Geodynamic Problems in the Western Pacific and Future Scientific Drill Targets
-
摘要: 西太平洋区域是全球地质构造和海陆相互作用最活动的区域,经过50多年的大洋钻探研究,人们对西太平洋弧后海底扩张成因、俯冲工厂的动力学机制、地幔演化过程、发震带、热点岩浆活动、沉积古环境等都有了深入研究和分析,但是西太平洋边缘海盆具有很大的构造多样性和复杂性,仍然有很多的科学目标和科学问题有待进一步开展研究.本文详细分析了边缘海盆的大洋岩石圈演化特殊性,原位上地幔蛇纹岩化的程度,初始俯冲与初始扩张的形成机制,海台、海山、海岭、洋脊、洋隆的属性,洋中脊水热循环活动的强度及其对大洋岩石圈演化的影响,岩石圈共轭张裂与破裂模式与机制,大洋红层与异常沉积这7个方面的科学问题,并建议就流体地球化学剖面、海山岩浆剖面、穆绍海沟与加瓜海脊、Ayu海槽、卡罗琳海岭系统、Eauripik海岭、冲绳海槽、莫霍面这8个关键具体目标开展详细的地球物理刻画并提出具有全球意义的钻探建议,为今后实现中国领导的全球大洋钻探工作提供思路.Abstract: The western Pacific is the most active area in tectonics and continental-ocean interaction in the globe. After more than 50 years of oceanic drilling in the western Pacific, many topics have been studied well, such as the origin of back-arc seafloor spreading, dynamic mechanism of the subduction factory, mantle evolution process, seismogenic zone, magmatism of hotspots, and paleo-sedimentary environments. However, tectonic histories of the western Pacific marginal basins are diverse and complex. We identified seven scientific issues yet to be fully analyzed, including unique oceanic lithospheric evolution of marginal basins, in-situ upper mantle serpentinization, mechanism of initial subduction and spreading, natures of submarine plateaus/seamounts/ridges/upwells/rises, intensity of hydrothermal circulation and its influence on the evolution of oceanic lithosphere, conjugate modes and mechanisms of lithospheric rifting and breakup, and oceanic red beds and abnormal sediments. We further recommended eight key drill targets, which are fluid geochemical profiling, seamount magma profiling, the Mussau trench and the Gagua ridge, the Ayu trough, the Caroline ridge system, the Eauripik rise, the Okinawa trough, and the Moho of marginal seas. Detailed geophysical investigations should be carried out on these targets before preparing drillable drilling proposals, and such efforts will help provide ideas for future ocean drilling research in the region.
-
Key words:
- western Pacific /
- ocean drilling /
- scientific planning /
- drill target /
- mantle serpentinization /
- initial subduction /
- red layer /
- marine geology
-
图 1 西太平洋地形图与大洋钻探站位分布
修改自宋晓晓和李春峰(2016).黑色圆点为深海大洋钻探项目(DSDP,1968-1983)站位;蓝色圆点为海洋钻探计划(ODP,1985-2003)站位;玫红色圆点为国际综合大洋钻探计划(IODP,2003-2013)站位;红色圆点为目前正在进行的国际综合大洋发现计划探站位(IODP,2013-2023)
Fig. 1. Topographic map of the western Pacific and drill site distribution
-
[1] Altis, S., 1999. Origin and Tectonic Evolution of the Caroline Ridge and the Sorol Trough, Western Tropical Pacific, from Admittance and a Tectonic Modeling Analysis. Tectonophysics, 313(3): 271-292. https://doi.org/10.1016/S0040-1951(99)00204-8 [2] Arculus, R.J., Ishizuka, O., Bogus, K., 2015. Proceedings of the International Ocean Discovery Program, Expedition 351: Izu-Bonin-Mariana Arc Origins. International Ocean Discovery Program, College Station. [3] Arkani-Hamed, J., 1989. ThermoviscousRemanentMagnetization of Oceanic Lithosphere Inferred from Its Thermal Evolution. Journal of Geophysical Research: Solid Earth, 94(B12): 17421-17436. https://doi.org/10.1029/JB094iB12p17421 [4] Bonvalot, S., Balmino, G., Briais, A. M., et al., 2012. World Gravity Map. Bureau Gravimetrique International, Paris. [5] Bracey, D. R., Andrews, J. E., 1974. Western Caroline Ridge: Relic Island Arc?. Marine Geophysical Researches, 2(2): 111-125. https://doi.org/10.1007/bf00340029 [6] Den, N., Ludwig, W. J., Murauchi, S., et al., 1971. Sediments and Structure of the Eauripik-New Guinea Rise. Journal of Geophysical Research, 76(20): 4711-4723. https://doi.org/10.1029/JB076i020p04711 [7] Erlandson, D. L., Orwig, T. L., Kiilsgaard, G., et al., 1976. Tectonic Interpretations of the East Caroline and Lyra Basins from Reflection-Profiling Investigations. Geological Society of America Bulletin, 87(3): 453. https://doi.org/10.1130/0016-7606(1976)87453: tiotec>2.0.co;2 doi: 10.1130/0016-7606(1976)87453:tiotec>2.0.co;2 [8] Ferré, E. C., Friedman, S. A., Martín-Hernández, F., et al., 2014. Eight Good Reasons why the Uppermost Mantle could be Magnetic. Tectonophysics, 624-625: 3-14. https://doi.org/10.1016/j.tecto.2014.01.004 [9] Flament, N., Gurnis, M., Müller, R. D., 2013. A Review of Observations and Models of Dynamic Topography. Lithosphere, 5(2): 189-210. https://doi.org/10.1130/l245.1 [10] Fornari, D. J., Peterson, D. W., Lockwood, J. P., et al., 1979. Submarine Extension of the Southwest Rift Zone of Mauna Loa Volcano, Hawaii: Visual Observations from US Navy Deep Submergence Vehicle DSV Sea Cliff. Geological Society of America Bulletin, 90(5): 435-443. https://doi.org/10.1130/0016-7606(1979)90435: seotsr>2.0.co;2 doi: 10.1130/0016-7606(1979)90435:seotsr>2.0.co;2 [11] Fujiwara, T., Tamaki, K., Fujimoto, H., et al., 1995. Morphological Studies of the Ayu Trough, Philippine Sea-Caroline Plate Boundary. Geophysical Research Letters, 22(2): 109-112. https://doi.org/10.1029/94GL02719 [12] Fujiwara, T., Tamura, C., Nishizawa, A., et al., 2000. Morphology and Tectonics of the Yap Trench. Marine Geophysical Researches, 21(1-2): 69-86. https://doi.org/10.1023/A: 1004781927661 doi: 10.1023/A:1004781927661 [13] Hafiz Ur, R., Nakaya, H., Kei, K., 2013. Geological Origin of the Volcanic Islands of the Caroline Group in the Federated States of Micronesia, Western Pacific. South Pacific Studies, 33(2): 101-118 http://ci.nii.ac.jp/naid/120005232008/ja/ [14] Hegarty, K. A., Weissel, J. K., Hayes, D. E., 1983. Convergence at the Caroline-Pacific Plate Boundary: Collision and Subduction. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. . [15] Hegarty, K. A., Weissel, J. K., Mutter, J. C., 1988. Subsidence History of Australia's Southern Margin: Constraints on Basin Models. AAPG Bulletin, 72(5): 615-633. https://doi.org/10.1306/703c8ede-1707-11d7-8645000102c1865d [16] Hirano, N., 2011. Petit-Spot Volcanism: A New Type of Volcanic Zone Discovered near a Trench. Geochemical Journal, 45(2): 157-167. https://doi.org/10.2343/geochemj.1.0111 [17] Hirano, N., Takahashi, E., Yamamoto, J., et al., 2006. Volcanism in Response to Plate Flexure. Science, 313(5792): 1426-1428. https://doi.org/10.1126/science.1128235 [18] Kaban, M. K., Schwintzer, P., Artemieva, I. M., et al., 2003. Density of the Continental Roots: Compositional and Thermal Contributions. Earth and Planetary Science Letters, 209(1-2): 53-69. https://doi.org/10.1016/S0012-821X(03)00072-4 [19] Kasahara, J., Unou, S., Tsuruga, K., et al., 2008. Characteristics of Moho Reflections Identified by MCS Reflection Records in the Western Pacific Ocean and Effects of Moho Transition Zone Properties. Jounal of Geography, 117(1): 5-44. https://doi.org/10.5026/jgeography.117.5 [20] Keating, B. H., Mattey, D. P., Helsley, C. E., et al., 1984. Evidence for a Hot Spot Origin of the Caroline Islands. Journal of Geophysical Research: Solid Earth, 89(B12): 9937-9948. https://doi.org/10.1029/JB089iB12p09937 [21] Keenan, T. E., Encarnación, J., 2016. Unclear Causes for Subduction. Nature Geoscience, 9(5): 338. https://doi.org/10.1038/ngeo2703 [22] Lee, S. M., Kim, S. S., 2004. Vector Magnetic Analysis within the Southern Ayu Trough, Equatorial Western Pacific. Geophysical Journal International, 156(2): 213-221. https://doi.org/10.1111/j.1365-246X.2003.02125.x [23] Li, C. F., 2011. An Integrated Geodynamic Model of the Nankai Subduction Zone and Neighboring Regions from Geophysical Inversion and Modeling. Journal of Geodynamics, 51(1): 64-80. https://doi.org/10.1016/j.jog.2010.08.003 [24] Li, C. F., Li, J. B., Ding, W. W., et al., 2015a. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686 [25] Li, C.F., Lin, J., Kulhanek, D.K., et al., 2015b. Proceedings of the International Ocean Discovery Program (IODP), 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. https://doi.org/10.14379/iodp.proc.349.105.2015. [26] Li, C. F., Lu, Y., Wang, J., 2017. A Global Reference Model of Curie-Point Depths Based on EMAG2. Scientific Reports, 7: 45129. https://doi.org/10.1038/srep45129 [27] Li, C. F., Shi, X. B., Zhou, Z. Y., et al., 2010. Depths to the Magnetic Layer Bottom in the South China Sea Area and Their Tectonic Implications. Geophysical Journal International, 182(3): 1229-1247. https://doi.org/10.1111/j.1365-246X.2010.04702.x [28] Li, C. F., Wang, J., 2016. Variations in Moho and Curie Depths and Heat Flow in Eastern and Southeastern Asia. Marine Geophysical Research, 37(1): 1-20. https://doi.org/10.1007/s11001-016-9265-4 [29] Li, C. F., Wang, J., 2018. Thermal Structures of the Pacific Lithosphere from Magnetic Anomaly Inversion. Earth and Planetary Physics, 2(1): 52-66. https://doi.org/10.26464/epp2018005 [30] Li, C. F., Wang, J., Lin, J., et al., 2013. Thermal Evolution of the North Atlantic Lithosphere: New Constraints from Magnetic Anomaly Inversion with a Fractal Magnetization Model. Geochemistry, Geophysics, Geosystems, 14(12): 5078-5105. https://doi.org/10.1002/2013GC004896 [31] Li, C. F., Zhou, Z. Y., Li, J. B., et al., 2007. PrecollisionalTectonics and Terrain Amalgamation Offshore Southern Taiwan: Characterizations from Reflection Seismic and Potential Field Data. Science China Earth Sciences, 50(6): 897-908. https://doi.org/10.1007/s11430-007-0025-9 [32] Louden, K. E., 1980. The Crustal and Lithospheric Thicknesses of the Philippine Sea as Compared to the Pacific. Earth and Planetary Science Letters, 50(1): 275-288. https://doi.org/10.1016/0012-821X(80)90138-7 [33] Machida, S., Kogiso, T., Hirano, N., 2017. Petit-Spot as Definitive Evidence for Partial Melting in the Asthenosphere Caused by CO2. Nature Communications, 8: 14302. https://doi.org/10.1038/ncomms14302 [34] Mammerickx, J., 1978. Re-Evaluation of Some Geophysical Observations in the Caroline Basins. Geological Society of America Bulletin, 89(2): 192-196. https://doi.org/10.1130/0016-7606(1978)89192: rosgoi>2.0.co;2 doi: 10.1130/0016-7606(1978)89192:rosgoi>2.0.co;2 [35] Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007GC001743 [36] Nishizawa, A., Kaneda, K., Oikawa, M., 2016. Crust and Uppermost Mantle Structure of the Kyushu-Palau Ridge, Remnant Arc on the Philippine Sea Plate. Earth, Planets and Space, 68(1): 1-18. https://doi.org/10.1186/s40623-016-0407-3 [37] Oufi, O., Cannat, M., Horen, H., 2002. Magnetic Properties of Variably Serpentinized Abyssal Peridotites. Journal of Geophysical Research: Solid Earth, 107(B5): EPM3. https://doi.org/10.1029/2001JB000549 [38] Panasyuk, S. V., Hager, B. H., 2000. Models of Isostatic and Dynamic Topography, Geoid Anomalies, and Their Uncertainties. Journal of Geophysical Research: Solid Earth, 105(B12): 28199-28209. https://doi.org/10.1029/2000JB900249 [39] Perfit, M. R., Fornari, D. J., 1982. Mineralogy and Geochemistry of Volcanic and Plutonic Rocks from the Boundaries of the Caroline Plate: Tectonic Implications. Tectonophysics, 87(1-4): 279-313. https://doi.org/10.1016/0040-1951(82)90230-X [40] Reagan, M.K., Pearce, J.A., Petronotis, K., et al., 2015. Proceedings of the International Ocean Discovery Program, Expedition 352: Izu-Bonin-Mariana Fore Arc. International Ocean Discovery Program, College Station. [41] Reinhard, A. A., Jackson, M. G., Blusztajn, J., et al., 2019. "Petit Spot" Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes: Evidence from a 645-m Drill Core from Tutuila Island, American Samoa. Geochemistry, Geophysics, Geosystems, 20(3): 1485-1507. https://doi.org/10.1029/2018GC007985 [42] Sato, Y., Hirano, N., Machida, S., et al., 2018. Direct Ascent to the Surface of Asthenospheric Magma in a Region of Convex Lithospheric Flexure. International Geology Review, 60(10): 1231-1243. https://doi.org/10.1080/00206814.2017.1379912 [43] Silver, E. A., Rangin, C., von Breymann, M. T., et al., 1991. Proceedings of the Ocean Drilling Program, Scientific Results. International Ocean Discovery Program, College Station. [44] Song, X. X., Li, C. F., 2016. Geodynamic Results of Scientific Ocean Drilling in the Western Pacific. Journal of Tropical Oceanography, 35(1): 17-30 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-tropical-oceanography_thesis/0201252193434.html [45] Steinberger, B., 2007. Effects of Latent Heat Release at Phase Boundaries on Flow in the Earth's Mantle, Phase Boundary Topography and Dynamic Topography at the Earth's Surface. Physics of the Earth and Planetary Interiors, 164(1-2): 2-20. https://doi.org/10.1016/j.pepi.2007.04.021 [46] Sun, Z., Jian, Z., Stock, J.M., et al., 2018. Proceedings of the International Ocean Discovery Program, South 746 China Sea Rifted Margin. International Ocean Discovery Program, College Station. [47] Tamura, Y., Busby, C.J., Blum, P., et al., 2015. Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. International Ocean Discovery Program. College Station. http://dx.doi.org/10.14379/iodp.proc.350.2015 [48] Taylor, B., 2006. The Single Largest Oceanic Plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3-4): 372-380. https://doi.org/10.1016/j.epsl.2005.11.049 [49] Tozer, B., Sandwell, D.T., Smith, W.H. F., et al., 2019. Global Bathymetry and Topography at 15 ArcSec: SRTM15+. Earth and Space Science, 6(10): 1847-1864. https://doi.org/10.1029/2019EA000658 [50] Vogt, P. R., Lowrie, A., Bracey, D. R., et al., 1976. Subduction of Aseismic Oceanic Ridges: Effects on Shape, Seismicity, and other Characteristics of Consuming Plate Boundaries. Geological Society of America, Boulder. https://doi.org/10.1130/spe172-p1 [51] Weissel, J. K., Anderson, R. N., 1978. Is there a Caroline Plate?. Earth and Planetary Science Letters, 41(2): 143-158. https://doi.org/10.1016/ 0012-821X(78)90004-3 doi: 10.1016/0012-821X(78)90004-3 [52] Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923 [53] Zhou, D., Li, C. F., Zlotnik, S., et al., 2020. Correlations between Oceanic Crustal Thickness, Melt Volume, and Spreading Rate from Global Gravity Observation. Marine Geophysical Research, 41(3): 1-16. https://doi.org/10.1007/s11001-020-09413-x [54] 宋晓晓, 李春峰, 2016. 西太平洋科学大洋钻探的地球动力学成果. 热带海洋学报, 35(1): 17-30.