Sedimentary Characteristics and Transport Mechanism of Subaqueous Coarse Clastic Rocks in the Lower Cretaceous Xiguayuan Formation in the Steep Slope Zone of Luanping Basin
-
摘要: 为探讨陆相断陷湖盆陡坡带构造活动控制下水下粗碎屑岩沉积特征、搬运机制及其演化规律,以滦平断陷盆地陡坡带下白垩统西瓜园组为研究对象,采用无人机倾斜摄影、实测剖面、砾石定向性定量表征等技术方法,从沉积背景、岩相类型、沉积单元及相序特征等方面开展野外露头解剖工作.滦平盆地西瓜园组沉积时期,近岸水下扇沉积于构造沉降速率大、湖平面上升、深水、古地貌陡峭环境,洪水携带粗碎屑沉积沿陡坡带入湖,底部发育与地震活动相关的砾质碎屑流,伴随发育滑动—滑塌沉积,上部发育高密度浊流.随着沉积物不断供给,斜坡坡度逐渐减小;随着粗碎屑沉积搬运距离不断增加,砂砾质碎屑流中砾石表现出明显定向性,高密度浊流所占厚度比例增加;末端以低密度浊流为主.扇三角洲沉积于构造沉降速率相对较低、水深相对较浅、古地貌相对平缓的环境,发育相对成熟的供源体系,汇水系统长度较长,扇三角洲前缘粗碎屑岩由碎屑流向高密度浊流、牵引流、低密度浊流转换.Abstract: In order to investigate the sedimentary characteristics,transport mechanism and evolution of the subaqueous coarse clastic rocks under the control of tectonic activity,this paper takes the Cretaceous Xiguayuan Formation in the Luanping rift basin as the study example. Technical methods,including UAV oblique photography,measured section,quantitative characterization of gravel orientation,and field outcrop anatomy were carried out from the sedimentary background,lithofacies,sedimentary units and facies association characteristics. During the Xiguayuan Formation of Luanping basin,the subaqueous fan developed in environments with high tectonic subsidence rates,rising lake level,deep water and steep palaeogeomorphology. Floods carried coarse clastic deposits along the steep slope into the lake,and its bottom developed gravelly debris flow associated with seismic activity,accompanied by sliding-slip sediments developed. The upper part is mainly composed of high-density turbidity currents. The slope gradient gradually decreases with the continuous supply of coarse clastic rocks. With the increasing transport distance of coarse debris deposits,the gravels in the bottom of gravelly debris flow show directionality and the thickness proportion of high-density turbidity flow increases. The end part is dominated by low-density turbidity flow. The fan deltas developed in environments with relatively low tectonic subsidence rates,relatively shallow water and gentle palaeogeomorphology,and developed a relatively mature sediment delivery system. The catchment system is long,and the coarse clastic rocks transformed from clastic flow into high-density turbidity flow,traction current and low-density turbidity flow.
-
图 1 滦平盆地区域地质图、实测剖面位置、西瓜园组构造‒沉积柱状图及盆地不同位置基底沉降曲线
X. 兴洲河剖面;Y. 于营剖面;S. 桑园剖面;五角星和数字代表虚拟井位及编号;据袁晓冬等(2020),Wei et al.(2012)修改
Fig. 1. Location and simplified geological map, locations of measured sections, structural-sedimentary columnar section of Xiguayuan Formation in Luanping basin and basement (tectonic and total) subsidence curves of different parts of the Luanping basin
图 4 不同类型砾岩相砾石定向性特征
a、b. 图 3b块状基质支撑砾岩相,砾石具有一定定向性,a=29.19%,δ=4.13,近岸水下扇;c、d. 图 3c混杂砾岩相,砾石定向性杂乱,a=26.4%,δ=3.34,近岸水下扇;e、f. 图 3d正粒序砾岩相,砾石定向性杂乱,a=30.86%,δ=3.07,近岸水下扇;g、h. 图 3e正粒序砾岩相,砾石具有明显定向性,a=53.47%,δ=9.01,扇三角洲前缘;i、j. 图 3f反粒序砾岩相,砾石具有明显定向性,a=38.24%,δ=4.08,近岸水下扇;k、l. 图 3g叠瓦状砾岩‒砂岩相,砾石具有明显定向性,a=43.9%,δ=5.96,扇三角洲前缘
Fig. 4. Gravel orientation characteristics of different types of conglomerate facies
图 11 长轴陡坡桑园扇三角洲前缘典型剖面沉积特征
剖面位置见图 3c
Fig. 11. Sedimentary characteristics of typical section of Sangyuan fan delta front in the steep slope along the long axis of the basin
图 12 于营近岸水下扇沉积模式(据Cao et al., 2018修改)
Fig. 12. Depositional model of subaqueous fan in the Yuying section (modified from Cao et al., 2018)
图 13 兴洲河扇三角洲(a)和桑园扇三角洲(b)沉积模式
图据李存磊等(2010)修改
Fig. 13. Depositional model of fan delta in the Xingzhouhe section (a) and Sangyuan section (b)
表 1 岩相分类方案及特征
Table 1. Lithofacies scheme and characteristics
岩相代号 岩相类型 沉积特征 流体成因 扇三角洲沉积单元 近岸水下扇沉积单元 Mc 混杂砾岩相 块状层理、混杂堆积 滑塌沉积 水上分流河道 内扇、中扇主体 Mmc 基质支撑砾岩相 块状层理、砾石具有一定向性 砾质碎屑流 水下分流河道 内扇、中扇主体 Gmc 颗粒支撑砾岩相 块状层理、砾石具有一定向性 砾质碎屑流 水下分流河道 内扇、中扇主体 Gnc 正粒序砾岩相 正粒序层理、砾石定向性差 洪水底载载荷搬运、高密度浊流 水下分流河道 中扇主体、前缘 正粒序层理、砾石具有明显定向性 洪水底载、载荷搬运 水下分流河道 中扇主体 Gic 反粒序砾岩相 反粒序层理、砾石具定向性 高密度浊流、洪水底载载荷搬运 ‒ 中扇前缘 Gi 叠瓦状砾岩相 砾石叠瓦状排列 牵引底负载 水下分流河道 ‒ Gns 砾岩/砂岩相 正粒序层理 洪水底载载荷和悬浮载荷搬运,高密度浊流 水下分流河道 中扇主体、侧缘 Gl 侧积交错砾岩/砂岩相 侧积交错层理 高密度浊流 水下分流河道 中扇侧缘 Pms 块状含砾砂岩相 块状层理 浊流快速堆积、砂质碎屑流 水下分流河道 中扇主体、侧缘,外扇 Pns 正粒序含砾砂岩相 正粒序层理 高密度浊流,洪水底载载荷和悬浮载荷搬运 水下分流河道 中扇主体、侧缘、前缘,外扇 Sm 块状砂岩相 块状层理 浊流快速堆积、砂质碎屑流 水下分流河道、前缘前端 中扇主体、侧缘、前缘,外扇 Sc 爬升沙纹层理砂岩相 爬升沙纹层理 牵引流,洪水悬浮载荷 水下分流河道 ‒ Sn 正粒序砂岩相 正粒序层理 高密度浊流、洪水悬浮载荷搬运 水下分流河道 中扇主体、侧缘、前缘,外扇 Si 反粒序砂岩相 反粒序层理 高密度浊流、洪水悬浮载荷 河口坝 ‒ Sh 平行层理砂岩相 平行层理 牵引流、洪水悬浮载荷 河口坝、水下分流河道、前缘前端 中扇主体、侧缘、前缘,外扇 Sw 波状层理砂岩相 波状层理 牵引流、洪水悬浮载荷 河口坝、前缘前端 ‒ Swc 浪成交错层理砂岩相 浪成交错层理 牵引流,洪水悬浮载荷 河口坝、前缘前端 ‒ M 砂质泥岩/泥岩相 块状层理、水平层理 低密度浊流,悬浮沉积 水道间、湖相泥岩、前缘前端 外扇、扇间,悬浮沉积 -
[1] Allen, P. A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments: Implications for Basin-Margin Fans. Basin Research, 10(1): 19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x [2] Bai, L. K., Qiu, L. W., Yang, Y. Q., et al., 2020. Preliminary Microfacies Division and Significance Study of Nearshore Subaqueous Fan: A Case Study from the Lower Cretaceous Xiguayuan Formation, Luanping Basin. Acta Geologica Sinica, 94(8): 2446-2459 (in Chinese with English abstract). [3] Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier Publishing Company, Amsterdam. [4] Cao, Y. C., Wang, Y. Z., Gluyas, J. G., et al., 2018. Depositional Model for Lacustrine Nearshore Subaqueous Fans in a Rift Basin: The Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China. Sedimentology, 65(6): 2117-2148. https://doi.org/10.1111/sed.12459 [5] Cope, T., Luo, P., Zhang, X. Y., et al., 2010. Structural Controls on Facies Distribution in a Small Half-Graben Basin: Luanping Basin, Northeast China. Basin Research, 22(1): 33-44. https://doi.org/10.1111/j.1365-2117.2009.00417.x [6] Er, C., Gu, J. Y., Niu, J. Y., et al., 2010. Gravity-Driven Processes: A more Important Transport Mechanism of Deposits in Xiguayuan Formation of Lower Cretaceous in Luanping Basin, Northern Hebei. Geological Review, 56(3): 312-320 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201003002.htm [7] Falk, P., Dorsey, R. J., 1998. Rapid Development of Gravelly High-Density Turbidity Currents in Marine Gilbert-Type Fan Deltas, Loreto Basin, Baja California Sur, Mexico. Sedimentology, 45(2): 331-349. https://doi: 10.1046/j.1365-3091.1998.0153e.x [8] Jia, H. B., Ji, H. C., Yu, J. F., et al., 2019. Sediment Supply Control on the Delivery of Sediments to Deep-Lacustrine Environment: A Case Study from Luanping Basin, Northern China. Geological Journal, 55 (5): 3679-3693. https://doi.org/10.1002/gj.3608 [9] Henstra, G. A., Grundvg, S. A., Johannessen, E. P., et al., 2016. Depositional Processes and Stratigraphic Architecture within a Coarse-Grained Rift-Margin Turbidite System: The Wollaston Forland Group, East Greenland. Marine and Petroleum Geology, 76: 187-209. https://doi.org/org/10.1016/j.marpetgeo.2016.05.018 [10] Holmes, C. D., 1941. Till Fabric. Geological Society of America Bulletin, 52(9): 1299-1354. https://doi.org/10.1130/GSAB-52-1299 [11] Huang, Y. G., Zhu, R., Zhang, C. M., et al., 2018. A Method for Quantitative Characterization of Gravel Orientation and Its Application. Acta Sedimentologica Sinica, 36(1): 12-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201801002.htm [12] Li, C. L., Liu, T., Xia, L. J., 2010. Sedimentary Characteristics of Dereliction Fan Delta in the Second Member of Dainan Formation, Huangjue Area, Gaoyou Depression. Periodical of Ocean University of China, 40(4): 65-72 (in Chinese with English abstract). [13] Li, H. T., Song, Z. G., Zou, Y. R., et al., 2008. Characteristics of Sedimentary Organic Matter and Paleoclimate and Environmental Evolution during Early Cretaceous Time in Northern Part of Hebei and Western of Liaoning Provinces. Acta Geologica Sinica, 82(1): 72-76 (in Chinese with English abstract). [14] Li, Y., 2003. Fan-Deltaic Depositional Systems of the Xiguayuan Formation in Luanping Basin. Acta Geosicientia Sinica, 24(4): 353-356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200304013.htm [15] Liu, C., Yu, B. S., Jiang, R., et al., 2017. Sedimentary Feature and Mode of Gravity Flow in Lacustrine Basin: Example from Ordos Basin and Luanping Basin. Geological Science and Technology Information, 36(5): 133-142 (in Chinese with English abstract). [16] Liu, H., Van Loon, A. J., Xu, J., et al., 2020. Relationships between Tectonic Activity and Sedimentary Source-to-Sink System Parameters in a Lacustrine Rift Basin: A quantitative Case Study of the Huanghekou Depression (Bohai Bay Basin, E China). Basin Research, 32 (4): 587-612. https://doi.org/10.1111/bre.12374 [17] Liu, Q. H., Zhu, H. T., Du, X. F., et al., 2020. Development and Hotspots of Sedimentary Response of Glutenite in the Offshore Bohai Bay Basin. Earth Science, 45(5): 1676-1705 (in Chinese with English abstract). [18] Lowe, D. R., 1979. Sediment Gravity Flows: Their Classification and Some Problems of Application to Natural Flows and Deposits. In: Doyle, L. J., Pilkey, O. H., eds., Geology of Continental Slopes. SEPM Society for Sedimentary Geology, McLean. [19] Lowe, D. R., 1982. Sediment Gravity Flows: II. Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentology, 52(1): 279-297. https://doi: 10.1306/212F7F31-2B24-11D7-8648000102C1865D [20] Sohn, Y. K., Kim, S. B., Hwang, I. G., et al., 1997. Characteristics and Depositional Processes of Large-Scale Gravelly Gilbert-Type Foresets in the Miocene Doumsan Fan Delta, Pohang Basin, SE Korea. Journal of Sedimentary Research, 67 (1): 130-141. https://doi.org/10.1306/D4268513-2B26-11D7-8648000102C1865D [21] Tian, S. G., Niu, S. W., Pang, Q. Q., 2008. Redefinition of the Lower Cretaceous Terrestrial Yixianian Stage and Its Stratotype Candidate in the Luanping Basin, Northern Hebei, China. Geological Bulletin of China, 27(6): 739-752 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200806005.htm [22] Wallace, R. E., 1977. Profiles and Ages of Young Fault Scarps, North-Central Nevada. Geological Society of America Bulletin, 88(9): 1267-1281. https://doi.org/10.1130/0016-7606(1977)881267:paaoyf>2.0.co;2 doi: 10.1130/0016-7606(1977)881267:paaoyf>2.0.co;2 [23] Wang, X. X., Zhu, X. M., Song, S., et al., 2016. "Source-to-Sink" System of the Lower Member 3 of Paleogene Shahejie Formation in Steep Slope Zone of Western Chezhen Sub-Sag, Bohai Bay Basin. Journal of Palaeogeography (Chinese Edition), 18(1): 65-79 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GDLX201601006&dbcode=CJFD&year=2016&dflag=pdfdown [24] Wang, Y. S., Hao, X. F., Hu, Y., 2018. Orderly Distribution and Differential Enrichment of Hydrocarbon in Oil-Rich Sags: A Case Study of Dongying Sag, Jiyang Depression, Bohai Bay Basin, East China. Petroleum Exploration and Development, 45(5): 785-794 (in Chinese with English abstract). [25] Wang, Y. S., Wang, Y., Zhu, D. S., et al., 2016. Genetic Mechanism of High-Quality Glutenite Reservoirs at the Steep Slope in Northern Dongying Sag. China Petroleum Exploration, 21(2): 28-36 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ktsy201602004.htm [26] Wei, H. H., Meng, Q. R., Wu, G. L., et al., 2012. Multiple Controls on Rift Basin Sedimentation in Volcanic Settings: Insights from the Anatomy of a Small Early Cretaceous Basin in the Yanshan Belt, Northern North China. Geological Society of America Bulletin, 124 (3-4): 380-399. https://doi.org/10.1130/B30495.1 [27] Wu, S. H., Xiong, Q. H., Gong, Y. J., et al., 1994. Steep and Gentle Slope-Pattern Fan Deltas and Their Potential as Hydrocarbon Reservoir. Acta Petrolei Sinica, 15(S1): 52-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB4S1.006.htm [28] Wu, F. D., Chen, Y. J., Hou, Y. A., et al., 2004. Characteristics of Sedimentary-Tectonic Evolution and High-Resolution Sequence Stratigraphy in Luanping Basin. Earth Science, 29(5): 625-630 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405019.htm [29] Wu, F. D., Chen, Y. J., Li, Y., et al., 2000. Tectonic Evolutions and Their Control on Development of Fan Deltic Depositional System in the Luanping Basin. Geoscience, 14(2): 179-184 (in Chinese with English abstract). http://www.researchgate.net/publication/285861333_Tectonic_evolutions_and_their_control_on_development_of_fan-deltic_depositional_system_in_the_Luanping_basin [30] Xian, B. Z., Wang, Y. S., Zhou, T. Q., et al., 2007. Distribution and Controlling Factors of Glutinite Bodies in the Actic Region of a Rift Basin: An Example from Chezhen Sag, Bohai Bay Basin. Petroleum Exploration and Development, 34(4): 429-436 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKYK200704009.htm [31] Xiang, H., Zhang, L., 2007. Sequence Characters of the Fan Delta Outcrop of Xiguayuan Formation in Luanping Basin. Petroleum Geology and Recovery Efficiency, 14(6): 20-22 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=25973966 [32] Yan, D. Z., Xu, H. M., Xu, Z. H., et al., 2020. Sedimentary Architecture of Hyperpycnal Flow Deposits: Cretaceous Sangyuan Outcrop, from the Luanping Basin, North East China. Marine and Petroleum Geology, 121: 104593. https://doi.org/10.1016/j.marpetgeo.2020.104593 [33] Yan, J. H., Chen, S. Y., Cheng, L. H., et al., 2009. Simulation Experiment for Effects of lake level change on Fan Delta Development. Journal of China University of Petroleum, 33(6): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200906003.htm [34] Yin, S. L., Tan, Y. Y., Zhang, L., et al., 2018. 3D Outcrop Geological Modeling Based on UAV Oblique Photography Data: A Case Study of Pingtouxiang Section in Lüliang City, Shanxi Province. Journal of Palaeogeography (Chinese Edition), 20(5): 909-924 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=GDLX201805014&dbcode=CJFD&year=2018&dflag=pdfdown [35] Yuan, X. D., Jiang, Z. X., Zhang, Y. F., et al., 2020. Characteristics of the Cretaceous Continental Shale Oil Reservoirs in Luanping Basin. Acta Petrolei Sinica, 41(10): 1197-1208 (in Chinese with English abstract). [36] Zavala, C., Arcuri, M., Meglio, M. D., et al., 2011. A Genetic Facies Tract for the Analysis of Sustained Hyperpycnal Flow Deposits. In: Slatt, R. M., Zavala, C., eds., Sediment Transfer from shelf to Deep Water-Revisiting the Delivery System. AAPG, Tulsa. [37] Zhang, C. M., Zhu, R., Guo, X. G., et al., 2020. Arid Fluvial Fandelta-Fluvial Fan Transition: Implications of Huangyangquan Fan Area. Earth Science, 45(5): 1791-1806 (in Chinese with English abstract). [38] Zhang, Y. L., Qu, H. J., Meng, Q. R., 2007. Depositional Process and Evolution of Luanping Early Cretaceous Basin in the Yanshan Structural Belt. Acta Petrologica Sinica, 23(3): 667-678 (in Chinese with English abstract). [39] 白立科, 邱隆伟, 杨勇强, 等, 2020. 近岸水下扇微相划分研究及意义初探: 以滦平盆地下白垩统西瓜园组为例. 地质学报, 94(8): 2446-2459. doi: 10.3969/j.issn.0001-5717.2020.08.020 [40] 耳闯, 顾家裕, 牛嘉玉, 等, 2010. 重力驱动作用: 滦平盆地下白垩统西瓜园组沉积时期主要的搬运机制. 地质论评, 56(3): 312-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201003002.htm [41] 黄远光, 朱锐, 张昌民, 等, 2018. 粗粒碎屑岩砾石定向性定量表征方法及应用. 沉积学报, 36(1): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201801002.htm [42] 李存磊, 刘婷, 夏连军, 2010. 高邮凹陷黄珏地区戴二段扇三角洲沉积特征. 中国海洋大学学报(自然科学版), 40(4): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201004012.htm [43] 李洪涛, 宋之光, 邹艳荣, 等, 2008. 冀北-辽西早白垩世沉积有机质特征与古气候环境演变. 地质学报, 82(1): 72-76. doi: 10.3321/j.issn:0001-5717.2008.01.009 [44] 李寅, 2003. 滦平盆地西瓜园组扇三角洲沉积体系构成及其特征. 地球学报, 24(4): 353-356. doi: 10.3321/j.issn:1006-3021.2003.04.011 [45] 刘策, 于炳松, 蒋锐, 等, 2017. 湖盆重力流沉积特征及模式: 以鄂尔多斯盆地及滦平盆地为例. 地质科技情报, 36(5): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705018.htm [46] 刘强虎, 朱红涛, 杜晓峰, 等, 2020. 渤海海域砂砾岩体沉积响应进展及热点. 地球科学, 45(5): 1676-1705. doi: 10.3799/dqkx.2020.010 [47] 田树刚, 牛绍武, 庞其清, 2008. 冀北滦平盆地早白垩世陆相义县阶的重新厘定及其层型剖面. 地质通报, 27(6): 739-752. doi: 10.3969/j.issn.1671-2552.2008.06.003 [48] 王星星, 朱筱敏, 宋爽, 等, 2016. 渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段"源-汇"系统. 古地理学报, 18(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601006.htm [49] 王永诗, 郝雪峰, 胡阳, 2018. 富油凹陷油气分布有序性与富集差异性: 以渤海湾盆地济阳坳陷东营凹陷为例. 石油勘探与开发, 45(5): 785-794. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805005.htm [50] 王永诗, 王勇, 朱德顺, 等, 2016. 东营凹陷北部陡坡带砂砾岩优质储层成因. 中国石油勘探, 21(2): 28-36. doi: 10.3969/j.issn.1672-7703.2016.02.004 [51] 吴胜和, 熊琦华, 龚姚进, 等, 1994. 陡坡型和缓坡型扇三角洲及其油气储层意义. 石油学报, 15(S1): 52-59. doi: 10.7623/syxb1994S1007 [52] 武法东, 陈永进, 侯宇安, 等, 2004. 滦平盆地沉积-构造演化及高精度层序地层特征. 地球科学, 29(5): 625-630. doi: 10.3321/j.issn:1000-2383.2004.05.020 [53] 武法东, 陈永进, 李寅, 等, 2000. 河北滦平盆地构造演化及对扇三角洲发育的控制作用. 现代地质, 14(2): 179-184. doi: 10.3969/j.issn.1000-8527.2000.02.010 [54] 鲜本忠, 王永诗, 周廷全, 等, 2007. 断陷湖盆陡坡带砂砾岩体分布规律及控制因素: 以渤海湾盆地济阳坳陷车镇凹陷为例. 石油勘探与开发, 34(4): 429-436. doi: 10.3321/j.issn:1000-0747.2007.04.008 [55] 项华, 张乐, 2007. 滦平盆地西瓜园组扇三角洲露头层序特征. 油气地质与采收率, 14(6): 20-22. doi: 10.3969/j.issn.1009-9603.2007.06.006 [56] 鄢继华, 陈世悦, 程立华, 等, 2009. 湖平面变化对扇三角洲发育影响的模拟试验. 中国石油大学学报(自然科学版), 33(6): 1-4. doi: 10.3321/j.issn:1673-5005.2009.06.001 [57] 印森林, 谭媛元, 张磊, 等, 2018. 基于无人机倾斜摄影的三维露头地质建模: 以山西吕梁市坪头乡剖面为例. 古地理学报, 20(5): 909-924. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201805014.htm [58] 袁晓冬, 姜在兴, 张元福, 等, 2020. 滦平盆地白垩系陆相页岩油储层特征. 石油学报, 41(10): 1197-1208. doi: 10.7623/syxb202010004 [59] 张昌民, 朱锐, 郭旭光, 等, 2020. 干旱地区河流扇三角洲-河流扇演替模式: 来自黄羊泉扇的启示. 地球科学, 45(5): 1791-1806. doi: 10.3799/dqkx.2019.165 [60] 张英利, 渠洪杰, 孟庆任, 2007. 燕山构造带滦平早白垩世盆地沉积过程和演化. 岩石学报, 23(3): 667-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703015.htm