Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?
-
摘要: 关于特提斯喜马拉雅构造带中东部地区桑秀组酸性火山岩是否是地壳深熔形成以及与东冈瓦纳大陆裂解事件存在关联长期以来有较大争议,以羊卓雍错地区桑秀组酸性火山岩为研究对象,在详实的野外地质调查及样品采集基础上,通过室内镜下岩石学特征、LA-ICP-MS锆石U-Pb定年、全岩地球化学和锆石Hf同位素地球化学研究.结果表明:羊卓雍错地区桑秀组底部两个酸性火山岩样品(RYA01、DYA01)加权平均年龄为139.1±1.3 Ma(1σ,MSWD=1.08)和137.3±1.4 Ma(1σ,MSWD=0.98),代表了特提斯喜马拉雅地区早白垩世时期火山活动.岩石地球化学和Hf同位素地球化学特征表明,酸性火山岩具有高含量的SiO2、低镁指数值、较高的A/CNK比值,富集Al、LREE和Th,强烈亏损Nb,锆石εHf(t)值介于-20.1~-10.5之间,平均值为-13.5.综合研究表明,羊卓雍错地区桑秀组酸性火山是印度大陆北缘伸展减薄的环境下幔源岩浆底侵诱发上覆地壳并发生部分熔融形成的岩浆产物,结合酸性火山岩锆石年龄结果以及前人对东冈瓦纳大陆研究成果,认为羊卓雍错地区桑秀组酸性火山岩与东冈瓦纳大陆裂解有关,属于Kerguelen地幔柱岩浆活动早期产物.Abstract: For a long time, there have been many controversies on whether the acid volcanic rocks of Sangxiu Formation in the central and eastern parts of the Tethyan-Himalaya tectonic belt were formed by crustal anatism and were related to the break-up of East Gondwana continent. In this study, the characteristics of acid volcanic rocks of Sangxiu Formation in YamzhoYumco area were studied. Based on the detailed field geological survey and sample collection, the petrography characteristics, LA-ICP-MS zircon U-Pb geochronology, whole-rock geochemistry and Hf isotope of zircon were investigated. The results show that weighted mean age of the two acid volcanic rock samples (RYA01 and DYA01) at the bottom of Sangxiu Formation in YamzhoYumco area were 139.1±1.3 Ma (1σ, MSWD=1.08) and 137.3±1.4 Ma (1σ, MSWD=0.98), respectively, indicating that the two acid volcanic rock samples were formed by the Early Cretaceous volcanic activity in the Tethyan-Himalaya region. The geochemical and Hf isotopic geochemical characteristics show that the acidic volcanic rocks have high content of SiO2, low magnesium index, high A/CNK ratio, enrichment of Al, LREE and Th, and strong depletion of Nb. The zircon εHf(t) values range from -20.1 to -10.5, with an average of -13.5. It is revealed that the acid volcanic rocks of Sangxiu Formation in YamzhoYumco area are magmatic products of partial melting of overlying crust induced by mantle derived magma underplating in the northern margin of Indian continent. Combining with the previous study, it is recognized that the genesis of the acid volcanic rocks is related to the rifting of East Gondwana continent. It is the early product of Kerguelen mantle plume.
-
图 1 青藏高原构造单元划分(a)及羊卓雍错地区大地构造背景图(b)
a.据Ma et al.(2013)修改;b.据Zhu et al.(2009)修改
Fig. 1. Tectonic units of the Tibetan plateau (a) and the geotectonic background map of the YamzhoYumco area (b)
图 9 羊卓雍错地区桑秀组酸性火山岩Na2O+K2O vs.SiO2 (a)、A/NK vs. A/CNK (b)、SiO2 vs.AR (c)、K2O vs.SiO2 (d) 图解
据Middlemost(1994);Le Maitre(2002)
Fig. 9. Na2O+K2O vs.SiO2 (a), A/NK vs.A/CNK (b), SiO2 vs.AR (c) and K2O vs.SiO2 (d) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area
图 10 羊卓雍错地区桑秀组酸性火山岩样品的球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
Fig. 10. Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagram of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area
图 13 羊卓雍错地区桑秀组酸性火山岩La/Sm vs.La图解(a) and (La/Yb)N vs. δEu图解(b)
a,b.据Pearce et al.(1984)
Fig. 13. La/Sm vs. La (a) and (La/Yb)N vs. δEu (b) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area
图 14 羊卓雍错地区桑秀组酸性火山岩Th/Yb vs. Ta/Yb图解(a)和(La/Nb)PM vs. (Th/Ta)PM图解(b)
Fig. 14. Th/Yb vs. Ta/Yb (a) and (La/Nb)PM vs. (Th/Ta)PM (b) plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco area
图 15 羊卓雍错地区桑秀组酸性火山岩Hf vs. Zr(a)和Nb vs.Y(b)构造环境判别图
a.据Condie (1986);b.据Pearce et al. (1984)
Fig. 15. Hf vs. Zr(a) and Nb vs.Y (b) tectonic discrimination plots of the Sangxiu Formation acid volcanic rock samples from the YamzhoYumco region
图 16 东冈瓦纳大陆裂解模式图(a), 羊卓雍错地区桑秀组酸性火山岩演化模式图(b)
Fig. 16. Dissociation pattern of the East Gondwana continent (a) and evolution pattern of the Sangxiu Formation acid volcanic rocks from the YamzhoYumco area (b)
表 1 羊卓雍错地区桑秀组酸性火山岩锆石U-Pb年龄结果
Table 1. U-Pb dating results of the Sangxiu Formation acid volcanic rocks zircon from the YamzhoYumco area
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%) Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ RYA01:英安岩 1 50 616 549 1.12 0.139 6 0.006 7 0.021 7 0.000 3 132.7 6.0 138.4 1.7 95 3 24 255 329 0.78 0.136 4 0.008 3 0.021 9 0.000 4 129.9 7.4 139.9 2.4 92 4 29 267 337 0.79 0.148 6 0.008 4 0.021 4 0.000 3 140.6 7.4 136.5 2.1 97 5 50 573 694 0.83 0.141 1 0.012 1 0.022 0 0.000 6 134.0 10.7 140.0 3.5 95 7 20 159 552 0.29 0.144 3 0.008 0 0.021 3 0.000 3 136.9 7.1 135.8 2.0 99 8 15 147 283 0.52 0.159 3 0.010 7 0.022 0 0.000 4 150.1 9.3 140.0 2.7 93 12 458 138 223 0.62 0.141 4 0.011 1 0.022 0 0.000 4 134.3 9.8 140.2 2.7 95 13 15 209 312 0.67 0.132 5 0.008 3 0.021 8 0.000 4 126.3 7.4 139.3 2.3 90 16 21 269 287 0.94 0.143 7 0.009 0 0.021 6 0.000 4 136.3 8.0 137.6 2.4 99 17 24 356 511 0.70 0.142 5 0.007 1 0.022 7 0.000 3 135.3 6.3 144.4 2.1 93 25 32 252 655 0.38 0.147 4 0.012 3 0.022 1 0.000 7 139.7 10.9 140.7 4.4 99 DYA01:流纹岩 1 18 217 311 0.70 0.138 9 0.010 2 0.021 1 0.000 5 132.1 9.1 134.9 2.9 97 3 22 333 253 1.31 0.136 6 0.009 7 0.020 9 0.000 5 130.0 8.7 133.1 2.8 97 5 19 241 276 0.87 0.146 1 0.012 6 0.021 2 0.000 4 138.4 11.2 135.4 2.4 97 8 26 366 329 1.11 0.150 1 0.012 7 0.021 4 0.000 4 142.0 11.2 136.8 2.5 96 13 24 325 350 0.93 0.140 4 0.008 7 0.022 0 0.000 3 133.4 7.7 140.0 2.1 95 16 47 678 677 1.00 0.133 4 0.006 8 0.021 8 0.000 3 127.2 6.1 139.2 2.0 90 19 38 556 430 1.29 0.133 7 0.007 1 0.021 4 0.000 3 127.4 6.3 136.7 1.9 92 20 32 457 519 0.88 0.147 1 0.007 4 0.021 9 0.000 3 139.4 6.6 139.5 2.0 99 25 41 585 532 1.10 0.147 6 0.006 4 0.021 3 0.000 3 139.8 5.6 136.0 2.0 97 表 2 羊卓雍错地区桑秀组酸性火山岩样品主量(%)、微量(10-6)和稀土(10-6)元素分析结果
Table 2. Major (%), trace elment (10-6) and rare earth element (10-6) compositions of the Sangxiu Formation acid volcanic rocks samples from the YamzhoYumco area
样号 RYA01 RYA02 RYA03 SYA01 SYA02 SYA03 SYA04 DYA01 DYA02 SiO2 72.21 73.59 68.82 70.06 72.07 71.03 70.53 71.83 72.75 Al2O3 14.01 12.60 14.72 14.31 13.05 13.87 14.62 13.27 13.38 Fe2O3 1.24 0.74 3.26 1.70 0.88 1.55 2.28 0.93 0.80 FeO 2.87 3.24 3.28 4.58 4.94 3.79 2.77 3.87 4.20 MnO 0.04 0.73 0.08 0.11 0.13 0.09 0.04 0.06 0.05 MgO 0.62 0.60 0.99 1.47 0.82 0.91 0.65 1.01 0.79 CaO 1.93 1.90 2.31 2.65 1.11 0.95 0.55 1.10 0.79 Na2O 3.65 4.04 2.38 1.21 3.98 6.42 7.10 2.91 2.56 K2O 2.30 1.46 2.63 2.66 1.85 0.27 0.22 3.87 3.49 TiO2 0.88 0.82 1.21 0.91 0.92 0.83 0.89 0.86 0.87 P2O5 0.26 0.26 0.32 0.34 0.23 0.29 0.33 0.29 0.29 Mg# 21.71 21.50 22.12 30.02 20.32 23.83 19.37 27.67 22.25 TFeO 3.99 3.91 6.21 6.11 5.73 5.18 4.82 4.71 4.92 A/NK 2.35 2.29 2.94 3.70 2.24 2.07 2.00 1.96 2.21 A/CNK 1.78 1.70 2.01 2.19 1.88 1.82 1.86 1.68 1.96 δ 1.21 0.99 0.97 0.55 1.17 1.60 1.95 1.59 1.23 AR 2.19 2.22 1.83 1.59 2.40 2.65 2.86 2.79 2.49 LOSS 2.72 3.48 5.05 5.14 1.63 1.96 3.26 2.49 1.97 ∑ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Rb 123.40 77.62 112.01 115.26 39.23 2.85 10.55 122.64 139.06 Ba 963.70 666.30 489.64 553.39 404.00 344.74 102.76 856.89 1 028.38 Sr 121.38 122.81 67.95 80.26 166.79 146.50 77.36 84.77 55.01 U 1.33 1.51 1.30 2.66 1.65 1.91 1.53 1.36 1.31 Ta 1.79 2.06 1.31 1.57 1.45 1.45 0.93 1.64 0.91 Nb 24.93 24.62 16.56 19.33 21.62 23.36 10.71 20.66 23.76 Cd 0.08 0.06 0.06 0.06 0.15 0.08 0.06 0.04 0.07 Co 8.22 9.56 16.18 13.22 12.14 10.58 12.63 7.95 8.81 Cr 31.08 30.41 39.56 27.45 44.57 37.85 28.03 24.89 27.09 Cs 3.09 2.41 2.73 3.08 0.61 0.33 0.47 3.91 2.76 Cu 13.95 11.53 11.16 11.78 27.07 19.43 10.58 8.74 10.51 Ga 24.51 19.56 22.75 21.54 21.02 22.32 21.58 19.98 22.41 Ni 9.66 13.25 15.80 14.41 17.88 22.36 10.88 9.31 10.01 Pb 24.08 22.71 12.71 23.92 24.49 26.58 19.65 22.70 18.21 V 59.92 54.07 97.66 57.75 72.30 56.85 60.62 48.37 50.36 Zn 69.41 68.45 72.73 78.51 106.86 93.69 59.18 56.08 59.31 Zr 561.42 519.63 517.08 519.25 318.25 357.74 523.65 508.98 528.73 Y 39.13 38.29 37.93 41.66 31.82 35.76 36.96 54.40 54.20 Hf 14.56 13.43 13.25 13.35 10.61 9.19 13.09 13.43 14.07 Th 31.05 29.67 18.67 28.02 12.62 9.85 22.40 20.76 28.02 La 92.05 85.58 71.48 74.03 40.93 53.07 73.89 101.04 101.42 Ce 175.41 160.29 139.34 151.47 85.19 110.35 148.57 209.51 210.66 Pr 21.90 20.13 16.75 18.03 12.12 14.39 17.40 26.66 27.15 Nd 80.27 72.31 73.62 78.47 46.56 58.21 75.34 107.65 110.72 Sm 14.62 13.32 13.48 14.28 9.34 11.43 13.63 19.71 20.00 Eu 2.57 2.23 2.81 2.32 1.63 1.96 2.81 3.49 3.69 Gd 11.68 10.65 12.24 12.52 7.78 9.23 11.97 15.27 15.63 Tb 2.09 1.91 1.73 1.81 1.52 1.48 1.64 2.19 2.24 Dy 8.74 8.32 7.78 8.36 6.89 7.83 7.58 10.96 10.71 Ho 1.60 1.56 1.41 1.56 1.31 1.44 1.35 1.98 1.92 Er 3.79 3.81 3.84 4.31 3.27 3.94 3.57 5.64 5.46 Tm 0.53 0.53 0.46 0.54 0.47 0.69 0.44 0.89 0.86 Yb 2.80 2.88 3.42 4.27 2.84 4.11 3.22 5.14 5.17 Lu 0.42 0.43 0.40 0.47 0.44 0.60 0.39 0.78 0.73 ΣREE 418.47 383.95 348.76 372.44 220.29 278.73 361.80 510.92 516.35 LREE 386.82 353.86 317.48 338.60 195.77 249.41 331.64 468.07 473.62 HREE 31.65 30.09 31.28 33.84 24.52 29.32 30.16 42.86 42.73 LREE/HREE 12.22 11.76 10.15 10.01 7.98 8.51 11.00 10.92 11.08 LaN/YbN 23.58 21.31 14.99 12.44 10.34 9.26 16.46 14.11 14.07 δEu 0.58 0.55 0.66 0.52 0.57 0.57 0.66 0.59 0.62 δCe 0.93 0.91 0.95 0.99 0.93 0.96 0.98 0.97 0.96 注:本文数据由西南冶金测试中心测定,测试结果进行LOSS剔除归一化到百分之百,然后完成地球化学投图. 表 3 羊卓雍错地区桑秀组酸性火山岩锆石Hf同位素分析结果
Table 3. Hf isotope analysis results of the Sangxiu Formation acid volcanic rock zircon from the YamzhoYumco area
样品编号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ Hfi εHf(t) TDM1(Ga) TDM2(Ga) RYA01-5 140 0.045 545 0.001 305 0.282 339 0.000 026 0.28 -12.4 1.30 1.98 RYA01-7 136 0.025 520 0.000 697 0.282 122 0.000 025 0.28 -20.1 1.58 2.46 RYA01-8 140 0.030 026 0.000 832 0.282 281 0.000 025 0.28 -14.4 1.36 2.10 RYA01-13 139 0.040 188 0.001 118 0.282 312 0.000 026 0.28 -13.3 1.33 2.04 RYA01-16 138 0.041 413 0.001 112 0.282 303 0.000 029 0.28 -13.7 1.34 2.06 RYA01-17 144 0.035 762 0.000 939 0.282 305 0.000 024 0.28 -13.5 1.33 2.05 DYA01-3 133 0.021 136 0.000 651 0.282 369 0.000 024 0.28 -11.4 1.24 1.91 DYA01-5 135 0.028 942 0.000 897 0.282 265 0.000 022 0.28 -15.1 1.39 2.14 DYA01-13 140 0.035 074 0.000 937 0.282 390 0.000 023 0.28 -10.5 1.22 1.86 DYA01-16 139 0.048 181 0.001 298 0.282 371 0.000 020 0.28 -11.3 1.25 1.91 DYA01-19 137 0.044 244 0.001 217 0.282 315 0.000 022 0.28 -13.3 1.33 2.03 表 4 特提斯喜马拉雅中东部地区桑秀组火山岩U-Pb年龄数据
Table 4. U-Pb dating results of the Sangxiu Formation volcanic rock zircon from the central-eastern Tethyan-Himalaya
样品编号 岩性 地层 地区 年龄(Ma) 数据来源 ZL1 火山岩 桑秀组 工布学乡 135.1±0.7 马义明(2016) ZL23 124.4±0.7 SX(10)-1 流纹质英安岩 日莫瓦 133.0±3.0 朱弟成等(2005) 08JBT04 流纹岩 131.0±5.0 Zhu et al.(2009) RYA01 英安岩 柔扎村 139.1±1.3 本文数据 DYA01 日莫瓦 137.3±1.4 PM4/8 玄武岩 哲古 141.0±1.0 吴丰(2017) PM4/27 142.0±1.0 S- 英安岩 隆子 134.9±2.3 任冲(2015) -
[1] Aarnes, I., Svensen, H., Polteau, S., et al., 2011. Contact Metamorphic Devolatilization of Shales in the Karoo Basin, South Africa, and the Effects of Multiple Sill Intrusions. Chemical Geology, 281(3/4): 181-194. https://doi.org/10.1016/j.chemgeo.2010.12.007 [2] Bian, W. W., 2019. Paleomagnetic Constraints on the Breakup of Eastern Gondwana and the India-Asia Collision (Dissertation). China University of Geosciences, Beijing, 34-36 (in Chinese with English abstract). [3] Coffin, M. F., Rabinowitz, P. D., 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, 92(B9): 9385-9406. https://doi.org/10.1029/JB092iB09p09385 [4] Condie, K.C., 1986. Geochemistry and Tectonic Setting of Early Proterozoic Supercrustal Rocks in the Southwestern United States. Journal of Geology, 94: 845-861. doi: 10.1086/629091 [5] Ding, F., Gao, J.G., Xu, K.Z., 2020. Geochemistry, Geochronology and Geological Significances of the Basic Dykes in Rongbu Area, Southern Tibet. Acta Petrologica Sinica, 36(2): 391-408. doi: 10.18654/1000-0569/2020.02.04 [6] Dong, S.L., Zhang, Z., Zhang, L.K., et al., 2018. Geochemistry, Hf-Sr-Nd Isotopes and Petrogenesis of Acidic Volcanic Rocks in Quzhuomu Region of Southern Tibet. Earth Science, 43(8): 2701-2714 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808013.htm [7] Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research: Solid Earth, 101(B2): 3003-3013. https://doi.org/10.1029/95JB03463 [8] Hodges, K. V., 2000. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3): 324-350. https://doi.org/10.1130/0016-7606(2000)112324:tothas>2.0.co;2 doi: 10.1130/0016-7606(2000)112324:tothas>2.0.co;2 [9] Huang, Y., Liang, W., Zhang, L.K., et al., 2018. The Initial Break-up between Tethyan-Himalaya and Indian Terrane: Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet. Earth Science, 43(8): 2651-2663 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808009.htm [10] Jia, X.L., 2019. Magmatic Events and Geological Significance of Mesozoic in the Central Tethyan Himalaya (Dissertation). China University of Geosciences, Beijing, 16-17 (in Chinese with English abstract). [11] Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, New York, 1-29. https://doi.org/10.1017/CBO9780511535581 [12] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract). [13] Li, Y., Ding, F., Yang, L., et al., 2019. Geochemical Characteristics and Geological Significance of Basalts in the Sangxiu Formation, Rongbu Area, Southern Tibet. Arabian Journal of Geosciences, 12(24): 1-16. https://doi.org/10.1007/s12517-019-4880-4 [14] Lin, B., Tang, J.X., Zheng, W.B., et al., 2014. Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet). Geological Review, 60(1): 178-189 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP201401019&dbcode=CJFD&year=2014&dflag=pdfdown [15] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [16] Liu, Z., Zhou, Q., Lai, Y., et al., 2015. Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya: Implications for the Break-up of Eastern Gondwana. Lithos, 236/237: 190-202. https://doi.org/10.1016/j.lithos.2015.09.006 [17] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous Crustal Growth in the Gangdese Area, Southern Tibet: Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro. Chemical Geology, 349/350: 54-70. https://doi.org/10.1016/j.chemgeo.2013.04.005 [18] Ma, Y. M., 2016. Paleomagnetism and Geochronology of Cretaceous Rocks from the Lhasa Terrane and the Tethyan Himalaya (Dissertation). China University of Geosciences, Beijing, 48 (in Chinese with English abstract). [19] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [20] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [21] Ren, C., 2015. Geochemistry, Geochronology and Its Geological Significances of Early Cretaceous Magmatic Rocks of Comei District in Tibet (Dissertation). China University of Geosciences, Beijing, 28-30 (in Chinese with English abstract). [22] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [23] Tian, Y. H., Gong, J. F., Chen, H. L., et al., 2019. Early Cretaceous Bimodal Magmatism in the Eastern Tethyan Himalayas, Tibet: Indicative of Records on Precursory Continental Rifting and Initial Breakup of Eastern Gondwana. Lithos, 324/325: 699-715. https://doi.org/10.1016/j.lithos.2018.12.001 [24] Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X [25] Wang, G.H., Dong, W.T., 2000. Extensional Movement and Extending Action in Southern Tibet since Hercynian. Geoscience, 14(2): 133-139. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200002003.htm [26] Wang, Y., Qian, Q., Liu, L., et al., 2000. Major Geochemical Characteristics of Bimodal Volcanic Rocks in Different Geochemical Environments. Acta Petrologica Sinica, 16(2): 169-173 (in Chinese with English abstract). http://www.researchgate.net/publication/230585284_Major_geochemical_characteristics_of_bimodal_volcanic_rocks_in_different_geochemical_environments [27] Wang, Y.Y., Gao, L.E., Zeng, L.S., et al., 2016. Multiple Phases of Cretaceous Mafic Magmatism in the Gyangze-Kangma Area, Tethyan Himalaya, Southern Tibet. Acta Petrologica Sinica, 32(12): 3572-3596. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201612002.htm [28] Wu, F., 2017. Characteristics and Geological Significance of the Volcanic Rocks in Upper Jurassic-Lower Cretaceous Sangxiu Formation of the Zhegu Area, South Tibet (Dissertation). China University of Geosciences, Beijing, 30-37 (in Chinese with English abstract). [29] Xia, Y., Zhu, D.C., Zhao, Z.D., et al., 2012. Whole-Rock Geochemistry and Zircon Hf Isotope of the OIB-Type Mafic Rocks from the Comei Large Igneous Province in Southeastern Tibet. Acta Petrologica Sinica, 28(5): 1588-1602 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201205023.htm [30] Xu, W., Zhang, Q., Xu, X.Y., et al., 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908022.htm [31] Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2019. Breakup of Eastern Gondwana as Inferred from the Lower Cretaceous Charong Dolerites in the Central Tethyan Himalaya, Southern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 70-82. https://doi.org/10.1016/j.palaeo.2017.10.010 [32] Zhong, H.M., Tong, J.S., Xia, J., et al., 2005. Characteristics and Tectonic Setting of Volcanic Rocks of the Sangxiu Formation in the Southern Part of Yamzho Yumco, Southern Tibet. Geological Bulletin of China, 24(1): 72-79 (in Chinese with English abstract). http://www.researchgate.net/publication/313703094_Characteristics_and_tectonic_setting_of_volcanic_rocks_of_the_sangxiu_formation_in_the_southern_part_of_yamzho_lumro [33] Zhou, Q., Liu, Z., Lai, Y., et al., 2018. Petrogenesis of Mafic and Felsic Rocks from the Comei Large Igneous Province, South Tibet: Implications for the Initial Activity of the Kerguelen Plume. GSA Bulletin, 130(5/6): 811-824. https://doi.org/10.1130/b31653.1 [34] Zhu, D.C., 2003. Volcanic Rocks in the Central Belt of Tethyan Himalayas since the Late Paleozoic and Their Inplications (Dissertation). Chinese Academy of Geological Sciences, Beijing, 21-26 (in Chinese with English abstract). [35] Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1 [36] Zhu, D.C., Mo, X. X., Zhao, Z.D., et al., 2008. Whole-Rock Elemental and Zircon Hf Isotopic Geochemistry of Mafic and Ultramafic Rocks from the Early Cretaceous Comei Large Igneous Province in SE Tibet: Constraints on Mantle Source Characteristics and Petrogenesis. Himalayan Journal of Sciences, 5(7): 178-180. https://doi.org/10.3126/hjs.v5i7.1350 [37] Zhu, D.C., Pan, G.T., Mo, X. X., et al., 2005. Zircon SHRIMP Age and Significance of Dacite Sangxiu Formation of the Tethys Himalaya. Chinese Science Bulletin, (4): 375-379 (in Chinese). doi: 10.1007/BF02897481/email/correspondent/c1/new [38] Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya: A Probable Example of Plume-Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2/3): 320-335. https://doi.org/10.1016/j.jseaes.2005.12.004 [39] Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013. Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?. Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract). http://www.researchgate.net/publication/283868756_Why_do_we_need_to_propose_the_Early_Cretaceous_Comei_large_igneous_province_in_southeastern_Tibet [40] 边伟伟, 2019. 东冈瓦纳大陆裂解及印度-亚洲大陆碰撞的古地磁学约束(博士学位论文). 北京: 中国地质大学, 34-36. [41] 董随亮, 张志, 张林奎, 等, 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学, 43(8): 2701-2714. doi: 10.3799/dqkx.2018.165 [42] 黄勇, 梁维, 张林奎, 等, 2018. 特提斯喜马拉雅-印度地体初始裂解: 来自藏南地区晚白垩世OIB型玄武岩的证据. 地球科学, 43(8): 2651-2663. doi: 10.3799/dqkx.2017.573 [43] 贾晓龙, 2019. 特提斯喜马拉雅中段中生代岩浆事件及其地质意义(硕士学位论文). 北京: 中国地质大学, 16-17. [44] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013 [45] 林彬, 唐菊兴, 郑文宝, 等, 2014. 藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成. 地质论评, 60(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401019.htm [46] 马义明, 2016. 拉萨地体与特提斯喜马拉雅白垩纪古地磁学和年代学研究(博士学位论文). 北京: 中国地质大学, 48. [47] 任冲, 2015. 西藏措美地区早白垩世岩浆岩地质年代学、地球化学及地质意义(硕士学位论文). 北京: 中国地质大学, 28-30. [48] 王焰, 钱青, 刘良, 等, 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16(2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm [49] 吴丰, 2017. 藏南哲古地区上侏罗统-下白垩统桑秀组火山岩特征及其地质意义(硕士学位论文). 北京: 中国地质大学, 30-37. [50] 夏瑛, 朱弟成, 赵志丹, 等, 2012. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素. 岩石学报, 28(5): 1588-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205023.htm [51] 许伟, 张乔, 徐学义, 等, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048 [52] 钟华明, 童劲松, 夏军, 等, 2005. 藏南羊卓雍错南部桑秀组火山岩的特征及构造环境. 地质通报, 24(1): 72-79. doi: 10.3969/j.issn.1671-2552.2005.01.011 [53] 朱弟成, 2003. 特提斯喜马拉雅带中段晚古生代以来的火山岩及其意义(博士学位论文). 北京: 中国地质科学院, 21-26. [54] 朱弟成, 潘桂棠, 莫宣学, 等, 2005. 特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义. 科学通报, (4): 375-379. doi: 10.3321/j.issn:0023-074X.2005.04.013 [55] 朱弟成, 夏瑛, 裘碧波, 等, 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm