[1] |
Bowers, G.L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488-PA
|
[2] |
Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture-Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1): 217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
|
[3] |
Dugan, B., Flemings, P. B., 2000. Overpressure and Fluid Flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 289(5477): 288-291. https://doi.org/10.1126/science.289.5477.288
|
[4] |
Fan, C. Y., Wang, Z. L., Wang, A. G., et al., 2016. Identification and Calculation of Transfer Overpressure in the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 100(1): 23-39. https://doi.org/10.1306/08031514030
|
[5] |
Gong, Y.J., 2017. Mesozoic Formation Water Characteristics and Hydrocarbon Geological Significance in the Hinterland of Junggar Basin. Xinjiang Petroleum Geology, 38(5): 524-529(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201705005.htm
|
[6] |
Grauls, D. J., Baleix, J. M., 1994. Role of Overpressures and In Situ Stresses in Fault-Controlled Hydrocarbon Migration: A Case Study. Marine and Petroleum Geology, 11(6): 734-742. https://doi.org/10.1016/0264-8172(94)90026-4
|
[7] |
Guan, B.W., 2015. Research of Structural Evolution of the Eastern Slope of Fukang Sag and Beisantai Region(Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
|
[8] |
Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
|
[9] |
Hildenbrand, A., Krooss, B.M., Urai, J.L., 2005. Relationship between Pore Structure and Fluid Transport in Argillaceous Rocks. Solid Mechanics & Its Applications, 125(2): 231-237. http://www.researchgate.net/publication/220047809_Relationship_Between_Pore_Structure_and_Fluid_Transport_in_Argillaceous_Rocks
|
[10] |
Hoesni, J.M., 2004. Origins of Overpressure in the Malay Basin and Its Influence on Petroleum Systems. University of Durham, 35(12): 12397-12401. http://core.ac.uk/download/pdf/108932.pdf
|
[11] |
Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. American Association of Petroleum Geologists Bulletin, 74(1): 1-12.
|
[12] |
Jeans, C.V., 1994. Clay Diagenesis, Overpressure and Reservoir Quality: An Introduction. Clay Minerals, 29(4): 415-423. https://doi.org/10.1180/claymin.1994.029.4.02
|
[13] |
Lahann, R.W., Swarbrick, R.E., 2011. Overpressure Generation by Load Transfer Following Shale Framework Weakening Due to Smectite Diagenesis. Geofluids, 11(4): 362-375. https://doi.org/10.1111/j.1468-8123.2011.00350.x
|
[14] |
Law, B.E., Spencer, C.W., 1998. Abnormal Pressure in Hydrocarbon Environments. AAPG Memoir, 70: 1-11. http://www.onacademic.com/detail/journal_1000039774055510_9230.html
|
[15] |
Lee, Y., Deming, D., 2002. Overpressures in the Anadarko Basin, Southwestern Oklahoma: Static or Dynamic? AAPG Bulletin, 86: 145-160. https://doi.org/10.1306/61eeda62-173e-11d7-8645000102c1865d
|
[16] |
Liu, Z., Jin, B., He, W.Y., et al., 2002. Generation and Distribution of Abnormal Formation Pressures in Eastern Part of the Junggar Basin. Scientia Geologica Sinica, 37(S1): 91-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZKX2002S1013&dbcode=CJFD&year=2002&dflag=pdfdown
|
[17] |
Luo, X.R., Zhang, L.K., Fu, X.F., et al., 2016. Advances in Dynamics of Petroleum Migration and Accumulation in Deep Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 876-889, 806(in Chinese with English abstract). http://www.researchgate.net/publication/318864983_Advancesin_Dynamics_of_Petroleum_Migration_and_Accumulation_in_Deep_Basins
|
[18] |
Mann, D.M., MacKenzie, A.S., 1990. Prediction of Pore Fluid Pressures in Sedimentary Basins. Marine and Petroleum Geology, 7(1): 55-65. doi: 10.1016/0264-8172(90)90056-M
|
[19] |
Osborne, M.J., Swar, R.E., 1997. Mechanisms for Generating Overpressure in Sedimentary Basins: A Reevaluation. AAPG Bulletin, 81(2): 1023-1041. https://doi.org/10.1306/522b49c9-1727-11d7-8645000102c1865d
|
[20] |
Plümper, O., Botan, A., Los, C., et al., 2017. Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow. Nature Geoscience, 10(9): 685-690. https://doi.org/10.1038/ngeo3009
|
[21] |
Pollyea, R. M., 2020. Explaining Long-Range Fluid Pressure Transients Caused by Oilfield Wastewater Disposal Using the Hydrogeologic Principle of Superposition. Hydrogeology Journal, 28(2): 795-803. https://doi.org/10.1007/s10040-019-02067-z
|
[22] |
Shi, H.G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246(in Chinese with English abstract).
|
[23] |
Sibson, R.H., Rowland, J.V., 2003. Stress, Fluid Pressure and Structural Permeability in Seismogenic Crust, North Island, New Zealand. Geophysical Journal International, 154(2): 584-594. https://doi.org/10.1046/j.1365-246X.2003.01965.x
|
[24] |
Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. AAPG Memoir, 76(2): 1-12. http://www.researchgate.net/publication/264739600_Comparison_of_overpressure_magnitude_resulting_from_the_main_generating_mechanisms
|
[25] |
Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(7): B07309. https://doi.org/10.1029/2006JB004665
|
[26] |
Tingay, M.R.P., Hillis, R.R., Swarbrick, R.E., et al., 2007. 'Vertically Transferred' Overpressures in Brunei: Evidence for a New Mechanism for the Formation of High-Magnitude Overpressure. Geology, 35(11): 1023-1026. https://doi.org/10.1130/g23906a.1
|
[27] |
Tingay, M.R.P., Hills, R.R., Swarbrick, R.E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. doi: 10.1306/08080808016
|
[28] |
Wen, G.F., Lin, C.Y., Tian, F.C., et al., 2012. Formation Mechanism of Abnormal Pressure in Fukang Fault Belt-Beisantai Area in Eastern Junggar Basin. Xinjiang Petroleum Geology, 33(2): 149-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201202006.htm
|
[29] |
Yang, Z., Zou, C.N., He, S., et al., 2010. Formation Mechanism of Carbonate Cemented Zones Adjacent to the Top Overpressured Surface in the Central Junggar Basin, NW China. Science China Earth Sciences, 40(4): 439-451(in Chinese). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=JDXG201004006&dbcode=CJFD&year=2010&dflag=pdfdown
|
[30] |
Yardley, G.S., Swarbrick, R.E., 2000. Lateral Transfer: A Source of Additional Overpressure? Marine and Petroleum Geology, 17(4): 523-537. https://doi.org/10.1016/S0264-8172(00)00007-6
|
[31] |
You, L., Zhao, Z.J., Dai, L., et al., 2019. Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin. Earth Science, 44(8): 2654-2664(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908011.htm
|
[32] |
Yu, J.W., Ren, W., Wang, W.X., et al., 2015. Formation Mechanism of Toutunhe Abnormal Pressure of Middle Jurassic in Fudong Slope Area, Junggar Basin. Xinjiang Petroleum Geology, 36(5): 521-525(in Chinese with English abstract).
|
[33] |
Zeng, Z.P., 2017. Characteristics of Formation Pressure System and Its Effect on Petroleum Distribution in Jurassic of Fukang Sag. Fault-Block Oil & Gas Field, 24(3): 337-341(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201703010.htm
|
[34] |
Zhang, J.C., 2011. Pore Pressure Prediction from Well Logs: Methods, Modifications, and New Approaches. Earth-Science Reviews, 108(1/2): 50-63. https://doi.org/10.1016/j.earscirev.2011.06.001
|
[35] |
Zhang, X., Chen, H.H., Kong, L.T., et al., 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781(in Chinese with English abstract).
|
[36] |
Zhao, J.Z., Li, J., Xu, Z.Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998(in Chinese with English abstract).
|
[37] |
宫亚军, 2017. 准噶尔盆地腹部中生界地层水特征及油气地质意义. 新疆石油地质, 38(5): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201705005.htm
|
[38] |
关宝文, 2015. 阜康凹陷东斜坡及北三台地区构造演化研究(博士学位论文). 北京: 中国科学院大学, 2-3.
|
[39] |
刘震, 金博, 贺维英, 等, 2002. 准噶尔盆地东部地区异常压力分布特征及成因分析. 地质科学, 37(增刊1): 91-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX2002S1013.htm
|
[40] |
罗晓容, 张立宽, 付晓飞, 等, 2016. 深层油气成藏动力学研究进展. 矿物岩石地球化学通报, 35(5): 876-889, 806. doi: 10.3969/j.issn.1007-2802.2016.05.008
|
[41] |
石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm
|
[42] |
文钢锋, 林承焰, 田福春, 等, 2012. 准东阜康断裂带-北三台地区异常高压形成机理. 新疆石油地质, 33(2): 149-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201202006.htm
|
[43] |
杨智, 邹才能, 何生, 等, 2010. 准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理. 中国科学: 地球科学, 40(4): 439-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201004006.htm
|
[44] |
尤丽, 招湛杰, 代龙, 等, 2019. 莺-琼盆地中新统高温超压储层特征及形成机制. 地球科学, 44(8): 2654-2664. doi: 10.3799/dqkx.2019.108
|
[45] |
于景维, 任伟, 王武学, 等, 2015. 阜东斜坡中侏罗统头屯河组异常高压形成机理. 新疆石油地质, 36(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201505005.htm
|
[46] |
曾治平, 2017. 阜康凹陷侏罗系压力系统特征及对油气分布的影响. 断块油气田, 24(3): 337-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703010.htm
|
[47] |
张鑫, 陈红汉, 孔令涛, 等, 2020. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系. 地球科学, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
|
[48] |
赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
|