Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift
-
摘要: 为探讨黔中隆起北缘五峰—龙马溪组富有机质页岩的沉积环境和物源区背景,对区内两口井的样品进行了有机碳含量、微量元素和稀土元素地球化学测试和分析.结果表明,研究区五峰—龙马溪组页岩在沉积时以贫氧—厌氧环境为主,富氧环境也偶尔存在,且龙马溪组沉积水体还原程度比五峰组高.LaN/YbN值的变化反映沉积速率为:龙马溪组下部 < 五峰组 < 观音桥段,表明五峰—龙马溪组页岩沉积时存在沉积速率先变快后变缓的过程.Mo/TOC值显示五峰组页岩沉积时盆地滞留程度较强,进入志留纪相对减弱,盆地滞留程度对有机质富集的正向影响可能不大,海平面升降造成的氧化还原条件以及生产力条件的变化或许控制了有机质的富集.微量和稀土元素组合及比值特征,反映研究区五峰—龙马溪组沉积时的原始物质来自上地壳,五峰组沉积时存在混合物源,而龙马溪组沉积时物源相对单一,总体上源岩以长英质(花岗岩)为主.源区构造背景以主动大陆边缘为主,受到一定热液活动的影响,同时也表现出一定的大陆岛弧构造背景的特征.Abstract: In order to discuss depositional setting and its tectonic background of the Wufeng-Longmaxi Formation organic-rich shales in the northern margin of the central Guizhou uplift, the TOC content, trace elements and rare earth elements of the samples from two wells in the area were tested. The results show that the Wufeng-Longmaxi Formation shales in the study area was mainly deposited in poor oxygen-anaerobic environment, and the oxygen-rich environment also exists occasionally, and the reduction degree of sedimentary water in Longmaxi Formation is higher than that in Wufeng Formation. The sedimentation rate reflected by the changes of LaN/YbN value is as follows: the lower part of the Longmaxi Formation < the Wufeng Formation < the Guanyinqiao section, which reflects the process that the sedimentation rate of the Wufeng-Longmaxi Formation shale becomes faster at first and then slows down. The Mo/TOC values show that the water mass restriction degree of the basin is strong during the sedimentation of the Wufeng Formation shale, and relatively weakened in the Silurian, the restriction degree has little positive effect on the enrichment of organic matter, while the changes of redox conditions and productivity factors caused by sea level rise and fall control the enrichment of organic matter. The characteristics of the trace elements and rare earth elements reflect that the provenance of the Wufeng-Longmaxi Formation shales comes from the upper crust, there is mixed provenance in Wufeng Formation, and the provenance of Longmaxi Formation is relatively simple, generally speaking, the source rocks are mainly feldspathic-quartz (granite). The tectonic setting was mainly passive continental margin, due to the effect of certain hydrothermal input, it also exhibits certain characteristics of continental island arc tectonic background.
-
Key words:
- trace element /
- rare earth element /
- paleoenvironment /
- provenance /
- Wufeng-Longmaxi Formation /
- geochemistry
-
图 2 五峰‒龙马溪组页岩岩心及扫描电镜照片
a. 炭质页岩,AY3井,2 491.5 m,五峰组;b. 深灰色泥质生物灰岩,含腕足类化石,AY1井,2 325.2 m,观音桥段;c. 富笔石黑色页岩,AY3井,2 475.3 m,龙马溪组;d. 石英、长石、云母、黏土矿物等矿物相间分布,碎屑矿物具次圆状‒次棱角状,AY2井,1 975.3 m,五峰组;e. 石英、钠长石、白云石与伊利石及微晶矿物集合体相间分布,AY3井,2 486.5 m,观音桥段;f. 有机质与片状伊利石充填微晶石英粒间孔,AY3井,2 471.0 m,龙马溪组;g. 黄铁矿扫描电镜照片,AY2井,1 969.26 m,龙马溪组;h.草莓状黄铁矿放大图;i. 黄铁矿扫描电镜照片,AY2井,1 957.33 m,五峰组;j. 草莓状黄铁矿放大图
Fig. 2. Core and scanning electron microscope (SEM) photos of the Wufeng-Longmaxi Formation shales
图 7 五峰‒龙马溪组页岩稀土元素配分模式
球粒陨石标准化据Taylor and McLennan(1985)
Fig. 7. REE distribution patterns of the Wufeng-Longmaxi Formation shales
图 9 五峰‒龙马溪组页岩La/Yb-∑REE(a)及La/Sc-Co/Th图解(b)
a据Allègre and Minster(1978);b据Gu et al.(2002)
Fig. 9. La/Yb-∑REE (a) and La/Sc-Co/Th diagram (b) of Wufeng-Longmaxi Formation shales
图 11 五峰‒龙马溪组页岩Eu/Sm- Sm/Yb图解
Fig. 11. Eu/Sm-Sm/Yb diagram of Wufeng-Longmaxi Formation shales
图 12 五峰‒龙马溪组构造背景判别图解
图据Bhatia and Crook(1986);OIA.大洋岛弧;CIA.大陆岛弧;ACM.活动大陆边缘;PM.被动大陆边缘
Fig. 12. Tectonic setting discrimination diagrams of the Wufeng-Longmaxi Formation
表 1 五峰-龙马溪组页岩TOC(%)及微量元素(μg/g)测试结果
Table 1. Test results of TOC (%) and trace elements (μg/g) of the Wufeng-Longmaxi Formation shales
样品号 深度(m) 层位 TOC Sc V Cr Co Ni Zn Sr Mo Ba Th U Zr AY2-1 1 957.05 龙马溪组 3.65 6.84 350.88 52.18 9.36 102.53 154.56 141.49 31.20 912.91 9.45 15.61 45.98 AY2-2 1 959.10 龙马溪组 3.63 8.10 470.09 29.95 9.45 104.92 230.50 140.66 34.88 1 047.62 9.79 27.10 50.98 AY2-3 1 963.13 龙马溪组 2.99 6.49 658.15 59.38 9.72 156.47 243.64 111.03 39.08 2 009.61 8.85 3.34 42.58 AY2-4 1 969.26 龙马溪组 5.27 6.91 593.10 62.85 9.30 144.54 302.28 88.63 56.70 926.93 9.28 17.73 39.51 AY2-5 1 970.07 观音桥段 0.34 5.25 71.98 28.95 4.02 41.75 38.46 432.58 1.48 1 367.51 5.75 7.34 32.40 AY2-6 1 972.25 五峰组 5.04 8.49 487.21 59.49 10.00 126.56 275.72 87.73 39.00 945.05 10.78 1.10 62.03 AY2-7 1 975.33 五峰组 2.82 19.02 184.54 101.61 22.20 101.54 482.4 139.61 2.67 980.00 24.96 2.76 231.77 AY3-1 2 471.00 龙马溪组 3.91 8.01 520.47 86.95 12.47 148.68 234.95 161.05 37.38 1 256.41 13.66 19.81 80.55 AY3-2 2 473.70 龙马溪组 4.17 6.78 394.51 83.17 10.32 102.23 139.62 150.80 35.28 992.62 9.79 19.12 49.65 AY3-3 2 477.04 龙马溪组 4.33 6.65 388.05 81.24 9.57 91.42 181.68 136.94 36.88 1 027.27 9.29 21.77 54.21 AY3-4 2 480.00 龙马溪组 4.58 5.43 608.47 53.51 8.75 112.65 191.52 243.03 28.92 1 037.36 7.63 14.43 40.45 AY3-5 2 482.00 龙马溪组 5.45 4.93 627.76 80.11 8.54 141.84 236.83 265.28 30.77 1 039.79 7.14 14.00 33.66 AY3-6 2 484.30 龙马溪组 6.09 6.88 836.94 109.11 11.17 149.68 368.28 70.84 52.08 1 029.7 8.97 30.28 49.69 AY3-7 2 486.50 观音桥段 0.92 6.58 69.77 56.80 4.89 39.05 54.15 616.19 1.60 2 734.62 7.46 1.93 38.89 AY3-8 2 488.00 五峰组 4.12 7.82 552.12 85.03 6.86 66.63 184.22 90.10 18.85 926.15 10.38 13.53 109.02 AY3-9 2 491.63 五峰组 4.60 14.86 340.54 176.45 9.65 76.78 286.74 118.22 1.08 981.75 17.89 6.65 126.90 平均值 8.07 447.16 75.42 9.77 106.70 225.35 187.14 27.99 1 200.96 10.69 13.53 68.02 上地壳丰度 10.00 70.00 44.00 12.00 21.00 63.00 300.00 0.60 640.00 9.50 1.80 170.00 浓集系数 0.80 6.40 1.70 0.80 5.10 3.60 0.60 46.70 1.90 1.10 7.50 0.40 表 2 五峰-龙马溪组页岩稀土元素(μg/g)分析结果
Table 2. Test results of rare earth elements (μg/g) of the Wufeng-Longmaxi Formation shales
样品号 层位 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu AY2-1 龙马溪组 27.69 47.78 5.96 23.13 4.54 0.94 4.29 0.67 3.55 0.67 1.71 0.29 1.95 0.28 AY2-2 龙马溪组 28.18 48.30 6.10 23.61 4.58 0.90 4.24 0.66 2.78 0.66 1.73 0.31 2.06 0.30 AY2-3 龙马溪组 25.22 43.88 5.49 21.88 4.17 0.85 3.93 0.6 3.14 0.60 1.59 0.28 1.93 0.28 AY2-4 龙马溪组 27.43 51.32 6.51 27.07 5.37 1.02 4.67 0.57 3.31 0.61 1.53 0.28 1.90 0.26 AY2-5 观音桥段 17.85 30.38 3.47 15.26 3.18 0.94 3.26 0.54 3.07 0.62 1.70 0.30 1.99 0.28 AY2-6 五峰组 29.44 47.66 5.93 22.46 4.20 0.73 3.99 0.59 3.13 0.61 1.67 0.31 2.21 0.31 AY2-7 五峰组 62.21 116.92 12.05 43.91 7.66 1.19 6.96 1.10 6.23 1.26 3.19 0.68 4.72 0.67 AY3-1 龙马溪组 31.24 56.33 7.56 27.57 5.34 1.08 4.44 0.69 3.59 0.72 2.05 0.32 2.08 0.33 AY3-2 龙马溪组 25.74 46.56 6.27 23.50 4.48 0.91 3.76 0.60 3.10 0.60 1.70 0.27 1.71 0.27 AY3-3 龙马溪组 26.43 44.08 6.11 22.68 4.58 0.94 3.88 0.61 3.14 0.64 1.78 0.27 1.78 0.28 AY3-4 龙马溪组 21.07 36.82 5.19 19.36 3.80 0.79 3.07 0.49 2.49 0.49 1.44 0.22 1.50 0.24 AY3-5 龙马溪组 18.34 29.88 4.69 17.96 3.60 0.78 2.98 0.47 2.38 0.48 1.36 0.21 1.38 0.24 AY3-6 龙马溪组 27.98 48.03 6.65 26.13 5.01 0.99 4.08 0.61 3.08 0.59 1.68 0.26 1.76 0.27 AY3-7 观音桥段 20.88 32.31 4.73 18.46 3.78 1.40 3.29 0.58 3.33 0.69 1.94 0.30 1.90 0.29 AY3-8 五峰组 30.87 47.14 6.41 23.65 4.70 0.80 3.75 0.57 3.12 0.68 2.14 0.35 2.45 0.38 AY3-9 五峰组 47.06 68.91 9.23 30.54 4.84 0.85 3.96 0.64 3.57 0.78 2.60 0.46 3.40 0.55 平均值 29.23 49.77 6.40 24.20 4.61 0.94 4.03 0.62 3.31 0.67 1.86 0.32 2.17 0.33 上地壳丰度 33.00 64.00 7.30 28.0 5.00 1.12 4.40 0.67 4.00 0.80 2.30 0.34 3.24 0.33 表 3 研究区样品与不同构造背景沉积盆地杂砂岩的REE特征对比
Table 3. The comparison of REE characteristic parameters with those from graywackes in different settings
构造背景 La (µg/g) Ce (µg/g) ∑REE (µg/g) La/Yb LREE/HREE LaN/YbN δEu 大洋岛弧 8±1.7 19±3.7 58±10 4.2±1.3 3.8±0.9 2.8±0.9 1.04±0.11 大陆岛弧 27±4.5 59±8.2 146±20 11.0±3.6 7.7±1.7 7.5±2.5 0.79±0.13 活动大陆边缘 37 78 186 12.5 9.1 8.5 0.6 被动大陆边缘 39 85 210 15.9 8.5 10.8 0.56 研究区平均值 29.23 49.77 128.47 13.53 8.52 9.14 0.69 校正值 24.36 41.47 107.06 13.53 8.52 9.14 0.69 -
[1] Abanda, P. A., Hannigan, R. E., 2006. Effect of Diagenesis on Trace Element Partitioning in Shales. Chemical Geology, 230(1-2): 42-59. https://doi.org/10.1016/j.chemgeo.2005.11.011 [2] Alexander, B. W., Bau, M., Andersson, P., et al., 2008. Continentally-Derived Solutes in Shallow Archean Seawater: Rare Earth Element and Nd Isotope Evidence in Iron Formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2): 378-394. https://doi.org/10.1016/j.gca.2007.10.028 [3] Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004PA001112 [4] Algeo, T. J., Marenco, P. J., Saltzman, M. R., 2016. Co-Evolution of Oceans, Climate, and the Biosphere during the 'Ordovician Revolution': A Review. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 1-11. https://doi.org/10.1016/j.palaeo.2016.05.015 [5] Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324-325: 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002 [6] Alkhafaji, M. W., Aljubouri, Z. A., Aldobouni, I. A., 2015. Depositional Environment of the Lower Silurian Akkas Hot Shales in the Western Desert of Iraq: Results from an Organic Geochemical Study. Marine and Petroleum Geology, 64: 294-303. https://doi.org/10.1016/j.marpetgeo.2015.02.012 [7] Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821X(78)90123-1 [8] Bau, M., Dulski, P., 1999. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chemical Geology, 155(1-2): 77-90. https://doi.org/10.1016/S0009-2541(98)00142-9 [9] Berry, W. B. N., Wilde, P., 1978. Progressive Ventilation of the Oceans: An Explanation for the Distribution of the Lower Paleozoic Black Shales. American Journal of Science, 278(3): 257-275. https://doi.org/10.2475/ajs.278.3.257 [10] Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1-2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9 [11] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292 [12] Bhatia, M. R., Taylor, S. R., 1981. Trace-Element Geochemistry and Sedimentary Provinces: A Study from the Tasman Geosyncline, Australia. Chemical Geology, 33(1-4): 115-125. https://doi.org/10.1016/0009-2541(81)90089-9 [13] Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Bulletin of the Geological Society of America, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1 [14] Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22(4): 295-298. https://doi.org/10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 doi: 10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 [15] Chen, L., Lu, Y. C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232-246. https://doi.org/10.1016/j.marpetgeo.2015.04.003 [16] Chen, X., 1990. Graptolite Depth Zonation. Acta Palaeontologica Sinica, 29(5): 507-526 (in Chinese). [17] Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3): 183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004 [18] Chen, X., Xiao, C. X., Chen, H. Y., 1987. Wufengian (Ashgillian) Graptolite Faunal Differentiation and Anoxic Environment in South China. Acta Palaeontologica Sinica, 26(3): 326-338 (in Chinese). http://search.cnki.net/down/default.aspx?filename=GSWX198703014&dbcode=CJFD&year=1987&dflag=pdfdown [19] Choi, J. H., Hariya, Y., 1992. Geochemistry and Depositional Environment of Mn Oxide Deposits in the Tokoro Belt, Northeastern Hokkaido, Japan. Economic Geology, 87(5): 1265-1274. https://doi.org/10.2113/gsecongeo.87.5.1265 [20] Cocks, L. R. M., Torsvik, T. H., 2013. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 117: 40-79. https://doi.org/10.1016/j.earscirev.2012.12.001 [21] Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. https://doi.org/10.1016/0009-2541(93)90140-E [22] Cronan, D. S., 1980. Underwater Minerals. American Academic Press, New York. [23] Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4): 65-78. https://doi.org/10.1016/S0012-821X(96)00204-X [24] Curiale, J. A., Curtis, J. B., 2016. Organic Geochemical Applications to the Exploration for Source-Rock Reservoirs-A Review. Journal of Unconventional Oil and Gas Resources, 13: 1-31. https://doi.org/10.1016/j.juogr.2015.10.001 [25] Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d [26] Davies, J. R., Waters, R. A., Molyneux, S. G., et al., 2016. Gauging the Impact of Glacioeustasy on a Mid-Latitude Early Silurian Basin Margin, Mid Wales, UK. Earth-Science Reviews, 156: 82-107. https://doi.org/10.1016/j.earscirev.2016.02.004 [27] Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0 [28] Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2003. Lithofacies Palaeogeography of the Middle Ordovician in China. Journal of Palaeogeography, 5(3): 263-278 (in Chinese with English abstract). [29] Francois, R., 1988. A Study on the Regulation of the Concentrations of Some Trace Metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Marine Geology, 83(1-4): 285-308. https://doi.org/10.1016/0025-3227(88)90063-1 [30] Gai, S. H., Liu, H. Q., He, S. L., et al., 2016. Shale Reservoir Characteristics and Exploration Potential in the Target: A Case Study in the Longmaxi Formation from the Southern Sichuan Basin of China. Journal of Natural Gas Science and Engineering, 31: 86-97. https://doi.org/10.1016/j.jngse.2016.02.060 [31] Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9 [32] Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393 [33] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091 [34] Harper, D. A. T., Hammarlund, E. U., Rasmussen, C. M. Ø., 2014. End Ordovician Extinctions: A Coincidence of Causes. Gondwana Research, 25(4): 1294-1307. https://doi.org/10.1016/j.gr.2012.12.021 [35] Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y [36] Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068 [37] Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X [38] Leggett, J. K., 1980. British Lower Palaeozoic Black Shales and Their Palaeo-Oceanographic Significance. Journal of the Geological Society, 137(2): 139-156. https://doi.org/10.1144/gsjgs.137.2.0139 [39] Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. https://doi.org/10.1016/0016-7037(82)90377-5 [40] Li, J., Yu, B. S., Guo, F., 2013. Depositional Setting and Tectonic Background Analysis on Lower Cambrian Black Shales in the North of Guizhou Province. Acta Sedimentologica Sinica, 31(1): 20-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301004.htm [41] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin, China. Petroleum Exploration and Development, 39(6): 736-743. https://doi.org/10.1016/S1876-3804(12)60098-6 [42] Liang, D. G., Guo, T. L., Bian, L. Z., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2): 1-19 (in Chinese with English abstract). http://www.researchgate.net/publication/284772485_Some_progresses_on_studies_of_hydrocarbon_generation_and_accumulation_in_marine_sedimentary_regions_Southern_China_Part_3_Controlling_factors_on_the_sedimentary_facies_and_development_of_Palaeozoic_ma [43] Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 [44] Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm [45] Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian 'hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1-4): 121-200. https://doi.org/10.1016/S0012-8252(99)00060-4 [46] Ma, Y. Q., Fan, M. J., Lu, Y. C., et al., 2016. Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China: Implications for Depositional Controls on Organic Matter Accumulation. Marine and Petroleum Geology, 75: 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024 [47] Mou, C. L., Ge, X. Y., Xu, X. S., et al., 2014. Lithofacies Palaeogeography of the Late Ordovician and Its Petroleum Geological Significance in Middle-Upper Yangtze Region. Journal of Palaeogeography, 16(4): 427-440 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GDLX201404001.htm [48] Mou, C. L., Zhou, K. K., Liang, W., et al., 2011. Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration. Acta Geologica Sinica, 85(4): 526-532 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/201104/38280138.html [49] Peter, J. M., Scott, S. D., 1988. Mineralogy, Composition, and Fluid-Inclusion Microthermometry of Seafloor Hydrothermal Deposits in the Southern Trough of Guaymas Basin, Gulf of California. Canadian Mineralogist, 26(3): 567-587. http://ci.nii.ac.jp/naid/80004314197 [50] Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108: 1-17. https://doi.org/10.1016/j.jseaes.2015.04.007 [51] Rong, J. Y., 1984. Ecostratigraphic Evidence of the Upper Ordovician Regressive Sequences and the Effect of Glaciation. Journal of Stratigraphy, 8(1): 19-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ198401002.htm [52] Rong, J. Y., Chen, X., Wang, Y., et al., 2011. The Changes of the Ancient Land in Central Guizhou at the Turn of the Ordovician and Silurian: Evidence and Enlightenment. Science in China (Series D), 41(10): 1407-1415 (in Chinese). [53] Rong, J. Y., Zhan, R. B., 1999. Ordovician-Silurian Brachiopod Fauna Turnover in South China. Geoscience, 13(4): 390-394 (in Chinese with English abstract). http://ir.nigpas.ac.cn/bitstream/332004/2973/2/42.pdf [54] Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1-2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006 [55] Russell, A. D., Morford, J. L., 2001. The Behavior of Redox-Sensitive Metals across a Laminated-Massive-Laminated Transition in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 341-354. https://doi.org/10.1016/S0025-3227(00)00159-6 [56] Scheffler, K., Buehmann, D., Schwark, L, 2006. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies-Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 184-203. https://doi.org/10.1016/j.palaeo.2006.03.059 [57] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Journal of Geology, 94(4): 57-72. https://doi.org/10.1086/629067 [58] Tenger, Liu, W. H., Xu, Y. C., et al., 2006. Comprehensive Geochemical Identification of Highly Evolved Marine Carbonate Rocks as Hydrocarbon-Source Rocks as Exemplified by the Ordos Basin. Science China Earth Sciences, 49(4): 384-396. https://doi.org/10.1007/s11430-006-0384-7 [59] Tian, W., Wang, C. S., Bai, Y. S., et al., 2019. Shale Geochemical Characteristics and Enrichment Mechanism of Organic Matter of the Upper Devonian Shetianqiao Formation Shale in Lianyuan Sag, Central Hunan. Earth Science, 44(11): 3794-3811 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911019.htm [60] Toth, J. R., 1980. Deposition of Submarine Crusts Rich in Manganese and Iron. Geological Society of America Bulletin, 91(1): 44. https://doi.org/10.1130/0016-7606(1980)9144:doscri>2.0.co;2 doi: 10.1130/0016-7606(1980)9144:doscri>2.0.co;2 [61] Wang, Y. M., Li, X. J., Dong, D. Z., et al., 2017. Major Controlling Factors for the High-Quality Shale of Wufeng-Longmaxi Formation, Sichuan Basin. Energy Exploration & Exploitation, 35(4): 444-462. https://doi.org/10.1177/0144598717698080 [62] Wang, Z. G., Yu, X. Y., Zhao, Z. H., 1989. Geochemistry of Rare Earth Elements. Science Press, Beijing (in Chinese). [63] Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537 [64] Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155 [65] Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8 [66] Yan, C. N., Jin, Z. J., Zhao, J. H., et al., 2018. Influence of Sedimentary Environment on Organic Matter Enrichment in Shale: A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China. Marine and Petroleum Geology, 92: 880-894. https://doi.org/10.1016/j.marpetgeo.2018.01.024 [67] Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2009. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science China Earth Sciences, 52(1): 38-54. https://doi.org/10.1007/s11430-008-0143-z [68] Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7): 599-602. https://doi.org/10.1130/g30961.1 [69] Yan, D. T., Wang, H., Fu, Q. L., et al., 2015. Geochemical Characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for Organic Matter Accumulation. Marine and Petroleum Geology, 65: 290-301. https://doi.org/10.1016/j.marpetgeo.2015.04.016 [70] Yan, D. T., Wang, Q. C., Chen, D. Z., et al., 2008. Sedimentary Environment and Development Controls of the Hydrocarbon Sources Beds: the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area. Acta Geologica Sinica, 82(3): 321-327 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/20083/26857697.html [71] Yu, B. S., Dong, H. L., Widom, E., et al., 2009. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China: Implications for Depositional Setting and Tectonic History. Journal of Asian Earth Sciences, 34(3): 418-436. https://doi.org/10.1016/j.jseaes.2008.07.003 [72] Zhan, R. B., Wang, G. X., Wu, R. C., 2010. Late Ordovician Foliomena Fauna (Brachiopoda) of South China. Journal of Earth Science, 21(1): 64-69. https://doi.org/10.1007/s12583-010-0171-4 [73] Zhang, C.M., Zhang, W.S., Guo, Y.H., 2012. Sedimentary Environment and Its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 19(1): 136-145 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201201017 [74] Zhang, T. S., Kershaw, S., Wan, Y., et al., 2000. Geochemical and Facies Evidence for Palaeoenvironmental Change during the Late Ordovician Hirnantian Glaciation in South Sichuan Province, China. Global and Planetary Change, 24(2): 133-152. https://doi.org/10.1016/S0921-8181(99)00063-6 [75] Zhao, C. J., Kang, Z. H., Hou, Y. H., et al., 2019. Geochemical Characteristics of Rare Earth Element and their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 44(11): 4118-4127 (in Chinese with English abstract). [76] Zheng, Y., Anderson, R. F., van Geen, A., et al., 2002. Preservation of Particulate Non-Lithogenic Uranium in Marine Sediments. Geochimica et Cosmochimica Acta, 66(17): 3085-3092. https://doi.org/10.1016/S0016-7037(01)00632-9 [77] Zhou, L., Algeo, T. J., Shen, J., et al., 2015. Changes in Marine Productivity and Redox Conditions during the Late Ordovician Hirnantian Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 420: 223-234. https://doi.org/10.1016/j.palaeo.2014.12.012 [78] Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002 [79] 陈旭, 1990. 论笔石的深度分带. 古生物学报, 29(5): 507-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199005000.htm [80] 陈旭, 肖承协, 陈洪冶, 1987. 华南五峰期笔石动物群的分异及缺氧环境. 古生物学报, 26(3): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198703013.htm [81] 冯增昭, 彭勇民, 金振奎, 等, 2003. 中国中奥陶世岩相古地理. 古地理学报, 5(3): 263-278. doi: 10.3969/j.issn.1671-1505.2003.03.001 [82] 李娟, 于炳松, 郭峰, 2013. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析. 沉积学报, 31(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301004.htm [83] 梁狄刚, 郭彤楼, 边立曾, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(三) 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001 [84] 陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095 [85] 牟传龙, 葛祥英, 许效松, 等, 2014. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义. 古地理学报, 16(4): 427-440. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404001.htm [86] 牟传龙, 周恳恳, 梁薇, 等, 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm [87] 戎嘉余, 1984. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响. 地层学杂志, 8(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198401002.htm [88] 戎嘉余, 陈旭, 王怿, 等, 2011. 奥陶-志留纪之交黔中古陆的变迁: 证据与启示. 中国科学(D辑), 41(10): 1407-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201110003.htm [89] 戎嘉余, 詹仁斌, 1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响. 现代地质, 13(4): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199904004.htm [90] 田巍, 王传尚, 白云山, 等, 2019. 湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理. 地球科学, 44(11): 3794-3811. doi: 10.3799/dqkx.2019.156 [91] 王中刚, 于学元, 赵振华, 1989. 稀土元素地球化学. 北京: 科学出版社. [92] 严德天, 王清晨, 陈代钊, 等, 2008. 扬子及周缘地区上奥陶统-下志留统烃源岩发育环境及其控制因素. 地质学报, 82(3): 321-327. doi: 10.3321/j.issn:0001-5717.2008.03.005 [93] 张春明, 张维生, 郭英海, 2012. 川东南-黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htm [94] 赵晨君, 康志宏, 侯阳红, 等, 2019. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 44(11): 4118-4127. doi: 10.3799/dqkx.2019.274