Petrogenesis and Tectonic Significance of Silurian Granites in Yemadaquan Area, Beishan, Gansu Province
-
摘要: 马鬃山地体是北山造山带的主要构造单元之一,其广泛出露的花岗岩对于认识和完善北山古生代构造格架具有重要意义.对野马大泉一带的花岗岩进行LA-ICP-MS锆石U-Pb定年,获得了早-中志留世(441±4 Ma和425±2 Ma)的年龄.岩石地球化学显示它们均富钠、钙碱性和镁质花岗岩的特征,小于A型花岗岩的Ga/Al×104值和Zr+Nb+Ce+Y值,且含角闪石二长花岗岩出现标志性矿物角闪石,属于I型花岗岩.它们具有正的εHf(t)值(-0.1~+7.6),两阶段Hf模式年龄集中于1.42~0.94 Ga,反映花岗质岩浆可能起源于中元古代(~1.4 Ga)地壳的部分熔融,并伴有幔源岩浆的参与.马鬃山地体志留纪花岗岩的地球化学显示形成于大陆弧的构造环境,且结合区域古生代花岗岩的时空分布指示相关的俯冲带在早石炭世发生北向后撤.Abstract: The Mazongshan terrane is one of the main units of the Beishan orogenic collage. Among which there are abundant plutons, and they are of great significance for understanding and perfecting the Paleozoic tectonic framework of the Beishan orogenic collage. In this study, LA-ICP-MS zircon U-Pb dating yields the 206Pb/238U ages of 441±4 Ma and 425±2 Ma for the biotite monzogranite and hornblende monzogranite in Yemadaquan area respectively, which are the Early and Middle Silurian. The geochemical characteristics of the rocks show that they are sodium-rich, calc-alkalic, and magnesian. And their Ga/Al×104 and Zr+Nb+Ce+Y values are less than those of the A-type granite. Especially diagnostic mineral amphibole appears in hornblende monzogranite, meaning they belong to I-type granite. The εHf(t) values of their zircons are positive, and the crustal Hf model ages are concentrated at 0.94-1.42 Ga, suggesting that the Early-Middle Silurian granitic magmas may be derived from the partial melting of the Mesoproterozoic (~1.4 Ga) crust, with the participation of mantle-derived magmas. The analyses from geochemistry and regional data show that the granites were formed in the tectonic setting of continental arc, and the spatial and temporal distribution of Paleozoic granites suggests that slab roll-back might occur in the Early Carboniferous.
-
Key words:
- Beishan orogenic collage /
- Mazongshan terrane /
- Silurian /
- I-type granite /
- continental arc /
- tectonics
-
图 1 北山造山带地质简图
据Xiao et al.(2010);He et al.(2018);辛后田等(2020).Ⅰ.石板山地体;Ⅱ.双鹰山地体;Ⅲ.马鬃山地体;Ⅳ.旱山地体;Ⅴ.雀儿山地体;F1.柳园蛇绿岩带;F2.红柳河-洗肠井蛇绿岩带;F3.石板井-小黄山蛇绿岩带;F4.红石山蛇绿岩带
Fig. 1. Geological sketch map of the Beishan orogenic collage
图 7 黑云母二长花岗岩和含角闪石二长花岗岩的球粒陨石标准化稀土元素图解(a)和原始地幔标准化蜘蛛图(b)
球粒陨石标准值引自Taylor and McLennan(1985);原始地幔标准值引自Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element diagrams (b) of the biotite monzogranite and hornblende monzogranite
图 10 锆石εHf(t)-年龄演化图解
北山南部中元古代侵入岩和北山地壳基底演化区域引自He et al. (2018)
Fig. 10. Zircon εHf(t)-age evolution diagram
图 11 构造环境判别图解
马鬃山地体已发表的志留纪花岗岩数据引自Song et al. (2015)、余吉远等(2017)、Yuan et al. (2018)和Zheng et al. (2018)
Fig. 11. Tectonic discrimination diagram
图 12 马鬃山地体与旱山地体古生代花岗岩年龄分布对比图
数据引自表 1
Fig. 12. The comparison of age distribution for the Paleozoic granites of the Mazongshan and Hanshan terranes
图 13 北山造山带北缘古生代构造演化模式简图
Fig. 13. Schematic model illustrating the Paleozoic tectonic evolution of the northern Beishan orogenic collage
表 1 北山造山带中北部花岗岩类锆石U-Pb年龄统计
Table 1. Zircon U-Pb ages of the granitoids in northern and central Beishan orogenic collage
序号 岩性 年龄(Ma) 位置 引用文献 马鬃山地体 1 黑云母二长花岗岩 372±3 牛圈子 计波等(2017) 2 石英闪长岩 435.8±5 白圪塔北山 李小菲(2013) 3 二长花岗岩 435±2.8 白圪塔北山 李小菲(2013) 4 花岗闪长岩 430.5±2.9 白圪塔北山 李小菲(2013) 5 石英闪长岩 363.7±3.7 马鬃山 李小菲(2013) 6 花岗闪长岩 365.6±6.6 马鬃山 李小菲(2013) 7 花岗片麻岩 471.1±7.7 马鬃山 Song et al.(2013a) 8 糜棱岩化花岗岩 447.6±4.4 马鬃山 Song et al.(2013a) 9 眼球状花岗片麻岩 498.7±6.1 马鬃山 Song et al.(2013a) 10 糜棱岩化花岗岩 473.7±9.5 马鬃山 Song et al.(2013a) 11 花岗片麻岩 525.7±6.1 草呼勒哈德 Song et al.(2013b) 12 糜棱岩化花岗岩 409.5±5.2 草呼勒哈德 Song et al.(2013b) 13 花岗岩 348.5±4.6 石板井南 Song et al.(2013b) 14 正片麻岩 397±3 双井子 Song et al.(2015) 15 辉石闪长岩 442±2 勒巴泉 Song et al.(2015) 16 斑状花岗岩 433±2 勒巴泉 Song et al.(2015) 17 糜棱岩化花岗岩 398±3 勒巴泉 Song et al.(2015) 18 花岗片麻岩 464±2 勒巴泉 Song et al.(2015) 19 糜棱岩化花岗岩 401±4 勒巴泉 Song et al.(2015) 20 片麻状闪长岩 420±3 草呼勒哈德 Song et al.(2015) 21 花岗闪长岩 363.4±2.9 尖山 王鑫玉等(2018) 22 花岗岩 362.6±3 石板井南 王鑫玉等(2018) 23 白云母花岗岩 409.4±2.7 白头山 Wang et al.(2018) 24 白云母花岗岩 395±4.2 白头山 Wang et al.(2018) 25 二云母花岗岩 408.5±3.1 哈尔根 Wang et al.(2018) 26 石英闪长岩 464±2 石板井南 修迪等(2018) 27 糜棱岩化花岗岩 446±3 红柳峡南 Yuan et al.(2018) 28 糜棱岩化花岗岩 444±3 红柳峡南 Yuan et al.(2018) 29 糜棱岩化花岗岩 443±2 红柳峡南 Yuan et al.(2018) 30 糜棱岩化花岗岩 434±3 红柳峡南 Yuan et al.(2018) 31 糜棱岩化花岗岩 430±2 红柳峡南 Yuan et al.(2018) 32 二长花岗岩 402.2±3 公婆泉 郑荣国等(2012) 33 石英闪长岩 435±1 白头山 Zheng et al.(2018) 34 石英二长岩 421±2 白头山 Zheng et al.(2018) 35 花岗岩 401±2 白头山 Zheng et al.(2018) 36 淡色花岗岩 402±1 公婆泉 Zheng et al.(2018) 37 花岗闪长岩 434±6 巴勒根台 Zheng et al.(2018) 旱山地体 1 花岗片麻岩 423±4 梧桐井 刘雪敏等(2010) 2 花岗片麻岩 300±6 红石山南 Song et al.(2013a) 3 花岗岩 450.4±3.5 石板井北 Song et al.(2013b) 4 糜棱岩化正片麻岩 456.8±5.3 石板井北 Song et al.(2013b) 5 混合岩化片麻岩 452±11 石板井北 Song et al.(2013b) 6 糜棱岩化花岗岩 445±2 石板井北 Yuan et al.(2018) 7 糜棱岩化花岗岩 464±1 石板井北 Yuan et al.(2018) 8 糜棱岩化花岗岩 455±2 石板井北 Yuan et al.(2018) 9 糜棱岩化花岗岩 433±2 石板井北 Yuan et al.(2018) 10 闪长岩 450±2 石板井北 Yuan et al.(2018) 11 糜棱岩化花岗岩 439±17 石板井北 Yuan et al.(2018) 12 石英二长岩 428±2 石板井北 Yuan et al.(2018) 13 花岗闪长岩 330±2 双井子 Yuan et al.(2018) 14 闪长玢岩 325±1 双井子 Yuan et al.(2018) 15 石英闪长岩 281±1 双井子 Yuan et al.(2018) 16 石英闪长岩 287±1 双井子 Yuan et al.(2018) 17 埃达克质花岗岩 356±2 东七一山 Zhang et al.(2012) 18 花岗闪长岩 284.9±1.5 双井子 郑荣国等(2016) 19 花岗岩 327.6±1.6 双井子 郑荣国等(2016) 20 石英闪长岩 328±2 明水 Zhang et al.(2017) 21 花岗岩 359±4 东七一山 杨岳清等(2013) -
[1] Green, T.H., 1995. Signficance of Nb/Ta as an Indicator of Geochemical Processes in the Crust Mantle System. Chemical Geology, 120: 347-359. https://doi.org/10.1016/0009-2541(94)00145-X [2] He, Z.Y., Klemd, R., Yan, L.L., et al., 2018. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14. https://doi.org/10.1016/j.earscirev.2018.05.012 [3] Jahn, B.M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23: 599-603. https://doi.org/10.1016/S1367-9120(03)00124-X [4] Ji, B., Yu, J.Y., Guo, L., et al., 2017. Geochemistry Characteristics and Tectonic Significance of the Haerteerdele Granite Mass in Middle Devonian in Beishan, Gansu. Journal of Geomechanics, 23(3): 358-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201703004.htm [5] Li, M., Xin, H.T., Tian, J., et al., 2020. Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen. Earth Science, 45(7): 2393-2412 (in Chinese with English abstract). [6] Li, X.F., 2013. Formation Age, Geochemical Characteristics of the Paleozoic Granites in the Mazongshan Area of Beishan and Its Geological Significance (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [7] Liu, X.M., Chen, Y.L., Li, D.P., et al., 2010. The U-Pb Ages and Hf Isotopes of Zircons in the Metadiabase and Gneissic Granite, Beishan Orogenic Belt, Inner Mongolia, China and Its Significance. Geological Bulletin of China, 29(4): 518-529 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201004006.htm [8] Martin, H.R.H., Smithies, R., Rapp, J.F., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [9] Niu, W.C., Ren, B.F., Ren, Y.W., et al., 2019. Neoproterozoic Magmatic Records in the North Beishan Orogenic Belt: Evidence of the Gneissic Granites from the Hazhu Area, Inner Mongolia. Earth Science, 44(1): 284-297 (in Chinese with English abstract). http://www.researchgate.net/publication/332036060_Neoproterozoic_Magmatic_Records_in_the_North_Beishan_Orogenic_Belt_Evidence_of_the_Gneissic_Granites_from_the_Hazhu_Area_Inner_Mongolia [10] Saktura, W.M., Buckman, S., Nutman, A.P., et al., 2017. Continental Origin of the Gubaoquan Eclogite and Implications for Evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 294-295: 20-38. https://doi.org/10.1016/j.lithos.2017.10.004 [11] Shi, Y.R., Zhang, W., Kröner, A., et al., 2018. Cambrian Ophiolite Complexes in the Beishan Area, China, Southern Margin of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 193-205. https://doi.org/10.1016/j.jseaes.2017.05.021 [12] Song, D.F., Xiao, W.J., Han, C.M., et al., 2013a. Geochronological and Geochemical Study of Gneiss-Schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids. International Geology Review, 55(14): 1705-1727. https://doi.org/10.1080/00206814.2013.792515 [13] Song, D.F., Xiao, W.J., Han, C.M., et al., 2013b. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011 [14] Song, D.F., Xiao, W.J., Han, C.M., et al., 2013c. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24: 1127-1151. https://doi.org/10.1016/j.gr.2013.02.002 [15] Song, D.F., Xiao, W.J., Windley, B.F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224-225: 195-213. https://doi.org/10.1016/j.lithos.2015.03.005 [16] Song, D.F., Xiao, W.J., Windley, B.F., et al. 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147. https://doi.org/10.1016/j.tecto.2016.09.012 [17] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Source Processes. Geological Society, London, Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [18] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. [19] Tian, Z.H., Xiao, W.J., Windley, B.F., et al., 2014. Structure, Age, and Tectonic Development of the Huoshishan-Niujuanzi Ophiolitic Mélange, Beishan, Southernmost Altaids. Gondwana Research, 25: 820-841. https://doi.org/10.1016/j.gr.2013.05.006 [20] Wang, X.Y., Yuan, C., Long, X.P., et al., 2018. Geochronological, Geochemical, and Geological Significance of Jianshan and Shibanjing Granites in the Gongpoquan Arc, Beishan Orogenic Belt. Geochimica, 47(1): 63-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201801005.htm [21] Wang, X.Y., Yuan, C., Zhang, Y.Y., et al., 2018. S-Type Granite from the Gongpoquan Arc in the Beishan Orogenic Collage, Southern Altaids: Implications for the Tectonic Transition. Journal of Asian Earth Sciences, 153: 206-222. https://doi.org/10.1016/j.jseaes.2017.07.037 [22] Xiao, W.J., Mao, Q.G., Windley, B.F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310: 1553-1594. https://doi.org/10.2475/10.2010.12 [23] Xiao, W.J., Windley, B.F., Han, C.M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 [24] Xin, H.T., Niu, W.C., Tian, J., et al., 2020. Spatio-Temporal Structure of Beishan Orogenic Belt and Evolution of Paleo-Asian Ocean, Inner Mongolia. Geological Bulletin of China, 39(9): 1297-1316 (in Chinese with English abstract). doi: 10.1007/s00531-020-01860-6 [25] Xiu, D., Chen, C., Zhuan, S.P., et al., 2018. Zircon U-Pb Age and Petrogenesis of Tonalite-Quartz Diorite in the Shibanjing Area, Central Beishan Orogenic Belt, and Its Constraint on Subduction of the Ancient Oceanic Basin. Geological Bulletin of China, 37(6): 975-986 (in Chinese with English abstract). http://www.researchgate.net/publication/329537736_Zircon_U-Pb_age_and_petrogenesis_of_tonalite-quartz_diorite_in_the_Shibanjing_area_central_Beishan_orogenic_belt_and_its_constraint_on_subduction_of_the_ancient_oceanic_basin [26] Yang, Y.Q., Lü, B., Meng, G.X., et al., 2013. Geochemistry, SHRIMP Zircon U-Pb Dating and Formation Environment of Dongqiyishan Granite, Inner Mongolia. Acta Geoscientica Sinica, 34(2): 163-175 (in Chinese with English abstract). [27] Yu, J.Y., Guo, L., Li, J.X., et al., 2016. The Petrogenesis of Sodic Granites in the Niujuanzi Area and Constraints on the Paleozoic Tectonic Evolution of the Beishan Region, NW China. Lithos, 256-257: 250-268. https://doi.org/10.1016/j.lithos.2016.04.003 [28] Yu, J.Y., Ji, B., Guo, L., 2017. The Petrogenesis and Tectonic Significances of Silurian West-Luotuojuan Rocks from Beishan Niujuanzi Area in Gansu Province, NW China. Journal of Geomechanics, 23(2): 253-263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201702009.htm [29] Yu, J.Y., Ji, B., Guo, L., et al., 2018. Geological Characteristics and Age Determination of the Palaeoproterozoic Gudongjing Group Complex in the Beishan Mountain, Gansu Province. Geological Bulletin of China, 37(4): 704-715 (in Chinese with English abstract). http://www.researchgate.net/publication/326840183_Geological_characteristics_and_age_determination_of_the_Palaeoproterozoic_Gudongjing_Group_complex_in_the_Beishan_Mountain_Gansu_Province [30] Yuan, Y., Zong, K.Q., Cawood, P.A., et al., 2019. Implication of Mesoproterozoic (~1.4 Ga) Magmatism within Microcontinents along the Southern Central Asian Orogenic Belt. Precambrian Research, 327: 314-326. https://doi.org/10.1016/j.precamres.2019.03.014 [31] Yuan, Y., Zong, K.Q., He, Z.Y., et al., 2015. Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266: 409-424. https://doi.org/10.1016/j.precamres.2015.05.034 [32] Yuan, Y., Zong, K.Q., He, Z.Y., et al., 2018. Geochemical Evidence for Paleozoic Crustal Growth and Tectonic Conversion in the Northern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Lithos, 302-303: 189-202. doi: 10.1016/j.lithos.2017.12.026 [33] Zhang, W., Pease, V., Meng, Q. P., et al., 2017. Age and Petrogenesis of Mingshui-Shuangjingzi Granites from the Northern Beishan Area, Northwest China, and Their Implications for Tectonic Evolution. Geosciences Journal, 21(5): 667-682. https://doi.org/10.1007/s12303-017-0017-5 [34] Zhang, W., Pease, V., Wu, T.R., et al., 2012. Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)-Its Age and Tectonic Significance. Lithos, 142-143: 148-160. https://doi.org/10.1016/j.lithos.2012.02.021 [35] Zheng, R.G., Li, J.Y., Zhang, J., et al., 2020. Permian Oceanic Slab Subduction in the Southmost of Central Asian Orogenic Belt: Evidence from Adakite and High-Mg Diorite in the Southern Beishan. Lithos, 358-359: 1-17. https://doi.org/10.1016/j.lithos.2020.105406 [36] Zheng, R.G., Wu, T.R., Xiao, W.J., et al., 2016. Geochronology, Geochemistry and Tectonic Implications of the Shuangjizi Composite Pluton in the Northern Beishan. Acta Geologica Sinica, 90(11): 3153-3172 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201611012&dbcode=CJFD&year=2016&dflag=pdfdown [37] Zheng, R.G., Wu, T.R., Zhang, W., et al., 2012. Early Devonian Tectono-Magmatic Events in the Middle Beishan, Gansu Province: Evidence from Chronology and Geochemistry of Gongpoquan Granite. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(4): 603-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ201204010.htm [38] Zheng, R.G., Wu, T.R., Zhang, W., et al., 2013. Late Paleozoic Subduction System in the Southern Central Asian Orogenic Belt: Evidences from Geochronology and Geochemistry of the Xiaohuangshan Ophiolite in the Beishan Orogenic Belt. Journal of Asian Earth Sciences, 62: 463-475. https://doi.org/10.1016/j.jseaes.2012.10.033 [39] Zheng, R.G., Xiao, W.J., Li, J.Y., et al., 2018. A Silurian-Early Devonian Slab Window in the Southern Central Asian Orogenic Belt: Evidence from High-Mg Diorites, Adakites and Granitoids in the Western Central Beishan Region, NW China. Journal of Asian Earth Sciences, 153: 75-99. https://doi.org/10.1016/j.jseaes.2016.12.008 [40] Zong, K.Q., Zhang, Z.M., He, Z.Y., et al., 2012. Early Palaeozoic High-Pressure Granulites from the Dunhuang Block, Northeastern Tarim Craton: Constraints on Continental Collision in the Southern Central Asian Orogenic Belt. Journal of Metamorphic Geology, 30: 753-768. https://doi.org/10.1111/j.1525-1314.2012.00997.x [41] 计波, 余吉远, 郭琳, 等, 2017. 甘肃北山中泥盆世哈尔特尔德勒花岗岩体的地球化学特征及其构造意义. 地质力学学报, 23(3): 358-368. doi: 10.3969/j.issn.1006-6616.2017.03.004 [42] 李敏, 辛后田, 田健, 等, 2020. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义. 地球科学, 45(7): 2393-2412. doi: 10.3799/dqkx.2020.123 [43] 李小菲, 2013. 北山马鬃山地区古生代花岗岩形成年龄、地球化学特征及其地质意义(硕士学位论文). 西安: 西北大学. [44] 刘雪敏, 陈岳龙, 李大鹏, 等, 2010. 内蒙古北山造山带变辉绿岩和片麻状花岗岩锆石U-Pb年龄、Hf同位素组成及地质意义. 地质通报, 29(4): 518-529. doi: 10.3969/j.issn.1671-2552.2010.04.005 [45] 牛文超, 任邦方, 任云伟, 等, 2019. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据. 地球科学, 44(1): 284-297. doi: 10.3799/dqkx.2018.365 [46] 王鑫玉, 袁超, 龙晓平, 等, 2018. 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义. 地球化学, 47(1): 63-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201801005.htm [47] 辛后田, 牛文超, 田健, 等, 2020. 内蒙古北山造山带时空结构与古亚洲洋演化. 地质通报, 39(9): 1297-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202009001.htm [48] 修迪, 陈超, 专少鹏, 等. 2018. 北山石板井地区英云闪长岩-石英闪长岩体锆石U-Pb年龄、成因及对古洋盆俯冲作用时限的制约. 地质通报, 37(6): 975-986. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806002.htm [49] 杨岳清, 吕博, 孟贵祥, 等, 2013. 内蒙古东七一山花岗岩地球化学、锆石SHRIMP U-Pb年龄及岩体形成环境探讨. 地球学报, 34(2): 163-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302005.htm [50] 余吉远, 计波, 郭琳, 2017. 甘肃北山牛圈子地区志留纪骆驼圈西岩体的岩石成因及构造意义. 地质力学学报, 23(2): 253-263. doi: 10.3969/j.issn.1006-6616.2017.02.008 [51] 余吉远, 计波, 过磊, 等, 2018. 甘肃北山地区古硐井群地质特征与时代厘定. 地质通报, 37(4): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201804017.htm [52] 郑荣国, 吴泰然, 肖文交, 等, 2016. 北山北部双井子复式岩体年代学、地球化学及其大地构造意义. 地质学报, 90(11): 3153-3172. doi: 10.3969/j.issn.0001-5717.2016.11.012 [53] 郑荣国, 吴泰然, 张文, 等, 2012. 甘肃北山中带早泥盆世的构造-岩浆作用: 来自公婆泉花岗岩体年代学和地球化学证据. 北京大学学报(自然科学版), 48(4): 603-616. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201204010.htm