doi.org/10.1016/j.chemgeo.2014.11.029 [23] Shuai, K.Y., 2019. Relationship between Underground Concentrated Brine and the Saline Environment of "High Mountains and Deep Basins". Geology of Chemical Minerals, 41(4): 225-228 (in Chinese with English abstract). [24] Steinmetz, R.L.L., 2016. Lithium and Boron-Bearing Brines in the Central Andes: Exploring Hydrofacies on the Eastern Puna Plateau between 23ånd 23°30'S. Mineralium Deposita, 52(1): 35-50. doi: 10.1007/s00126-016-0656-x [25] Sun, D.P., Li, B.X., Ma, Y.H., et al., 1995. An Investigation on Evaporating Experiments for Qinghai-Lake Water, China. Journal of Salt Lake Research, 3(2): 10-19 (in Chinese with English abstract). [26] Sun, R., Zhang, X.Q., Wu, Y.H., 2012. Major Ion Chemistry of Water and Its Controlling Factors in the Yamzhog Yumco Basin, South Tibet. Journal of Lake Sciences, 24(4): 600-608 (in Chinese with English abstract). doi: 10.18307/2012.0414 [27] Tan, H.B., Cao, C.D., Li, T.W., et al., 2007. Hydrochemistry Characteristics and Chemical Evolution of Oilfield Brines of the Paleogene and Neogene in Western Qaidam Basin. Journal of Palaeogeography, 9(3): 313-320 (in Chinese with English abstract). [28] Tan, K.B., Deng, G., Liu, J., et al., 2016. The New-Found Super Large Boron and Lithium Saline Lake Deposits in the Kushui Lake of the Western Kunlun Mountains, Xinjiang. Xinjiang Geology, 34(4): 488-490 (in Chinese with English abstract). [29] Wang, F.B., Cao, Q.Y., Liu, F.T., 1990. The Recent Changes of Lakes and Drainage Systems in the South Piedmont of West Kunlun MTS, China. Quaternary Sciences, 10(4): 316-325 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199004003.htm [30] Wang, H., Li, P., Ma, H.D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053-1062 (in Chinese with English abstract). [31] Wang, Q.G., Sha, Z.J., Hu, J.F., et al., 2017. Research Progress of the Lithium Material Source and Metallogenic Fluid in Lithium-Rich Salt Lakes. Journal of Salt Lake Research, 25(3): 74-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YHYJ201703011.htm [32] Wang, R.J., 1983. Piper Diagram and Its Hydrogeological Interpretation. Geotechnical Investigation and Surveying, 11(6): 6-11 (in Chinese with English abstract). [33] Yakuf, J., Li, P.B., 2014. Geological Characteristics and Metallogenic Prediction of Boron Ore in Kushui Lake of Hetian County, Xinjiang. Low Carbon World, (4): 101-102 (in Chinese). [34] Yu, J.Q., Hong, R.C., Gao, C.L., et al., 2018. Lithium Brine Deposits in Qaidam Basin: Constraints on Formation Processes and Distribution Pattern. Journal of Salt Lake Research, 26(1): 7-14 (in Chinese with English abstract). [35] Zeng, Q.G., Wang, B.D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [36] Zhan, D.P., Yu, J.Q., Gao, C.L., et al., 2010. Hydrogeochemical Conditions and Lithium Brine Formation in the Four Salt Lakes of Qaidam Basin. Journal of Lake Sciences, 22(5): 783-792 (in Chinese with English abstract). [37] Zhao, J.L., Zeng, Z.C., He, N.Q., et al., 2017. LA-ICP-MS Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of the Neogene Quanshuigou Formation Volcanic Rocks in the North of Dahongliutan-Qitaidaban Area, Xinjiang. Geological Bulletin of China, 36(7): 1129-1146 (in Chinese with English abstract). [38] Zheng, M.P., 2001. Study Advances in Saline Lake Resources on the Qinghai-Tibet Pleteau. Acta Geosicientia Sinica, 22(2): 97-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200102000.htm [39] Zheng, M.P., Liu, W.G., Xiang, J., et al., 1983. On Saline Lakes in Tibet, China. Acta Geologica Sinica, 57(2): 184-194 (in Chinese with English abstract). [40] Zheng, X.Y., 1984. Salt Lakes and Their Origins in Xinjiang, China. Oceanologia et Limnologia Sinica, 15(2): 168-178 (in Chinese with English abstract). [41] Zheng, X.Y., Liu, J.H., 1996. The Composition and Origin of Salt Lake Brines in Xinjiang. Scientia Geographica Sinica, 16(2): 115-123 (in Chinese with English abstract). [42] Zhu, B.Q., Yang, X.P., 2007. Chemical Characteristics and Genesis of Natural Water in Taklamakan Desert. Chinese Science Bulletin, 52(13): 1561-1566 (in Chinese). doi: 10.1360/csb2007-52-13-1561 [43] 陈郁华, 1983. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律. 地质学报, 57(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198304005.htm [44] 葛成隆, 刘栋梁, 王世广, 等, 2017. 西昆仑康西瓦断裂带西延特征及其构造意义. 岩石学报, 33(12): 3942-3956. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201712017.htm [45] 龚晶晶, 杨剑洲, 胡树起, 等, 2020. 地球化学调查数据在地质背景、成矿条件分析中的应用: 以中国西北干旱荒漠区为例. 地球科学, 45(4): 1388-1402. doi: 10.3799/dqkx.2019.094 [46] 何姜毅, 张东, 赵志琦, 2017. 黄河流域河水水化学组成的时间和空间变化特征. 生态学杂志, 36(5): 1390-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705028.htm [47] 李侃, 高永宝, 滕家欣, 等, 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向. 西北地质, 52(4): 206-221. doi: 10.3969/j.issn.1009-6248.2019.04.016 [48] 李廷伟, 谭红兵, 樊启顺, 2006. 柴达木盆地西部地下卤水水化学特征及成因分析. 盐湖研究, 14(4): 26-32. doi: 10.3969/j.issn.1008-858X.2006.04.005 [49] 刘丽君, 王登红, 刘喜方, 等, 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702005.htm [50] 刘喜方, 郑绵平, 齐文, 2007. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究. 地质学报, 81(12): 1709-1715. doi: 10.3321/j.issn:0001-5717.2007.12.011 [51] 雒洋冰, 郑绵平, 任雅琼, 2017. 青藏高原特种盐湖与深部火山-地热水的相关性. 科技导报, 35(12): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201712013.htm [52] 彭海练, 贺宁强, 王满仓, 等, 2018. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨. 西北地质, 51(3): 146-154. doi: 10.3969/j.issn.1009-6248.2018.03.013 [53] 帅开业, 2019. 地下浓缩卤水与"高山深盆"成盐环境. 化工矿产地质, 41(4): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201904001.htm [54] 孙大鹏, 李秉孝, 马育华, 等, 1995. 青海湖湖水的蒸发实验研究. 盐湖研究, 3(2): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ502.001.htm [55] 孙瑞, 张雪芹, 吴艳红, 2012. 藏南羊卓雍错流域水化学主离子特征及其控制因素. 湖泊科学, 24(4): 600-608. doi: 10.3969/j.issn.1003-5427.2012.04.014 [56] 谭红兵, 曹成东, 李廷伟, 等, 2007. 柴达木盆地西部古近系和新近系油田卤水资源水化学特征及化学演化. 古地理学报, 9(3): 313-320. doi: 10.3969/j.issn.1671-1505.2007.03.009 [57] 谭克彬, 邓刚, 刘建, 等, 2016. 西昆仑新发现盐湖型卤水硼锂矿床. 新疆地质, 34(4): 488-490. doi: 10.3969/j.issn.1000-8845.2016.04.008 [58] 王富葆, 曹琼英, 刘福涛, 1990. 西昆仑山南麓湖泊和水系的近期变化. 第四纪研究, 10(4): 316-325. doi: 10.3321/j.issn:1001-7410.1990.04.004 [59] 王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706005.htm [60] 王求贵, 沙占江, 胡菊芳, 等, 2017. 富锂盐湖中锂的物质来源和成矿流体的研究进展. 盐湖研究, 25(3): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201703011.htm [61] 王瑞久, 1983. 三线图解及其水文地质解释. 工程勘察, 11(6): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198306001.htm [62] 居热提•亚库甫, 李鹏兵, 2014. 新疆和田县苦水湖一带硼矿地质特征及成矿预测. 低碳世界, (4): 101-102. [63] 余俊清, 洪荣昌, 高春亮, 等, 2018. 柴达木盆地盐湖锂矿床成矿过程及分布规律. 盐湖研究, 26(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201801003.htm [64] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [65] 展大鹏, 余俊清, 高春亮, 等, 2010. 柴达木盆地四盐湖卤水锂资源形成的水文地球化学条件. 湖泊科学, 22(5): 783-792. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201005021.htm [66] 赵江林, 曾忠诚, 贺宁强, 等, 2017. 新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 36(7): 1129-1146. doi: 10.3969/j.issn.1671-2552.2017.07.004 [67] 郑绵平, 2001. 青藏高原盐湖资源研究的新进展. 地球学报, 22(2): 97-102. doi: 10.3321/j.issn:1006-3021.2001.02.001 [68] 郑绵平, 刘文高, 向军, 等, 1983. 论西藏的盐湖. 地质学报, 57(2): 184-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198302007.htm [69] 郑喜玉, 1984. 新疆盐湖及其成因. 海洋与湖沼, 15(2): 168-178. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198402006.htm [70] 郑喜玉, 刘建华, 1996. 新疆盐湖卤水成分及其成因. 地理科学, 16(2): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199602002.htm [71] 朱秉启, 杨小平, 2007. 塔克拉玛干沙漠天然水体的化学特征及其成因. 科学通报, 52(13): 1561-1566. doi: 10.3321/j.issn:0023-074X.2007.13.013