• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于机器学习的矿物智能识别方法研究进展与展望

    郝慧珍 顾庆 胡修棉

    郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
    引用本文: 郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
    Hao Huizhen, Gu Qing, Hu Xiumian, 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
    Citation: Hao Huizhen, Gu Qing, Hu Xiumian, 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360

    基于机器学习的矿物智能识别方法研究进展与展望

    doi: 10.3799/dqkx.2020.360
    基金项目: 

    国家自然科学基金项目 41972111

    国家自然科科学技术部第二次青藏高原科学考察研究计划项目学基金项目 STEP  2019QZKK020405

    详细信息
      作者简介:

      郝慧珍(1974-), 女, 讲师, 博士研究生, 研究方向为人工智能与地球科学交叉.ORCID: 0000-0002-4910-763X.E-mail: haohuizhen@njit.edu.cn

      通讯作者:

      胡修棉, E-mail: huxm@nju.edu.cn

    • 中图分类号: P575

    Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning

    • 摘要: 矿物智能识别是地球科学与信息科学的重要交叉方向,显示出强大的生命力.本文在调研国内外研究动态的基础上,把矿物智能识别划分为4个阶段,即矿物采集、数据获取、模型构建、分类判别;根据测试方法和获得的数据类型,把矿物智能识别分为基于化学成分、显微光学图片、光谱分析的3条基本路线;总结了应用于矿物智能识别的机器学习方法和技术,包括统计学习、线性回归模型、距离度量模型、树结构模型、神经网络模型及其与样本问题相关的新技术.在此基础上,提出消除地质学与人工智能的鸿沟、建设可用于学习的高质量矿物数据集、完善适合矿物智能识别的机器学习方法、增进模型可解释性、加强工业推广的实践是该领域未来的重点发展方向.

       

    • 图  1  智能矿物鉴定的阶段示意

      a. 阶段1,获取矿物标本,主要途径有岩石手标本的矿物、单颗粒矿物、钻探标本的矿物等;b. 阶段2,使用仪器获取对矿物的描述数据,包括图像、图形、化学和物理数据;c. 阶段3,采用机器学习方法学习矿物识别的判别模型;d. 阶段4,采用模型对待识别数据进行判别获得矿物的类别

      Fig.  1.  A simplified carton showing four research stages of the mineral intelligent identification

      图  2  矿物智能识别的机器学习方法发展趋势

      各方法的参考文献见表 2和正文描述

      Fig.  2.  The development trend of the various methods of machine learning applied in the mineral intelligent identification

      表  1  基于不同矿物数据集的矿物智能识别研究路线

      Table  1.   Summary of three research routes based on different datasets for the mineral intelligent identification

      研究路线 数据类型 数据集优缺点 涉及的机器学习方法 主要参考文献
      化学成分分析 EDS数据 数据获取快;化学元素数据准确度不高 查找表,最大似然法; Ruisanchez et al., 1996
      SEM/EDS 空间分辨率高;数据获取快;元素准确度不高 神经网络,统计方法,多层感知神经网络技术,无监督神经网络Kohonen,决策树 Nielsen et al., 1998; Larsen et al., 2000; Flesche et al., 2000; Gallagher and Deacon, 2002; Akkaş et al., 2015
      EMPA数据 化学元素准确率高,数据获取费时费力,不能满足大规模测试需求 无监督神经网络Kohonen Tsuji et al., 2010
      LIBS数据 数据获取快,要求测试矿物颗粒大(> 350 μm);不适合自然界多数自然产出的矿物颗粒. 偏最小二乘回归(PLS),多变量曲线分辨率‒交互最小二乘法(MCR-ALS),最小绝对收缩和选择算子(Lasso),判别函数分析(DFA),多元曲线分辨‒交替最小二乘法(MCR-ALS) Harmon et al., 2009; Clegg et al., 2009; Alvey et al., 2010; Dyar et al., 2012; Remus et al., 2012; Ali et al., 2016; Khajehzadeh et al., 2016; El Haddad et al., 2019
      显微光学图片分析 显微图像 地质学最常见矿物判别的数据类型.目前数据集有限.最有前景的研究路线. 平行管道法,最大似然法和模糊分类技术,阈值法,决策树,神经网络,多层感知器神经网络,多尺度分割算法,统计方法 Launeau et al., 1994; Marschallinger, 1997; Marschallinger and Hofmann, 2010; Ross et al., 2001; Thompson et al., 2001; Holden et al., 2009; Baykan and Yilmaz, 2010; 叶润青等, 2011; Gomes et al., 2010, 2013; Aligholi et al., 2015, 2017; 赵启明等, 2015; Izadi et al., 2013, 2017; Ramil et al., 2018; Zhang et al., 2019; Borges and de Aguiar, 2019; Maitre et al., 2019
      光谱分析 Raman 这是矿物种类鉴定最可靠的方法,也有国际数据集,但测试仪器昂贵,大面积推广存在困难 神经网络,主成分分析,偏最小二乘,加权邻居分类器,随机森林,卷积神经网络,深度神经网络,Siamese网络等 Ishikawa and Gulick, 2013a, 2013b; Lopez-Reyes et al., 2014; Carey et al., 2015; Liu et al., 2017, 2019; Sevetlidis and Pavlidis, 2019; Zhang et al., 2019
      下载: 导出CSV

      表  2  矿物智能识别的不同机器学习方法对比表

      Table  2.   Summary of various methods of machine learning applied in the mineral intelligent identification

      分类模型 算法类型 主要优缺点 主要参考文献
      统计判别方法 MLE, NB 简单迅速,适用于多分类,独立分布效果较好,需要的样本量也较少. Marschallinger, 1997; Nielsen et al., 1998; Flesche et al.2000; Holden et al., 2009; Aligholi et al., 2015
      线性回归模型 PLS, PLSDA, LASSO, ElasticNet 去除多重相关性,易于实现,只有很少的调优参数 Clegg et al., 2009; Alvey et al., 2010; Dyar et al.2012; Remus et al., 2012; Lopez-Reyes et al., 2014; Ali et al., 2016; Cochrane and Blacksberg, 2015; Khajehzadeh et al., 2016; El Haddad et al., 2019; Gibbons, 2020
      距离度量模型 KNN 简洁,可扩展 Carey et al., 2015; Aligholi et al., 2017; Borges et al., 2019; Maitre et al., 2019
      树结构模型 C4.5, CART, ID3, RF, ET 易于理解,要求与数据量少,可以处理数值型和类别型数据,具有较强的鲁棒性. Ross et al., 2001; Ishikawa and Gulick, 2013b; Akkaş et al., 2015; Borges and de Aguiar, 2019; Maitre et al., 2019; Sevetlidis and Pavlidis, 2019; 赵永翼等, 2020
      神经网络模型 SOM 结果容易理解,实现简单 Ruisanchez et al., 1996; Zupan et al., 1997; Tsuji et al., 2010
      MLPNN 可以拟合复杂模式,解决线性不可分问题 Thompson et al., 2001; Gallagher and Deacon, 2002; Baykan and Yilmaz, 2010; Ishikawa et al., 2013b; Izadi et al., 2013, 2017; Lopez-Reyes et al., 2014; 赵启明, 2015; Ramil et al., 2018
      DCNN, Net Inception-v3, Unet, ONN 可以表示复杂结构数据,实现端到端的学习 Liu et al., 2017; 徐述腾和周永章, 2018; Iglesias et al., 2019; Zhang et al., 2019; 彭伟航等, 2019; 郭艳军等, 2020; Li et al., 2020; 张旭等, 2020
      样本问题新技术 迁移学习, 多任务学习 解决两个分类任务相互隔离的问题 Li et al., 2017; 李明超等, 2020; Li et al., 2020
      Siamese网络 解决类不平衡和标注样本数量少的问题 Liu et al., 2019; 吴承炜等, 2020
      下载: 导出CSV
    • [1] Akkaş, E., Akin, L., Evren Çubukçu, H., et al., 2015. Application of Decision Tree Algorithm for Classification and Identification of Natural Minerals Using SEM-EDS. Computers & Geosciences, 80: 38-48. https://doi.org/10.1016/j.cageo.2015.03.015
      [2] Ali, A., Khan, M. Z., Rehan, I., et al., 2016. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis. Journal of Spectroscopy, 2016: 1-7. https://doi.org/10.1155/2016/1835027
      [3] Aligholi, S., Khajavi, R., Razmara, M., 2015. Automated Mineral Identification Algorithm Using Optical Properties of Crystals. Computers & Geosciences, 85: 175-183. https://doi.org/10.1016/j.cageo.2015.09.014
      [4] Aligholi, S., Lashkaripour, G. R., Khajavi, R., et al., 2017. Automatic Mineral Identification Using Color Tracking. Pattern Recognition, 65: 164-174. https://doi.org/10.1016/j.patcog.2016.12.012
      [5] Alvey, D. C., Morton, K., Harmon, R. S., et al., 2010. Laser-Induced Breakdown Spectroscopy-Based Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals: The Example of Garnet. Applied Optics, 49(13): 168-180. https://doi.org/10.1364/AO.49.00C168
      [6] Anderson, T. I., Vega, B., Kovscek, A. R., 2020. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Computers & Geosciences, 145: 104593. https://doi.org/10.1016/j.cageo.2020.104593
      [7] Baykan, N. A., Yılmaz, N., 2010. Mineral Identification Using Color Spaces and Artificial Neural Networks. Computers & Geosciences, 36(1): 91-97. https://doi.org/10.1016/j.cageo.2009.04.009
      [8] Bergen, K. J., Johnson, P. A., de Hoop, M. V., et al., 2019. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience. Science, 363(6433): eaau0323. https://doi.org/10.1126/science.aau0323
      [9] Borges, H. P., de Aguiar, M. S., 2019. Mineral Classification Using Machine Learning and Images of Microscopic Rock Thin Section. Mexican International Conference on Artificial Intelligence: Advances in Soft Computing, Cham.
      [10] Carey, C., Boucher, T., Mahadevan, S., et al., 2015. Machine Learning Tools Formineral Recognition and Classification from Raman Spectroscopy. Journal of Raman Spectroscopy, 46(10): 894-903. https://doi.org/10.1002/jrs.4757
      [11] Clegg, S. M., Sklute, E., Dyar, M. D., et al., 2009. Multivariate Analysis of Remote Laser-Induced Breakdown Spectroscopy Spectra Using Partial Least Squares, Principal Component Analysis, and Related Techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(1): 79-88. https://doi.org/10.1016/j.sab.2008.10.045
      [12] Clelland, W. D., Fens, T. W., 1991. Automated Rock Characterization with SEM/Image-Analysis Techniques. SPE Formation Evaluation, 6(4): 437-443. https://doi.org/10.2118/20920-pa
      [13] Cochrane, C. J., Blacksberg, J., 2015. A Fast Classification Scheme in Raman Spectroscopy for the Identification of Mineral Mixtures Using a Large Database with Correlated Predictors. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4259-4274. https://doi.org/10.1109/TGRS.2015.2394377
      [14] Dyar, M. D., Carmosino, M. L., Breves, E. A., et al., 2012. Comparison of Partial Least Squares and Lasso Regression Techniques as Applied to Laser-Induced Breakdown Spectroscopy of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 70: 51-67. https://doi.org/10.1016/j.sab.2012.04.011
      [15] El Haddad, J., de Lima Filho, E. S., Vanier, F., et al., 2019. Multiphase Mineral Identification and Quantification by Laser-Induced Breakdown Spectroscopy. Minerals Engineering, 134: 281-290. https://doi.org/10.1016/j.mineng.2019.02.025
      [16] Flesche, H., Nielsen, A. A., Larsen, R., 2000. Supervised Mineral Classification with Semiautomatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections. Mathematical Geology, 32(3): 337-366. https://doi.org/10.1023/A:1007538028119
      [17] Gallagher, M., Deacon, P., 2002. Neural Networks and the Classification of Mineralogical Samples Using X-Ray Spectra. Proceedings of the 9th International Conference on Neural Information Processing, Singapore.
      [18] Gibbons, E., Léveillé, R., Berlo, K., 2020. Data Fusion of Laser-Induced Breakdown and Raman Spectroscopies: Enhancing Clay Mineral Identification. Spectrochimica Acta Part B: Atomic Spectroscopy, 170: 105905. https://doi.org/10.1016/j.sab.2020.105905
      [19] Gomes, O. D. F. M., Iglesias, J. C. A., Paciornik, S., et al., 2013. Classification of Hematite Types in Iron Ores through Circularly Polarized Light Microscopy and Image Analysis. Minerals Engineering, 52: 191-197. https://doi.org/10.1016/j.mineng.2013.07.019
      [20] Gomes, O., Paciornik, S., Iglesias, J. C. A., 2010. A Simple Methodology for Identifying Hematite Grains under Polarized Reflected Light Microscopy. Proceedings of 17th International Conference on Systems, Signals and Image Processing, IWSSIP, Rio de Janeiro.
      [21] Gu, Y., 2003. Automated Scanning Electron Microscope Based Mineral Liberation Analysis an Introduction to JKMRC/FEI Mineral Liberation Analyser. Journal of Minerals and Materials Characterization and Engineering, 2(1): 33-41. https://doi.org/10.4236/jmmce.2003.21003
      [22] Guo, Y. J., Zhou, Z., Lin, H. X., et al., 2020. The Mineral Intelligence Identification Method Based on Deep Learning Algorithms. Earth Science Frontiers, 27(5): 39-47 (in Chinese with English abstract).
      [23] Hao, H. Z., Guo, R. H., Gu, Q., et al., 2019. Machine Learning Application to Automatically Classify Heavy Minerals in River Sand by Using SEM/EDS Data. Minerals Engineering, 143: 105899. https://doi.org/10.1016/j.mineng.2019.105899
      [24] Harmon, R. S., Remus, J., McMillan, N. J., et al., 2009. LIBS Analysis of Geomaterials: Geochemical Fingerprinting for the Rapid Analysis and Discrimination of Minerals. Applied Geochemistry, 24(6): 1125-1141. https://doi.org/10.1016/j.apgeochem.2009.02.009
      [25] Holden, E. J., Moss, S., Russell, J. K., et al., 2009. An Image Analysis Method to Determine Crystal Size Distributions of Olivine in Kimberlite. Computational Geosciences, 13(3): 255-268. https://doi.org/10.1007/s10596-008-9115-9
      [26] Iglesias, J. C. Á., Santos, R. B. M., Paciornik, S., 2019. Deep Learning Discrimination of Quartz and Resin in Optical Microscopy Images of Minerals. Minerals Engineering, 138: 79-85. https://doi.org/10.1016/j.mineng.2019.04.032
      [27] Ishikawa, S. T., Gulick, V. C., 2013a. An Automated Classification of Mineral Spectra. 44th Lunar and Planetary Science Conference, The Woodlands.
      [28] Ishikawa, S. T., Gulick, V. C., 2013b. An Automated Mineral Classifier Using Raman Spectra. Computers & Geosciences, 54: 259-268. https://doi.org/10.1016/j.cageo.2013.01.011
      [29] Itano, K., Ueki, K., Iizuka, T., et al., 2020. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences, 10(2): 63. https://doi.org/10.3390/geosciences10020063.
      [30] Iyas, M. R., Setiawan, N. I., Warmada, I. W., 2020. Mask R-CNN for Rock-Forming Minerals Identification on Petrography, Case Study at Monterado, West Kalimantan. E3S Web of Conferences, 200: 06007. https://doi.org/10.1051/e3sconf/202020006007
      [31] Izadi, H., Sadri, J., Bayati, M., 2017. An Intelligent System for Mineral Identification in Thin Sections Based on a Cascade Approach. Computers & Geosciences, 99: 37-49. https://doi.org/10.1016/j.cageo.2016.10.010
      [32] Izadi, H., Sadri, J., Mehran, N. A., 2013. Intelligent Mineral Identification Using Clustering and Artificial Neural Networks Techniques. First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand.
      [33] Khajehzadeh, N., Haavisto, O., Koresaar, L., 2016. On-Stream and Quantitative Mineral Identification of Tailing Slurries Using LIBS Technique. Minerals Engineering, 98: 101-109. https://doi.org/10.1016/j.mineng.2016.08.002
      [34] Larsen, R., Nielsen, A. A., Flesche, H., 2000. Sensitivity Study of a Semi-Automatic Training Set Generator. Pattern Recognition Letters, 21(13-14): 1175-1182. https://doi.org/10.1016/S0167-8655(00)00079-9
      [35] Launeau, P., Cruden, A. R., Bouchez, J. L., 1994. Mineral Recognition in Digital Images of Rocks: A New Approach Using Multichannel Classification. The Canadian Mineralogist, 32(4): 919-933. http://ci.nii.ac.jp/naid/10008769038
      [36] Li, M. C., Liu, C. Z., Zhang, Y., et al., 2020. A Deep Learning and Intelligent Recognition Method of Image Data for Rock Mineral and Its Implementation. Geotectonica et Metallogenia, 44(2): 203-211 (in Chinese with English abstract).
      [37] Li, N., Hao, H. Z., Gu, Q., et al., 2017. A Transfer Learning Method for Automatic Identification of Sandstone Microscopic Images. Computers & Geosciences, 103: 111-121. https://doi.org/10.1016/j.cageo.2017.03.007
      [38] Li, N., Hao, H. Z., Jiang, Z. W., et al., 2020. A Multi-Task Multi-Class Learning Method for Automatic Identification of Heavy Minerals from River Sand. Computers & Geosciences, 135: 104403. https://doi.org/10.1016/j.cageo.2019.104403
      [39] Liu, J. C., Gibson, S. J., Mills, J., et al., 2019. Dynamic Spectrum Matching with One-Shot Learning. Chemometrics and Intelligent Laboratory Systems, 184: 175-181. https://doi.org/10.1016/j.chemolab.2018.12.005
      [40] Liu, J., Osadchy, M., Ashton, L., et al., 2017. Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution. The Analyst, 142(21): 4067-4074. https://doi.org/10.1039/c7an01371j
      [41] Liu, X. K., Song, H. J., 2020. Automatic Identification of Fossils and Abiotic Grains during Carbonate Microfacies Analysis Using Deep Convolutional Neural Networks. Sedimentary Geology, 410: 105790. https://doi.org/10.1016/j.sedgeo.2020.105790
      [42] Lopez-Reyes, G., Sobron, P., Lefebvre, C., et al., 2014. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars. American Mineralogist, 99(8-9): 1570-1579. https://doi.org/10.2138/am.2014.4724
      [43] Lou, W., Zhang, D. X., Bayless, R. C., 2020. Review of Mineral Recognition and Its Future. Applied Geochemistry, 122: 104727. https://doi.org/10.1016/j.apgeochem.2020.104727
      [44] Maitre, J., Bouchard, K., Bédard, L. P., 2019. Mineral Grains Recognition Using Computer Vision and Machine Learning. Computers & Geosciences, 130: 84-93. https://doi.org/10.1016/j.cageo.2019.05.009
      [45] Marschallinger, R., 1997. Automatic Mineral Classification in the Macroscopic Scale. Computers & Geosciences, 23(1): 119-126. https://doi.org/10.1016/S0098-3004(96)00074-X
      [46] Marschallinger, R., Hofmann, P., 2010. The Application of Object Based Image Analysis to Petrographic Micrographs. In: Méndez-Vilas, A., Díaz, J., eds., Microscopy: Science, Technology, Applications and Education. Formatex Research Center, Badajoz.
      [47] Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71-75. https://doi.org/10.1016/j.aeolia.2014.03.005
      [48] Nielsen, A. A., Flesche, H., Larsen, R., et al., 1998. Semi-Automatic Supervised Classification of Minerals from X-Ray Mapping Images. Proceedings of the Fourth Annual Conference of the International Association of Mathematical Geology, Ischia.
      [49] Peng, W.H., Bai, L., Shang, S.W., et al., 2019. Common Mineral Intelligent Recognition Based on Improved InceptionV3. Geological Bulletin of China, 38(12): 2059-2066 (in Chinese with English abstract).
      [50] Pires de Lima, R., Duarte, D., Nicholson, C., et al., 2020. Petrographic Microfacies Classification with Deep Convolutional Neural Networks. Computers & Geosciences, 142: 104481. https://doi.org/10.1016/j.cageo.2020.104481
      [51] Ramil, A., López, A. J., Pozo-Antonio, J. S., et al., 2018. A Computer Vision System for Identification of Granite-Forming Minerals Based on RGB Data and Artificial Neural Networks. Measurement, 117: 90-95. https://doi.org/10.1016/j.measurement.2017.12.006
      [52] Reid, A., Gottlieb, P., Macdonald, K, J., et al., 1985. QEM*SEM Image Analysis of Ore Minerals: Volume Fraction, Liberation and Observational Variances. Applied Mineralogy, Proceedings of the Second International Congress on Applied Mineralogy in the Minerals Industry, Los Angeles.
      [53] Remus, J. J., Harmon, R. S., Hark, R. R., et al., 2012. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources. Applied Optics, 51(7): B65-B73. doi: 10.1364/AO.51.000B65
      [54] Ross, B. J., Fueten, F., Yashkir, D. Y., 2001. Automatic Mineral Identification Using Genetic Programming. Machine Vision and Applications, 13(2): 61-69. https://doi.org/10.1007/PL00013273
      [55] Ruisanchez, I., Potokar, P., Zupan, J., et al., 1996. Classification of Energy Dispersion X-Ray Spectra of Mineralogical Samples by Artificial Neural Networks. Journal of Chemical Information and Computer Sciences, 36(2): 214-220. https://doi.org/10.1021/ci950068b
      [56] Sandmann, D., 2015. Method Development in Automated Mineralogy (Dissertation). University of Freiberg, Freiberg.
      [57] Sevetlidis, V., Pavlidis, G., 2019. Effective Raman Spectra Identification with Tree-Based Methods. Journal of Cultural Heritage, 37: 121-128. https://doi.org/10.1016/j.culher.2018.10.016
      [58] Singh, J. P., Thakur, S. N., 2007. Laser-Induced Breakdown Spectroscopy. Elsevier, Amsterdan.
      [59] Stefaniak, E. A., Worobiec, A., Potgieter-Vermaak, S., et al., 2006. Molecular and Elemental Characterisation of Mineral Particles by Means of Parallel Micro-Raman Spectrometry and Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(7): 824-830. https://doi.org/10.1016/j.sab.2006.04.009
      [60] Tang, D. G., Milliken, K. L., Spikes, K. T., 2020. Machine Learning for Point Counting and Segmentation of Arenite in Thin Section. Marine and Petroleum Geology, 120: 104518. https://doi.org/10.1016/j.marpetgeo.2020.104518
      [61] Thompson, S., Fueten, F., Bockus, D., 2001. Mineral Identification Using Artificial Neural Networks and the Rotating Polarizer Stage. Computers & Geosciences, 27(9): 1081-1089. https://doi.org/10.1016/S0098-3004(00)00153-9
      [62] Tiwary, A. K., Ghosh, S., Singh, R., et al., 2020. Automated Coal Petrography Using Random Forest. International Journal of Coal Geology, 232: 103629. https://doi.org/10.1016/j.coal.2020.103629
      [63] Tovey, N. K., Krinsley, D. H., 1991. Mineralogical Mapping of Scanning Electron Micrographs. Sedimentary Geology, 75(1-2): 109-123. https://doi.org/10.1016/0037-0738(91)90053-G
      [64] Tsuji, T., Yamaguchi, H., Ishii, T., et al., 2010. Mineral Classification from Quantitative X-Ray Maps Using Neural Network: Application to Volcanic Rocks. Island Arc, 19(1): 105-119. https://doi.org/10.1111/j.1440-1738.2009.00682.x
      [65] Wu, C. W., Shi, R. J., Zeng, W. D., 2020. Mineral Raman Spectral Recognition Based on Siamese Network. Laser & Optoelectronics Progress, 57(9): 271-277 (in Chinese with English abstract).
      [66] Xu, S. T., Zhou, Y. Z., 2018. Artificial Intelligence Identification of Ore Minerals under Microscope Based on Deep Learning Algorithm. Acta Petrologica Sinica, 34(11): 3244-3252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201811010.htm
      [67] Xu, Y. Y., Li, Z. X., Xie, Z., et al., 2020. Prediction of Copper Mineralization Based on Semi-Supervised Neural Network. Earth Science, 45(12): 4563-4573 (in Chinese with English abstract).
      [68] Ye, R. Q., Niu, R. Q., Zhang, L. P., et al., 2011. Mineral Contents Determination and Accuracy Evaluation Based on Classification of Petrographic Images. Journal of China University of Mining & Technology, 40(5): 810-815, 822 (in Chinese with English abstract). http://www.cqvip.com/QK/93316X/201105/39774881.html
      [69] Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      [70] Zhang, X., Yu, M. X., Zhu, L. Q., et al., 2020. Raman Mineral Recognition Method Based on All-Optical Diffraction Deep Neural Network. Infrared and Laser Engineering, 49(10): 168-175 (in Chinese with English abstract).
      [71] Zhang, Y., Li, M. C., Han, S., et al., 2019. Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms. Sensors, 19(18): 3914. https://doi.org/10.3390/s19183914
      [72] Zhao, Q. M., Wang, R., Teng, Q. Z., et al., 2015. Particle Composition Analysis Based on Rock Slice Orthogonal Polarization Sequence Diagram. Journal of Terahertz Science and Electronic Information Technology, 13(2): 285-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XXYD201502021.htm
      [73] Zhao, Y. Y., Shen, Y., Wang, F., 2020. Intelligent Recognition of Ore Minerals Based on CART and PU Algorithm. Journal of Shenyang Normal University (Natural Science Edition), 38(2): 176-182 (in Chinese with English abstract).
      [74] Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      [75] Zupan, J. R., Novič, M., Ruisánchez, I., 1997. Kohonen and Counterpropagation Artificial Neural Networks in Analytical Chemistry. Chemometrics and Intelligent Labosratory Systems, 38(1): 1-23. https://doi.org/10.1016/S0169-7439(97)00030-0
      [76] 郭艳军, 周哲, 林贺洵, 等, 2020. 基于深度学习的智能矿物识别方法研究. 地学前缘, 27(5): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005006.htm
      [77] 李明超, 刘承照, 张野, 等, 2020. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法. 大地构造与成矿学, 44(2): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002005.htm
      [78] 彭伟航, 白林, 商世为, 等, 2019. 基于改进InceptionV3模型的常见矿物智能识别. 地质通报, 38(12): 2059-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912015.htm
      [79] 吴承炜, 史如晋, 曾万聃, 2020. 基于Siamese网络的矿物拉曼光谱识别. 激光与光电子学进展, 57(9): 271-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009036.htm
      [80] 徐述腾, 周永章, 2018. 基于深度学习的镜下矿石矿物的智能识别实验研究. 岩石学报, 34(11): 3244-3252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811010.htm
      [81] 徐永洋, 李孜轩, 谢忠, 等, 2020. 基于半监督神经网络的铜矿预测方法. 地球科学, 45(12): 4563-4573. doi: 10.3799/dqkx.2020.297
      [82] 叶润青, 牛瑞卿, 张良培, 等, 2011. 基于图像分类的矿物含量测定及精度评价. 中国矿业大学学报, 40(5): 810-815, 822. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105024.htm
      [83] 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      [84] 张旭, 于明鑫, 祝连庆, 等, 2020. 基于全光衍射深度神经网络的矿物拉曼光谱识别方法. 红外与激光工程, 49(10): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202010020.htm
      [85] 赵启明, 王睿, 滕奇志, 等, 2015. 基于岩石薄片偏光序列图的颗粒成分分析. 太赫兹科学与电子信息学报, 13(2): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201502021.htm
      [86] 赵永翼, 申莹, 王菲, 2020. 基于CART和PU算法的矿石矿物的智能识别. 沈阳师范大学学报(自然科学版), 38(2): 176-182. doi: 10.3969/j.issn.1673-5862.2020.02.013
      [87] 左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中
    图(2) / 表(2)
    计量
    • 文章访问数:  850
    • HTML全文浏览量:  413
    • PDF下载量:  206
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-16
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回