Constraints on the Evolution of Ore-Forming Fluids from Microthermometric and In Situ LA-ICP-MS Analyses of Fluid Inclusions in Xitian Tungsten Tin Polymetallic Deposit, Hunan Province
-
摘要: 为了解锡田钨锡多金属矿床的成矿流体演化过程和成矿元素迁移机制,深入揭示成矿机制,指导该地区的下一步找矿勘探工作,对黑钨矿、锡石及透明矿物的流体包裹体进行了岩相学观察、红外显微测温及LA-ICP-MS原位分析.显示锡田钨锡多金属矿床绿柱石、黑钨矿中发育流体-熔体包裹体,均一温度最高可达760℃.早成矿阶段流体均一温度为360~500℃,盐度主要为28.4%~41.5% NaCleqv,主成矿阶段均一温度为280~450℃,盐度主要为3.0%~20.0% NaCleqv.,晚成矿阶段均一温度为120~280℃,盐度为0.4%~6.6% NaCleqv..LA-ICP-MS分析表明,超临界流体开始出溶时,W、Cu、Mo等元素优先富集于富挥发分气相中,Pb、Zn、Sn、Fe、Mn等元素则更倾向富集于高盐度卤水相中.锡田钨锡多金属矿床成矿流体来源于燕山期浅源花岗岩,钨锡成矿作用始于岩浆-热液过渡阶段,成矿流体具有高温、高盐度和富CO2等特征.成矿流体来自岩浆流体的出溶,演化过程中经历了两次不混溶作用,不混溶相分离过程中,成矿元素选择性迁移,在各相中进行不均匀分配.流体不混溶、水岩反应、流体混合和流体冷却作用是导致该矿床钨锡矿物沉淀的原因.Abstract: In order to understand the evolution process of ore-forming fluid and the migration mechanism of ore-forming elements in Xitian tungsten tin polymetallic deposit, to further reveal the ore-forming mechanism and guide the next exploration work in this area. The fluid inclusions of wolframite, cassiterite and transparent minerals were studied by petrographic observation, infrared microthermometry and in situ LA-ICP-MS analysis of fluid inclusions. The results show that fluid-melt inclusions are developed in beryl and wolframite in Xitian tungsten tin polymetallic deposit, and the highest homogenization temperature is 760℃. At the early stage of mineralization, the fluid homogenization temperature is 360-500℃, the salinity is mainly 28.44%-41.50% NaCleqv. At the main mineralization stage, the homogenization temperature is 280-450℃, the salinity is mainly 3.0%-20.03% NaCleqv. At the late mineralization stage, the homogenization temperature is 120-280℃, and the salinity is 0.35%-6.58% NaCleqv. LA-ICP-MS analysis shows that W, Cu, Mo elements are preferentially enriched in the volatile, while Pb, Zn, Sn, Fe, Mn elements are preferentially enriched in the high salinity brine phase. The ore forming fluid in Xitian W-Sn polymetallic deposit comes from Yanshanian granite, and the mineralization of W-Sn started from the stage of magma-hydrothermal transition, and the ore-forming fluid has the characteristics of high temperature, high salinity and rich CO2. The ore-forming fluid comes from the dissolution of magmatic fluid, which has experienced two immiscible processes in the evolution process. In the process of immiscible phase separation, the ore-forming elements migrate selectively and distribute unevenly in each phase. Fluid immiscibility, water rock reaction, fluid mixing and fluid cooling are the main reasons for the precipitation of W-Sn minerals in the deposit.
-
Key words:
- magma-hydrothermal transition /
- immiscibility /
- metallogenic fluid evolution /
- W-Sn deposit /
- mineral deposits /
-
图 1 锡田钨锡多金属矿床地质简图(据Zhou et al., 2015; Liu et al., 2019a)
Fig. 1. The simplified geological map of the Xitian W-Sn polymetallic deposit(according to Zhou et al., 2015; Liu et al., 2019a)
图 3 锡田钨锡矿床中不同矿物共生关系及其特征
a.黑钨矿云英岩(单偏光);b.黑钨矿云英岩(正交偏光);c. 白钨矿云英岩(正交偏光);d.含锡石云英岩(单偏光);e.含锡石云英岩(正交偏光);f.黄铁矿化矽卡岩(单偏光);g.早期辉钼矿-黑钨矿矿物组合(反光);h.锡石-黑钨矿矿物组合(反光);i.辉钼矿-黑钨矿-锡石-辉钼矿矿物组合(反光);j.磁铁矿-黄铁矿矿物组合(反光);k.晚期黄铁矿-黄铜矿-闪锌矿-方铅矿硫化物矿物组合(反光);l. 晚期黄铜矿-闪锌矿-辉铋银铅矿硫化物矿物组合(反光). Toz.黄玉;Ser.绢云母;Ms.白云母;Cst.锡石;Mol.辉钼矿;Wf.黑钨矿;Sch.白钨矿;Sp.闪锌矿;Cpy.黄铜矿;Gn.方铅矿;Gus.辉铋银铅矿;Bi.辉铋矿;Py.黄铁矿;Mt.磁铁矿;Fl.萤石;Grt.石榴子石;Qz.石英
Fig. 3. Paragenesis and characteristics of different minerals in Xitian W-Sn deposit
图 5 锡田钨锡多金属矿床中不同矿物中流体包裹体显微照片
a. 深色锡石中两相气液包裹体;b. 锡石中三相含子晶包裹体;c, d. 黑钨矿中两相气液包裹体;e. 黄玉中三相含子矿物包裹体;f. 黄玉中两相气液包裹体;g. 绿柱石中三相含子晶包裹体;h. 绿柱石中三相含CO2包裹体;i. 绿柱石中三相含CO2包裹体及两相气液包裹体;j. 石榴子石中两相气液包裹体;k. 石英中三相含CO2包裹体和含子晶包裹体;l. 无色萤石中两相气液包裹体. V.气相;L.液相;S.子矿物
Fig. 5. Photographs of fluid inclusions from the Xitian W-Sn polymetallic deposit
图 10 锡田钨锡矿田成矿流体δ18O水-δD水图解(据Liu et al., 2019b)
箭头指示流体演化趋势
Fig. 10. δ18Ow vs. δDw of deposits in Xitian W-Sn ore field(according to Liu et al., 2019b)
表 1 锡田矿床矿物生成顺序(据付建明等(2012)修改)
Table 1. Mineral generation sequence of Xitian deposit (modified by Fu et al.(2012))
表 2 锡田钨锡矿床流体包裹体显微测温结果
Table 2. Microthermometry of fluid inclusions from the Xitian W-Sn deposit
矿物名称 成矿阶段 初熔温度Te(℃) 冰点温度Tm(℃) 盐度(% NaCleqv) 均一温度Th(℃) 均一方式 备注 深棕-棕色锡石 Ⅲ-2 -20.8~22 -3.1~-6.8 5.1~10.2 340~490 LH2O+VH2O→LH2O 气液包裹体 - 160~243 30.1~34.2 320~500 LH2O+VH2O +SNaCl→LH2O 含盐包裹体 - +7.5~+7.8 4.3~4.9 375~385 LH2O+LCO2+VCO2→LH2O CO2包裹体 Ⅳ-1 -46~-52 -10~-5.52 14.0~19.5 340~490 LH2O+VH2O→LH2O 气液包裹体 浅棕色锡石 Ⅳ-3 -21~22 -1.5~-2.1 2.6~3.5 205~280 LH2O+VH2O→LH2O 气液包裹体 黑钨矿 Ⅲ-2 - -6.0~-4.1 6.6~9.2 320~450 LH2O+VH2O→LH2O 均一至液相 - 4.1~-4.8 6.6~7.6 390~430 LH2O+VH2O→VH2O 均一至气相 闪锌矿 Ⅲ-2 -21 - 6.1~7.2 280~360 LH2O+VH2O→LH2O 气液包裹体 Ⅳ-3 - - 5.1~6.0 210~242 LH2O+VH2O→LH2O 气液包裹体 黄玉 Ⅲ-1 115~282 28.4~36.7 390~490 LH2O+VH2O +SNaCl→LH2O 含盐包裹体 Ⅲ-2 -21~22 -5.1~-5.5 8.0~8.5 480~490 LH2O+VH2O→LH2O 均一至液相 -21~22 -4.2~-5.5 6.7~8.5 380~490 LH2O+VH2O→VH2O 均一至气相 -46~52 -15.0~-16.5 18.6~20.0 360~398 LH2O+VH2O→LH2O 均一至液相 -46~52 -14.0~-16.0 17.8~19.6 360~450 LH2O+VH2O→VH2O 均一至气相 绿柱石 Ⅲ-1 - - - 620~760 LH2O+VH2O+X结晶→M玻璃(+VH2O) 流体-熔体包裹体 - 115~330 28.4~40.1 260~392 LH2O+VH2O +SNaCl→LH2O 含盐包裹体 Ⅲ-2 -57.8~-58 +6.5~+8.0 6.6~4.0 210~290 LH2O+LCO2+VCO2→LH2O CO2包裹体均一至液相H2O -57.8~-58 +7.0~+8.0 5.7~4.0 201~350 LH2O+LCO2+VCO2→LCO2 CO2包裹体均一至液相CO2 -45~-49 -9.1~-15.0 12.9~18.3 290~310 LH2O+VH2O→LH2O 气液包裹体 -21~22 -1.2~-10.6 2.1~14.6 140~380 LH2O+VH2O→LH2O 含次生包裹体 石榴子石 Ⅰ-1 -1.2~-2.1 2.1~3.5 170~210 LH2O+VH2O→LH2O 次生包裹体 20.8~-21 -2.8~-5.1 4.6~8.1 280~450 LH2O+VH2O→LH2O 均一至液相 -20.8~-20.9 -4.1~-3.5 6.6~5.7 360~425 LH2O+VH2O→VH2O 均一至气相 -49~-52 -12.5~-14.1 16.5~18.0 405~462 LH2O+VH2O→LH2O 均一至液相 石英 Ⅲ-2 -57~-57.8 +1.5~+7.8 4.3~12.6 290~385 LH2O+LCO2+VCO2→LH2O CO2包裹体均一至液相H2O -57~-57.8 +5.2~+8.5 3.0~9.3 280~390 LH2O+LCO2+VCO2→LCO2 CO2包裹体均一至液相CO2 Ⅳ-1 - 230~350 33.5~41.5 230~355 LH2O+VH2O +SNaCl→LH2O 含盐包裹体 -21~22 -0.2~-7.2 0.4~10.7 178~470 LH2O+VH2O→LH2O 含次生包裹体 Ⅳ-2 -49~-52 -13.0~-15.5 17.0~19.2 185~268 LH2O+VH2O→LH2O 均一至液相 Ⅳ-3 -49~-52 -15.0~-15.5 18.8~19.2 138~180 LH2O+VH2O→VH2O 均一至气相 萤石 Ⅲ-2 -20.9~-21 -2.0~-7.1 5.1~10.6 290~440 LH2O+VH2O→LH2O 气液包裹体 Ⅳ-3 -20.2~20.6 -0.5~-4.1 0.9~6.6 119~255 LH2O+VH2O→LH2O 含次生包裹体 表 3 锡田多金属矿床流体包裹体成分的LA-ICP-MS原位分析(10-6)
Table 3. LA-ICP-MS in situ analysis (10-6) of fluid inclusions in Xitian polymetallic deposit
样品 HSX16-1
锡石(Ⅲ-2)HSX16-2
锡石(Ⅲ-2)HSX16-11-1
黄玉(Ⅲ-1)HSX16-11-2
黄玉(Ⅲ-2)XT018-1
绿柱石(Ⅲ-2)HSX017-01
石英(Ⅳ-3)盐度(% NaCleqv) 8.6 34.1 34.6 5.5 4.8 9.9 Be 18 294.70 174.31 369.02 1726.89 - 14.40 Na 33 635.27 86 004.44 136 272.00 33 635.27 21 132.74 35 904.15 Al 111 671.40 2 325.20 - - 14 646.82 1 657.51 Si - - - 319 702.73 - - K 39 507.83 81 544.57 143 853.40 14 991.86 2 262.17 3 526.61 Ca - - 16 369.15 24 785.01 39 783.31 - Mn 21 197.05 44 065.34 86 133.11 14 408.26 - - Fe - - 147 290.70 22 783.38 - - Cu 1 488.81 889.31 1 551.77 252.71 - 92.31 Zn 10 198.78 14 375.04 23 311.53 501.35 - - Rb 3 019.66 6 101.55 - - 39.19 95.47 Sr 82.83 89.28 119.70 1 163.50 8.92 2.18 Nb - 1 501.98 4 3.95 - 0.11 Mo 614.21 < 0.46 3.31 - - - Ag 157.56 100.36 102.037 - - - Sn - - 922.35 550.70 - 46.99 Sb 5 713.07 33.65 194.45 42.87 - 27.21 Cs 9 414.70 11 972.64 29 589.34 1 819.47 29.10 579.43 Ba 83 875.91 48.56 170.43 2 646.50 8.55 1.45 Ta - - 0.21 - - 0.09 W 40 964.35 800.66 673.15 115.81 - 6.94 Pb 3 156.07 5 555.98 8 047.04 433.71 20.66 2.08 Bi 164.06 198.12 1 719.76 74.19 - - 表 4 锡田钨锡多金属矿床流体包裹体组分比值
Table 4. Composition ratio of fluid inclusions in Xitian W-Sn polymetallic deposit
样号 矿物 Salt K/Na W/Sn Sn/Na W/Na Cu/Na Mo/Na Rb/Na Sr/Na Rb/Sr HSX16-2 锡石 8.55 1.17 - - 1.217 9 0.044 3 0.018 3 0.089 8 0.002 5 36.46 HSX16-2 锡石 34.05 0.95 - - 0.009 3 0.010 3 - 0.070 9 0.001 0 68.34 HSX16-11-1 黄玉 34.64 1.06 0.73 0.006 8 0.004 9 0.011 4 < 0.000 1 - 0.000 9 - HSX16-1 黄玉 5.50 0.45 0.21 0.016 4 0.003 4 0.007 5 - - 0.034 6 - XT018-1 绿柱石 4.80 0.11 - - - - - 0.001 9 0.000 4 4.39 HSX017-01 石英 9.86 0.10 0.15 0.001 3 0.000 2 0.002 6 - 0.002 7 0.000 1 43.79 -
[1] Cai, X.H., Jia, B.H., 2006. Discovery of the Xitian Tin Deposit, Hunan, and Its Ore Petential. Geology in China, 33(5): 1100-1108 (in Chinese with English abstract). [2] Cao, J.Y., Wu, Q.H., Yang, X.Y., et al., 2020. Geochemical Factors Revealing the Differences between the Xitian and Dengfuxian Composite Plutons, Middle Qin-Hang Belt: Implications to the W-Sn Mineralization. Ore Geology Reviews, 118: 103353. https://doi.org/10.1016/j.oregeorev.2020.103353 [3] Chen, D., Ma, A.J., Liu, W., et al., 2013. Research on U-Pb Chronology in Xitian Pluton of Hunan Province. Geoscience-Journal of Graduate School, China University of Geosciences, 27(4): 819-830(in Chinese with English abstract). [4] Dong, C.G., 2018. Studies on Granitic and Metallogenic Chronology and Geodynamics of the Xitian Tin-Tungsten and Dengfuxian Tungsten Deposits, Hunan Province, China(Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). [5] Fu, J.M., Cheng, S.B., Lu, Y.Y., et al., 2012. Geochronology of the Greisen-Quartz-Vein Type Tungsten-Tin Deposit and Its Host Granite in Xitian, Hunan Province. Geology and Prospecting, 48(2): 313-320(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202014.htm [6] Fu, J.M., Wu, S.C., Xu, D.M., et al., 2009. Reconstraint from Zircon SHRIMP U-Pb Dating on the Age of Magma Intrusion and Mineralization in Xitian Tungsten-Tin Polymetallic Orefield, Eastern Hunan Province. Geology and Mineral Resources of South China, 25(3): 1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200903001.htm [7] Guo, C.L., Li, C., Wu, S.C., et al., 2014. Molybdenite Re-Os Isotopic Dating of Xitian Deposit in Hunan Province and Its Geological Significance. Rock and Mineral Analysis, 33(1): 142-152(in Chinese with English abstract). [8] Guo, W., Lin, X., Hu, S.H., et al., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(5): 1362-1374 (in Chinese with English abstract). [9] Halter, W.E., Webster, J. D., 2004. The Magmatic to Hydrothermal Transition and Its Bearing on Ore-Forming Systems. Chemical Geology, 210(1-4): 1-6. http://dx.doi.org/10.1016/j.chemgeo.2004.06.001 [10] He, M., Liu, Q., Sun, J.F., et al., 2018. Geochemical Characteristics and Tectonic Significance of the Xitian Indosinian Granites in Eastern Hunan Province, South China. Acta Petrologica Sinica, 34(7): 2065-2086(in Chinese with English abstract). [11] Lan, T.G., Hu, R.Z., Fan, H.R., et al., 2017. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz: LA-ICP-MS Method and Applications to Ore Deposits. Acta Petrologica Sinica, 33 (10): 3239-3262 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252013542.html [12] Li, X. Y., Zhang, C., Wang, L. X., et al., 2020. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 31(3): 456-467. https://doi.org/10.1007/s12583-020-1305-y [13] Liang, X.Q., Dong, C.G., Jiang, Y., et al., 2016. Zircon U-Pb, Molybdenite Re-Os and Muscovite Ar-Ar Isotopic Dating of the Xitian W-Sn Polymetallic Deposit, Eastern Hunan Province, South China and Its Geological Significance. Ore Geology Reviews, 78: 85-100. http://dx.doi.org/10.1016/j.oregeorev.2016.03.018 [14] Liu, B., Li H., Wu Q.H., et al., 2019b. Double-Vein (Ore-Bearing vs. Ore-Free) Structures in the Xitian Ore Field, South China: Implications for Fluid Evolution and Mineral Exploration. Ore Geology Reviews, 115: 103181. https://doi.org/10.1016/j.oregeorev.2019. 103181. doi: 10.1016/j.oregeorev.2019.103181 [15] Liu, B., Wu Q.H., Li H., et al., 2019. The Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science (in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.P.20191120.1540.010.html [16] Liu, B., Wu Q.H., Li H., et al., 2019a. Fault-Fluid Evolution in the Xitian W-Sn Ore Field (South China): Constraints from Scheelite Texture and Composition. Ore Geology Reviews, 114: 103140. https://doi.org/10.1016/j.oregeorev.2019. 103140. doi: 10.1016/j.oregeorev.2019.103140 [17] Liu, B., Wu Q.H., Li H., et al., 2020. Fault-Controlled Fluid Evolution in the Xitian W-Sn-Pb-Zn-Fluorite Mineralization System (South China): Insights from Fluorite Texture, Geochemistry and Geochronology. Ore Geology Reviews, 116 : 103233. http://dx.doi.org/10.1016/j.oregeorev.2019.103233 [18] Liu, G.Q., Wu, S.C., Du, A.D., et al., 2008. Metallogenic Ages of the Xitian Tung Sten-Tin Deposit, Eastern Hunan Province. Geotectonica et Metalogenia, 32(1): 63-71(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801010.htm [19] Liu, M., Qiu, H.N., Bai, X.J., et al., 2015. Fluid Inclusion Studies of Xintian Tin-Tungsten Polymetallic Deposit in Hunan Province. Mineral Deposits, 34(5): 981-998(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201505008.htm [20] Long, B.L., Wu, S.C., Xu, H.H., 2009. Geological Characteristics and Exploration Potential of the Xitian W-Sn Polymetallic Deposit, Hunan Province. Geology and Prospecting, 45(3): 229-234(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200903001.htm [21] Ma, L.Y., Fu, J.M., Wu, S.C., et al., 2008. 40Ar/39Ar Isotopic Dating of the Longshang Tin-Polymetallic Deposit, Xitian Orefield, Eastern Hunan. Chinese Geology, 35(4): 706-713(in Chinese with English abstract). [22] Ma, T.Q., Bai, D.Y., Kuang, J., et al., 2005. Zircon SHRIMP Dating of the Xitian Granite Pluton, Chaling, Southeastern Hunan, and Its Geological Significance. Geologcal Bulletin of China, 24(5): 415-419(in Chinese with English abstract). [23] Matthew, J.S., James, S.B., Luca, F., et al., 2009. Partitioning Behavior of Trace Elements Between Dacitic Melt and Plagioclase, Orthopyroxene, and Clinopyroxene Based on Laser Ablation ICPMS Analysis of Silicate Melt Inclusions. Geochimica et Cosmochimica Acta, 73(7): 2123-2141. https://doi.org/10.1016/j.gca.2009.01.009 [24] Ni, Y.J., Shan, Y.H., Wu, S.C., et al., 2014. Emplacement Mechanism of Indosinian Dengfuxian-Xitian Granite Pluton in Eastern Hunan, South China. Geotectonica et Metallogenia, 38(1): 82-93(in Chinese with English abstract). [25] Niu, R., Liu, Q., Hou, Q.L., et al., 2015. Zircon U-Pb Geochronology of Xitian Granitic Pluton in Hunan Province and Its Constraints on the Metallogenic Ages of the Tungsten-Tin Deposit. Acta Petrologica Sinica, 31(9): 2620-2632(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201509012.htm [26] Nockolds, R.K., Allen, R., 1953, The Geochemistry of Some Igneous Rock Series: Part 1 Calc-Alkali Rocks. Geochimica et Cosmochimica Acta, 4: 105-142. http://dx.doi.org/10.1016/0016-7037(53)90055-6 [27] Pan, J. Y., Ni, P. S., Wang, R.C., et al., 2019. Comparison of Fluid Processes in Coexisting Wolframite and Quartz from a Giant Vein-Type Tungsten Deposit, South China: Insights from Detailed Petrography and LA-ICP-MS Analysis of Fluid Inclusions. American Mineralogist, 104: 1092-1116. http://dx.doi.org/10.2138/am-2019-6958 [28] Pettkea, T., Audextat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia) Part II: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220(3-4): 105-142. https://doi.org/10.1016/j.chemgeo.2005.02.017 [29] Schmidt, C., 2018. Formation of Hydrothermal Tin Deposits: Raman Spectroscopic Evidence for An Important Role of Aqueous Sn(IV) Species. Geochimica et Cosmochimica Acta, 220: 499-511. https://doi.org/10.1016/j.gca.2017.10.011 [30] Schmidt, C., Romer, R., Ueberwasser, C.C., et al., 2020. Partitioning of Sn and W Between Granitic Melt and Aqueous Fluid. Ore Geology Reviews, 117: 103263. https://doi.org/10.1016/j.oregeorev.2019.103263. [31] Seo, J.H., Guillong, M., Heinrich, C.A., et al., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1-4): 323-328. http://dx.doi.org/10.1016/j.epsl.2009.03.036 [32] Shen, K. Shu, L., Liu, P.R., et al., 2018. Origin and Significance of Mica-Bearing Fluid Inclusions in the Altered Wallrocks of the Wangjiazhuang Copper-Molybdenum Deposit, Zouping County, Shandong Province. Acta Petrologica Sinica, 34(12): 3509-3524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812004.htm [33] Su, H.Z., Guo, C.L., Wu, S.C., et al., 2015. Magma-Hydrothermal Fluid Activity Duration and Material Sources in the Xitian Indosinian-Yanshanian Complex. Acta Geologica Sinica, 89(10): 1853-1872(in Chinese with English abstract). [34] Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399 (6737): 676-679. http://dx.doi.org/10.1038/21406 [35] Veksler, I.V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1-4): 7-31. http://dx.doi.org/10.1016/j.chemgeo.2004.06.002 [36] Wang, L.J., Wang, Y.W., Wang, J.B., et al., 2006. Fluid Forming of a Dajing Tin-Polymetallic Deposit in Inner Mongolia: Evidence of a Individual Fluid Inclusion Component of LA-ICP-MS. Chinese Science Bulletin, 51(10): 1203-1210(in Chinese). doi: 10.1360/csb2006-51-10-1203 [37] Wang, M., Bai, X.J., Hu, R.G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049-1060(in Chinese with English abstract). http://www.cqvip.com/QK/90781X/201506/667605440.html [38] Wang, X.D., Ni, P., Yuan, S.D., et al., 2012. Fluid Inclusion Studies of the Huangsha Quartz-Vein Type Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(1): 122-132(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201201010 [39] Wang, Y.L., 2014. Early Yanshan Granitic Magmatic-hydrothermal Evolution and Tungsten Deposits Mineralization in Southeast Hunan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [40] Wu, S.C., Hong, Q.H., Long, W.P., et al., 2009. Geologiclal Features and Metallogenic Model of Xitian W-Sn Polymetallic Deposit, Hunan Province. Geology and Mineral Resources of South China, 25(2): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200902000.htm [41] Xia, L.Q., 2002. Melt Inclusions in Magmatic Rocks. Earth Science Frontiers (China University of Geosciences, Beijing), 9(2): 403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200202031.htm [42] Xiong, Y.Q., Shao, Y.J., Liu J.P., et al., 2016. Ore-Forming Fluid of Quartz-Vein Type Tungsten Deposits, Xitian Orefield, Eastern Hunan, China. The Chinese Journal of Nonferrous Metals, 26(5): 1107-1119 (in Chinese with English abstract). [43] Xiong, Y.Q., Shao, Y.J., Zou, H.D., et al., 2017. Ore-forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China: Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83: 152-173. http://dx.doi.org/10.1016/j.oregeorev.2016.12.007 [44] Xu, X.W., Wu, Q., Huang, X.F., et al., 2012. Formation Mechanism and Evolution Process of Copper-Rich Porphyry Magma. Acta Petrologica Sinica, 28(2): 421-432(in Chinese with English abstract). http://www.oalib.com/paper/1474532 [45] Yang, J.H., Kang, L.F., Liu, L., et al., 2019. Tracing the Origin of Ore-Forming Fluids in the Piaotang Tungsten Deposit, South China: Constraints from in-Situ Analyses of Wolframite and Individual Fluid Inclusion. Ore Geology Reviews, 111: 102939. https://doi.org/10.1016/j.oregeorev.2019.102939. [46] Yang, X.J., Wu, S.C., Fu, J.M., et al., 2007. Fluid Inclusion Studies of Longshang Tin-Polymetallic Deposit in Xitian Ore Field, Eastern Hunan Province. Mineral Deposits, 26(5): 501-511 (in Chinese with English abstract). [47] Yu, Z.F., 2015. Characteristics and Evolution of Ore-Forming Fluids and Mineralization Model for Yaogangxian and Xitian Quartz Vein Type Tungsten Deposit, Hunan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [48] Zajacz, Z., Halter, W., 2009. Copper Transport by High Temperature, Sulfur-Rich Magmatic Vapor: Evidence from Silicate Melt and Vapor Inclusions in a Basaltic Andesite from the Villarrica Volcano (Chile). Earth and Planetary Science Letters, 282(1-4): 115-121. https://doi.org/10.1016/j.epsl.2009.03.006 [49] Zhang, D.H., Zhang, W.H., Xu, G.J., 2001. Exsolution and Evolution of Magmatic Hydrothermal Fluids and Their Constraints on the Porphyry Ore-Forming System. Earth Science Frontiers, 8(3): 193-202(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200103033.htm [50] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017a. Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit: Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province. Earth Science, 42(10): 1647-1657(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201710001.htm [51] Zhou, Y., Liang, X.Q., Wu, S. C., et al., 2015. Isotopic Geochemistry, Zircon U-Pb Ages and Hf Isotopes of A-Type Granites from the Xitian W-Sn Deposit, SE China: Constraints on Petrogenesis and Tectonic Significance. Journal of Asian Earth Sciences, 105: 122-139. http://dx.doi.org/10.1016/j.jseaes.2015.03.006 [52] Zhou, Y., Tang, J.X., Huang, Y., et al., 2017b. Microthermometry and Characteristic Element Determination of Fluid Inclusions from Xiongcun Copper-Gold Deposit in Tibet. Mineral Deposits, 36(5): 1039-1056(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201705002.htm [53] 蔡新华, 贾宝华, 2006. 湖南锡田锡矿的发现及找矿潜力分析. 中国地质, 33(5): 1100-1108. doi: 10.3969/j.issn.1000-3657.2006.05.020 [54] 陈迪, 马爱军, 刘伟, 等, 2013. 湖南锡田花岗岩体锆石U-Pb年代学研究. 现代地质, 27(4): 819-830. doi: 10.3969/j.issn.1000-8527.2013.04.008 [55] 董超阁, 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究(博士学位论文). 北京: 中国科学院大学. [56] 付建明, 程顺波, 卢友月, 等, 2012. 湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年. 地质与勘探, 48(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202014.htm [57] 付建明, 伍式崇, 徐德明, 等, 2009. 湘东锡田钨锡多金属矿区成岩成矿时代的再厘定. 华南地质与矿产, 25(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200903001.htm [58] 郭春丽, 李超, 伍式崇, 等, 2014. 湘东南锡田辉钼矿Re-Os同位素定年及其地质意义. 岩矿测试, 33(1): 142-152. doi: 10.3969/j.issn.0254-5357.2014.01.022 [59] 郭伟, 林贤, 胡圣虹, 等, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(5): 1362-1374. doi: 10.3799/dqkx.2019.199 [60] 何苗, 刘庆, 孙金凤, 等, 2018. 湘东地区锡田印支期花岗岩的地球化学特征及其构造意义. 岩石学报, 34(7): 2065-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807016.htm [61] 蓝廷广, 胡瑞忠, 范宏瑞, 等, 2017. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用. 岩石学报, 33 (10): 3239-3262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710017.htm [62] 刘飚, 吴堑虹, 李欢, 等, 2019. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学. http://kns.cnki.net/kcms/detail/42.1874.P.20191120.1540.010.html doi: 10.3799/dqkx.2019.263 [63] 刘国庆, 伍式崇, 杜安道, 等, 2008. 湘东锡田钨锡矿区成岩成矿时代研究. 大地构造与成矿学, 32(1): 63-71. doi: 10.3969/j.issn.1001-1552.2008.01.009 [64] 刘曼, 邱华宁, 白秀娟, 等, 2015. 湖南锡田钨锡多金属矿床流体包裹体研究. 矿床地质, 34(5): 981-998. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201505008.htm [65] 龙宝林, 伍式崇, 徐辉煌, 2009. 湖南锡田钨锡多金属矿床地质特征及找矿方向. 地质与勘探, 45(3): 229-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200903001.htm [66] 马丽艳, 付建明, 伍式崇, 等, 2008. 湘东锡田垄上锡多金属矿床40Ar/39Ar同位素定年研究. 中国地质, 35(4): 706-713. doi: 10.3969/j.issn.1000-3657.2008.04.015 [67] 马铁球, 柏道远, 邝军, 等, 2005. 湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义. 地质通报, 24(5): 415-419. doi: 10.3969/j.issn.1671-2552.2005.05.004 [68] 倪永进, 单业华, 伍式崇, 等, 2014. 湘东邓阜仙-锡田印支期花岗岩体的侵位机制. 大地构造与成矿学, 38(1): 82-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401008.htm [69] 牛睿, 刘庆, 侯泉林, 等, 2015. 湖南锡田花岗岩锆石U-Pb年代学及钨锡成矿时代的探讨. 岩石学报, 31(9): 2620-2632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509012.htm [70] 沈昆, 舒磊, 刘鹏瑞, 等, 2018. 山东邹平王家庄铜(钼)矿床蚀变围岩中含云母流体包裹体的成因及其意义. 岩石学报, 34(12): 3509-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812004.htm [71] 苏红中, 郭春丽, 伍式崇, 等, 2015. 锡田印支-燕山期复式花岗质岩浆-热液活动时限和物质来源. 地质学报, 89(10): 1853-1872. doi: 10.3969/j.issn.0001-5717.2015.10.013 [72] 王莉娟, 王玉往, 王京彬, 等, 2006. 内蒙古大井锡多金属矿床流体成矿作用研究: 单个流体包裹体组分LA-ICP-MS分析证据. 科学通报, 51(10): 1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012 [73] 王敏, 白秀娟, 胡荣国, 等, 2015. 湘东南锡田钨锡多金属矿床锡石40Ar/39Ar直接定年. 大地构造与成矿学, 39(6): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506008.htm [74] 王旭东, 倪培, 袁顺达, 等, 2012. 江西黄沙石英脉型钨矿床流体包裹体研究. 岩石学报, 28(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201012.htm [75] 王艳丽, 2014. 湘东南地区燕山早期花岗岩浆-热液演化及钨矿成矿作用研究(博士学位论文). 北京: 中国地质大学. [76] 伍式崇, 洪庆辉, 龙伟平, 等, 2009. 湖南锡田钨锡多金属矿床成矿地质特征及成矿模式. 华南地质与矿产, 25(2): 1-6. doi: 10.3969/j.issn.1007-3701.2009.02.001 [77] 夏林圻, 2002. 岩浆岩中的熔体包裹体. 地学前缘, 9(2): 403-414. doi: 10.3321/j.issn:1005-2321.2002.02.020 [78] 熊伊曲, 邵拥军, 刘建平, 等, 2016. 锡田矿田石英脉型钨矿床成矿流体. 中国有色金属学报, 26(5): 1107-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201605020.htm [79] 徐兴旺, 吴琪, 黄雪飞, 等, 2012. 富铜斑岩岩浆形成机制与演化过程. 岩石学报, 28(2): 421-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202008.htm [80] 杨晓君, 伍式崇, 付建明, 等, 2007. 湘东锡田垄上锡多金属矿床流体包裹体研究. 矿床地质, 26(5): 501-511. doi: 10.3969/j.issn.0258-7106.2007.05.002 [81] 于志峰, 2015. 湖南瑶岗仙和锡田钨矿床成矿流体演化特征与成矿模式研究(硕士学位论文). 北京: 中国地质大学. [82] 张德会, 张文淮, 许国建, 2001. 岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约. 地学前缘, 8(3): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103033.htm [83] 周云, 梁新权, 蔡永丰, 等, 2017a. 湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义. 地球科学, 42(10): 1647-1657. doi: 10.3799/dqkx.2017.557 [84] 周云, 唐菊兴, 黄勇, 等, 2017b. 西藏雄村铜金矿床流体包裹体显微测温与特征元素测定. 矿床地质, 36(5): 1039-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201705002.htm