• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏

    宫亚军 张奎华 曾治平 秦峰 牛靖靖 范婕 刘慧

    宫亚军, 张奎华, 曾治平, 秦峰, 牛靖靖, 范婕, 刘慧, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
    引用本文: 宫亚军, 张奎华, 曾治平, 秦峰, 牛靖靖, 范婕, 刘慧, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
    Gong Yajun, Zhang Kuihua, Zeng Zhiping, Qin Feng, Niu Jingjing, Fan Jie, Liu Hui, 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
    Citation: Gong Yajun, Zhang Kuihua, Zeng Zhiping, Qin Feng, Niu Jingjing, Fan Jie, Liu Hui, 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366

    准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏

    doi: 10.3799/dqkx.2020.366
    基金项目: 

    国家重大科技攻关项目 2016ZX05002-002

    中国石油化工股份有限公司重点课题 P20062-5

    中国石油化工股份有限公司重点课题 P19016-1

    详细信息
      作者简介:

      宫亚军(1984-), 男, 副研究员, 硕士, 主要从事区域油气成藏研究.ORCID: 0000-0003-4505-5358.E-mail: 278365907@qq.com

    • 中图分类号: P624

    Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin

    • 摘要: 沉积盆地中超压广受关注,但对超压传导规律认识的不足制约了高压领域的油气勘探.以准噶尔盆地阜康凹陷侏罗系为例,通过超压类型地质综合判识、关键超压表征参数的理论计算及流体包裹体压力恢复,首次认识到了垂向传导对于储集层超压的重要贡献,结合压力垂向传导机制及过程,探讨了油气藏的运聚及泄露意义.研究结果表明,侏罗系超压由4类超压环境中7种致压因素引起,经历2期大规模压力跨层垂向传导,储集层段发育以垂向传导为主因的复合超压,形成3类不同动力特征的油气藏.压力垂向传导是储集层超压的主要成因机制,断-盖的力学性质、差应力及流体压力等3类因素控制压力垂向传导,传导背景下,形成3类与传导作用有关的油气藏:受断层垂向传导控制的超压油藏、受连通砂体侧向传导控制的超压油藏以及超压界面上的常压油藏,上述3类油气藏的运聚及泄露特征差异较大.

       

    • 图  1  阜康凹陷构造图(J2t底)及侏罗系岩性柱状图

      Fig.  1.  Regional structural map and strata histogram of Fukang sag

      图  2  阜康凹陷侏罗系地层压力特征

      Fig.  2.  Characteristics of the Jurassic pressure in Fukang sag

      图  3  阜康凹陷中心侏罗系超压段孔隙度、渗透率与镜质体反射率特征

      Fig.  3.  The measured pressure coefficient with porosity and vitrinite reflectance in Fukang sag

      图  4  阜康凹陷侏罗系储层超压段地质特征

      Fig.  4.  Geological characteristics of the non-source rock overpressure section in the center Fukang sag

      图  5  阜康凹陷董701井侏罗系声速-有效应力-密度关系

      Fig.  5.  Relationship between acoustic velocity, effective stress and density of well Dong701

      图  6  阜康凹陷J2t (a)和J1s (b) 的压力演化

      Fig.  6.  The pressure evolution model for the Jurassic in Fukang sag

      图  7  不同差应力条件下断层再活化与地层流体压力关系

      τ为剪应力,MPa;Sn为剪应力,MPa;TC为抗张强度,MPa;①静水压力;②超压-Pp;③超压+构造应力

      Fig.  7.  Relationship between fault reactivation and fluid pressure under differential stress in Fukang sag

      图  8  阜康凹陷不同压力条件下油气藏的保存与泄露特征

      Fig.  8.  Characteristics of reservoir preservation and leakage under different dynamic conditions in Fukang sag

    • [1] Bowers, G.L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488-PA
      [2] Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture-Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1): 217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
      [3] Dugan, B., Flemings, P. B., 2000. Overpressure and Fluid Flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 289(5477): 288-291. https://doi.org/10.1126/science.289.5477.288
      [4] Fan, C. Y., Wang, Z. L., Wang, A. G., et al., 2016. Identification and Calculation of Transfer Overpressure in the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 100(1): 23-39. https://doi.org/10.1306/08031514030
      [5] Gong, Y.J., 2017. Mesozoic Formation Water Characteristics and Hydrocarbon Geological Significance in the Hinterland of Junggar Basin. Xinjiang Petroleum Geology, 38(5): 524-529(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201705005.htm
      [6] Grauls, D. J., Baleix, J. M., 1994. Role of Overpressures and In Situ Stresses in Fault-Controlled Hydrocarbon Migration: A Case Study. Marine and Petroleum Geology, 11(6): 734-742. https://doi.org/10.1016/0264-8172(94)90026-4
      [7] Guan, B.W., 2015. Research of Structural Evolution of the Eastern Slope of Fukang Sag and Beisantai Region(Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      [8] Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
      [9] Hildenbrand, A., Krooss, B.M., Urai, J.L., 2005. Relationship between Pore Structure and Fluid Transport in Argillaceous Rocks. Solid Mechanics & Its Applications, 125(2): 231-237. http://www.researchgate.net/publication/220047809_Relationship_Between_Pore_Structure_and_Fluid_Transport_in_Argillaceous_Rocks
      [10] Hoesni, J.M., 2004. Origins of Overpressure in the Malay Basin and Its Influence on Petroleum Systems. University of Durham, 35(12): 12397-12401. http://core.ac.uk/download/pdf/108932.pdf
      [11] Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. American Association of Petroleum Geologists Bulletin, 74(1): 1-12.
      [12] Jeans, C.V., 1994. Clay Diagenesis, Overpressure and Reservoir Quality: An Introduction. Clay Minerals, 29(4): 415-423. https://doi.org/10.1180/claymin.1994.029.4.02
      [13] Lahann, R.W., Swarbrick, R.E., 2011. Overpressure Generation by Load Transfer Following Shale Framework Weakening Due to Smectite Diagenesis. Geofluids, 11(4): 362-375. https://doi.org/10.1111/j.1468-8123.2011.00350.x
      [14] Law, B.E., Spencer, C.W., 1998. Abnormal Pressure in Hydrocarbon Environments. AAPG Memoir, 70: 1-11. http://www.onacademic.com/detail/journal_1000039774055510_9230.html
      [15] Lee, Y., Deming, D., 2002. Overpressures in the Anadarko Basin, Southwestern Oklahoma: Static or Dynamic? AAPG Bulletin, 86: 145-160. https://doi.org/10.1306/61eeda62-173e-11d7-8645000102c1865d
      [16] Liu, Z., Jin, B., He, W.Y., et al., 2002. Generation and Distribution of Abnormal Formation Pressures in Eastern Part of the Junggar Basin. Scientia Geologica Sinica, 37(S1): 91-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZKX2002S1013&dbcode=CJFD&year=2002&dflag=pdfdown
      [17] Luo, X.R., Zhang, L.K., Fu, X.F., et al., 2016. Advances in Dynamics of Petroleum Migration and Accumulation in Deep Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876-889, 806(in Chinese with English abstract). http://www.researchgate.net/publication/318864983_Advancesin_Dynamics_of_Petroleum_Migration_and_Accumulation_in_Deep_Basins
      [18] Mann, D.M., MacKenzie, A.S., 1990. Prediction of Pore Fluid Pressures in Sedimentary Basins. Marine and Petroleum Geology, 7(1): 55-65. doi: 10.1016/0264-8172(90)90056-M
      [19] Osborne, M.J., Swar, R.E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(2): 1023-1041. https://doi.org/10.1306/522b49c9-1727-11d7-8645000102c1865d
      [20] Plümper, O., Botan, A., Los, C., et al., 2017. Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow. Nature Geoscience, 10(9): 685-690. https://doi.org/10.1038/ngeo3009
      [21] Pollyea, R. M., 2020. Explaining Long-Range Fluid Pressure Transients Caused by Oilfield Wastewater Disposal Using the Hydrogeologic Principle of Superposition. Hydrogeology Journal, 28(2): 795-803. https://doi.org/10.1007/s10040-019-02067-z
      [22] Shi, H.G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246(in Chinese with English abstract).
      [23] Sibson, R.H., Rowland, J.V., 2003. Stress, Fluid Pressure and Structural Permeability in Seismogenic Crust, North Island, New Zealand. Geophysical Journal International, 154(2): 584-594. https://doi.org/10.1046/j.1365-246X.2003.01965.x
      [24] Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. AAPG Memoir, 76(2): 1-12. http://www.researchgate.net/publication/264739600_Comparison_of_overpressure_magnitude_resulting_from_the_main_generating_mechanisms
      [25] Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(7): B07309. https://doi.org/10.1029/2006JB004665
      [26] Tingay, M.R.P., Hillis, R.R., Swarbrick, R.E., et al., 2007. 'Vertically Transferred' Overpressures in Brunei: Evidence for a New Mechanism for the Formation of High-Magnitude Overpressure. Geology, 35(11): 1023-1026. https://doi.org/10.1130/g23906a.1
      [27] Tingay, M.R.P., Hills, R.R., Swarbrick, R.E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. doi: 10.1306/08080808016
      [28] Wen, G.F., Lin, C.Y., Tian, F.C., et al., 2012. Formation Mechanism of Abnormal Pressure in Fukang Fault Belt-Beisantai Area in Eastern Junggar Basin. Xinjiang Petroleum Geology, 33(2): 149-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201202006.htm
      [29] Yang, Z., Zou, C.N., He, S., et al., 2010. Formation Mechanism of Carbonate Cemented Zones Adjacent to the Top Overpressured Surface in the Central Junggar Basin, NW China. Science China Earth Sciences, 40(4): 439-451(in Chinese). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=JDXG201004006&dbcode=CJFD&year=2010&dflag=pdfdown
      [30] Yardley, G.S., Swarbrick, R.E., 2000. Lateral Transfer: A Source of Additional Overpressure? Marine and Petroleum Geology, 17(4): 523-537. https://doi.org/10.1016/S0264-8172(00)00007-6
      [31] You, L., Zhao, Z.J., Dai, L., et al., 2019. Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin. Earth Science, 44(8): 2654-2664(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908011.htm
      [32] Yu, J.W., Ren, W., Wang, W.X., et al., 2015. Formation Mechanism of Toutunhe Abnormal Pressure of Middle Jurassic in Fudong Slope Area, Junggar Basin. Xinjiang Petroleum Geology, 36(5): 521-525(in Chinese with English abstract).
      [33] Zeng, Z.P., 2017. Characteristics of Formation Pressure System and Its Effect on Petroleum Distribution in Jurassic of Fukang Sag. Fault-Block Oil & Gas Field, 24(3): 337-341(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201703010.htm
      [34] Zhang, J.C., 2011. Pore Pressure Prediction from Well Logs: Methods, Modifications, and New Approaches. Earth-Science Reviews, 108(1/2): 50-63. https://doi.org/10.1016/j.earscirev.2011.06.001
      [35] Zhang, X., Chen, H.H., Kong, L.T., et al., 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781(in Chinese with English abstract).
      [36] Zhao, J.Z., Li, J., Xu, Z.Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998(in Chinese with English abstract).
      [37] 宫亚军, 2017. 准噶尔盆地腹部中生界地层水特征及油气地质意义. 新疆石油地质, 38(5): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705005.htm
      [38] 关宝文, 2015. 阜康凹陷东斜坡及北三台地区构造演化研究(博士学位论文). 北京: 中国科学院大学, 2-3.
      [39] 刘震, 金博, 贺维英, 等, 2002. 准噶尔盆地东部地区异常压力分布特征及成因分析. 地质科学, 37(增刊1): 91-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1013.htm
      [40] 罗晓容, 张立宽, 付晓飞, 等, 2016. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876-889, 806. doi: 10.3969/j.issn.1007-2802.2016.05.008
      [41] 石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm
      [42] 文钢锋, 林承焰, 田福春, 等, 2012. 准东阜康断裂带-北三台地区异常高压形成机理. 新疆石油地质, 33(2): 149-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201202006.htm
      [43] 杨智, 邹才能, 何生, 等, 2010. 准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理. 中国科学: 地球科学, 40(4): 439-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201004006.htm
      [44] 尤丽, 招湛杰, 代龙, 等, 2019. 莺-琼盆地中新统高温超压储层特征及形成机制. 地球科学, 44(8): 2654-2664. doi: 10.3799/dqkx.2019.108
      [45] 于景维, 任伟, 王武学, 等, 2015. 阜东斜坡中侏罗统头屯河组异常高压形成机理. 新疆石油地质, 36(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201505005.htm
      [46] 曾治平, 2017. 阜康凹陷侏罗系压力系统特征及对油气分布的影响. 断块油气田, 24(3): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703010.htm
      [47] 张鑫, 陈红汉, 孔令涛, 等, 2020. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系. 地球科学, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
      [48] 赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  467
    • HTML全文浏览量:  258
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-01
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回