U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield
-
摘要: 塔河油田中下奥陶统碳酸盐岩储层在构造活动的作用下发育多期方解石脉体,为研究储层流体演化和油气成藏过程提供了重要素材.通过岩心观察、薄片鉴定、阴极发光和微区元素分析在塔河油田中下奥陶统碳酸盐岩储层中识别出3期裂缝方解石脉体,3期脉体在阴极发光颜色、稀土元素、碳氧锶同位素以及形成时间方面都存在差异.采用激光原位方解石U-Pb定年技术确定3期方解石脉形成的绝对年龄分别为466±11 Ma~458.6±8.8 Ma、329.7±1.6 Ma~308.1±4.1 Ma和249.3±2.6 Ma~220.5±7.3 Ma.第2期和第3期方解石成脉流体主要来源于深部地层成岩流体,并伴有成烃流体的影响.第3期方解石脉的成脉流体可能还有壳源锶的输入,导致其87Sr/86Sr比值高于第2期方解石脉.方解石脉体的绝对年龄可以用于约束多旋回叠合盆地断裂活动和油气成藏时间.在塔河油田中下奥陶统碳酸盐岩储层中识别的3期方解石脉体形成时间分别对应于加里东中期Ⅰ幕、海西中期Ⅰ~Ⅱ幕和海西晚—印支期构造运动造成的断裂活动时间.方解石脉体与烃类流体包裹体的共生关系指示中下奥陶统储层在海西中期Ⅱ幕发生过一期原油充注,在印支期之后又存在两期原油充注.Abstract: Multiphase calcite veins are developed due to tectonic activities in the carbonate reservoirs of Middle-Lower Ordovician in the Tahe oilfield, which is important for studying the evolution of reservoir fluids and the process of hydrocarbon accumulation. Three phases fracture-filled calcite veins were identified in the carbonate reservoirs of Middle-Lower Ordovician in the Tahe oilfield by core observation, thin section, cathodoluminescence and in-situ element. The three-phase calcite veins have differences in cathodoluminescence color, rare earth elements, strontium, carbon, oxide isotopes and timing of calcite veins generation. The in-situ U-Pb dating by laser ablation yields the absolute ages of the three-phase calcite vein generation of 466±11 Ma to 458.6±8.8 Ma, 329.7±1.6 Ma to 308.1±4.1 Ma and 249.3±2.6 Ma to 220.5±7.3 Ma, respectively. The fluids for second and third phases of calcite vein generation are mainly derived from deep-seated diagenetic fluids with the influence of hydrocarbon-fluids. The fluid of the third phase of calcite vein generation may also be affected by crust-derived strontium, resulting in a higher 87Sr/86Sr ratio than that of the second phase of calcite veins. The absolute ages of calcite veins generation can be used to constrain the fault activity and hydrocarbon charge histories in multi-cycle superimposed basins. The timing of the three phases of calcite veins generation corresponds to the periods of fault activity caused by the Middle Caledonian episode I, the Middle Hercynian episode Ⅰ-Ⅱ, and the Late Hercynian-Indosinian period. The symbiotic relationship between calcite veins and hydrocarbon fluid inclusions indicates that the Middle-Lower Ordovician reservoirs experienced one episode of oil charge episode of the Middle Hercynian episode and two episodes of oil charge after the Indosinian period.
-
图 5 塔河油田中下奥陶统储层方解石脉典型油包裹体照片与荧光光谱
a. S118井,O2yj,S1样品,C2方解石脉愈合裂纹中发育次生油包裹体,透射光下油包裹体呈无色透明和褐色;b. 图a中油包裹体紫外光下发黄绿色和蓝白色荧光;c. TS3-3井,O1-2y,T3样品,C2方解石脉发育孤立状分布的原生油包裹体,透射光下呈浅黄色;d. 图c中油包裹体紫外光下发黄色荧光;e. AT5井,O2yj,A1样品,C3方解石脉愈合裂纹中发育蓝白色次生油包裹体;f. 方解石脉中油包裹体显微荧光光谱图
Fig. 5. Photographs and fluorescence spectra of typical oil inclusions in calcite veins in the Middle and Lower Ordovician reservoirs of Tahe oilfield
表 1 塔河油田奥陶系实验样品采集和方解石脉发育特征
Table 1. Characteristics of calcite veins and sample list of well cores from the Ordovician reservoirs in the Tahe oilfield
井名 样品编号 岩心块号 深度(m) 层位 产状描述 性质 宽度 充填特征 TS3 T1 1-3/5 6 100.3 O1-2y 洞穴 - 巨晶方解石全充填,解理缝发育并见油迹 T2 2-4/15 6 106.5 O1-2y 洞穴 - 巨晶方解石全充填,解理缝发育并见油迹 TS3-3 T3 5-29/46 6 595.8 O1-2y 高角度裂缝 中-粗脉 半自形-自形晶方解石和沥青全/半充填,方解石脉上发育溶蚀孔洞并被沥青半充填 T4 5-35/46 6 596.6 O1-2y 高角度裂缝 中-粗脉 半自形-自形晶方解石全/半充填,断面普含黑色沥青 TS302X T5 1-6/10 6 583.1 O1-2y 低角度裂缝 细脉 方解石全充填 AT5 A1 5-40/47 6 524.7 O2yj 高角度裂缝 粗脉 巨晶方解石全充填,方解石脉上发育少量溶蚀孔洞,溶蚀孔见油迹 A2 5-33/47 6 524.1 O2yj 低角度裂缝 微细脉 方解石全充填,延伸较短 S118 S1 8-40/52 5 912.3 O2yj 高角度裂缝 中-粗脉 方解石全充填,解理缝见油迹 表 2 实验样品方解石脉与围岩稀土元素特征参数
Table 2. Characteristic parameters of rare earth elements in experimental sample calcite veins and surrounding rock
井名 样品编号 期次 ΣREE δCe δEu PrN/TbN PrN/YbN TbN/YbN (测试点数) (10-6) TS302X T5 C1 1.783~4.739 0.923~1.285 0.821~1.120 0.933~1.399 0.952~1.690 1.021~1.233 (N=3) (3.40) (1.06) (0.96) (1.12) (1.30) (1.15) AT5 A2 C1 2.391~3.402 0.905~0.936 0.912~0.969 1.014~1.390 1.583~2.322 1.561~1.671 (N=2) (2.90) (0.92) (0.94) (1.20) (1.95) (1.62) TS3-3 T3 C2 2.239~3.042 0.933~1.022 0.900~1.058 0.745~0.842 1.219~2.253 1.586~3.023 (N=3) (2.60) (0.98) (0.96) (0.79) (1.85) (2.35) T4 C2 1.475~2.289 0.911~1.004 0.860~1.064 0.559~0.825 1.428~2.005 2.022~3.193 (N=5) (2.04) (0.98) (0.94) (0.69) (1.69) (2.50) S118 S1 C2 2.101~2.347 0.573~0.625 0.973~1.020 0.792~0.979 2.36~3.30 2.981~3.37 (N=2) (2.22) (0.60) (1.00) (0.89) (2.83) (3.18) TS3 T1 C3 1.407~2.680 0.798~0.912 0.813~0.929 0.443~0.487 0.627~0.738 1.416~1.584 (N=4) (2.02) (0.83) (0.87) (0.46) (0.69) (1.49) T2 C3 1.122~2.454 0.813~0.869 0.796~1.027 0.373~0.572 0.551~0.840 1.344~1.576 (N=4) (1.98) (0.84) (0.92) (0.46) (0.67) (1.47) \ \ 围岩 0.880~0.999 0.538~0.966 0.816~1.074 0.612~0.769 0.539~2.106 0.882~2.811 (N=4) (0.93) (0.85) (0.96) (0.69) (1.41) (2.01) 注:()内为平均值,围岩均为灰岩. -
[1] Barker, S. L. L., Bennett, V. C., Cox, S. F., et al., 2009. Sm-Nd, Sr, C and O Isotope Systematics in Hydrothermal Calcite-Fluorite Veins: Implications for Fluid-Rock Reaction and Geochronology. Chemical Geology, 268(1-2): 58-66. https://doi.org/10.1016/j.chemgeo.2009.07.009 [2] Becker, S. P., Eichhubl, P., Laubach, S. E., et al., 2010. A 48 M.Y. History of Fracture Opening, Temperature, and Fluid Pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122(7-8): 1081-1093. https://doi.org/10.1130/b30067.1 [3] Cai, C. F., Li, K. K., Li, B., et al., 2009. Geochemical Characteristics and Origins of Fracture- and Vug-Fillings of the Ordovidan in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 25(10): 2399-2404 (in Chinese with English abstract). http://www.researchgate.net/publication/282327935_Geochemical_characteristics_and_origins_of_fracture-and_vug-fillings_of_the_Ordovician_in_Tahe_oilfieldTarim_basin [4] Caja, M. A., Permanyer, A., Marfil, R., et al., 2006. Fluid Flow Record from Fracture-Fill Calcite in the Eocene Limestones from the South-Pyrenean Basin (NE Spain) and Its Relationship to Oil Shows. Journal of Geochemical Exploration, 89(1-3): 27-32. https://doi.org/10.1016/j.gexplo.2005.11.009 [5] Cao, J., Hu, W. X., Yao, S. P., et al., 2007. Carbon, Oxygen and Strontium Isotope Composition of Calcite Veins in the Carboniferous to Permian Source Sequences of the Junggar Basin: Implications on Petroleum Fluid Migration. Acta Sedimentologica Sinica, 25(5): 722-729 (in Chinese with English abstract). http://www.researchgate.net/publication/288972147_Carbon_oxygen_and_strontium_isotope_composition_of_calcite_veins_in_the_carboniferous_to_Permian_source_sequences_of_the_Junggar_Basin_implications_on_petroleum_fluid_migration [6] Chen, H. H., Lu, Z. Y., Cao, Z. C., et al., 2016. Hydrothermal Alteration of Ordovician Reservoir in Northeastern Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(1): 43-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201601005.htm [7] Chen, H. H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819 (in Chinese with English abstract). http://www.cqvip.com/QK/95357X/201406/663850490.html [8] Dockrill, B., Shipton, Z. K., 2010. Structural Controls on Leakage from a Natural CO2 Geologic Storage Site: Central Utah, USA. Journal of Structural Geology, 32(11): 1768-1782. https://doi.org/10.1016/j.jsg.2010.01.007 [9] Eichhubl, P., Boles, J. R., 2000. Focused Fluid Flow along Faults in the Monterey Formation, Coastal California. Geological Society of America Bulletin, 112(11): 1667-1679. https://doi.org/10.1130/0016-7606(2000)1121667:fffafi>2.0.co;2 doi: 10.1130/0016-7606(2000)1121667:fffafi>2.0.co;2 [10] Fall, A., Eichhubl, P., Cumella, S. P., et al., 2012. Testing the Basin-Centered Gas Accumulation Model Using Fluid Inclusion Observations: Southern Piceance Basin, Colorado. AAPG Bulletin, 96(12): 2297-2318. https://doi.org/10.1306/05171211149 [11] Gu, Y., Huang, J. W., Jia, C. S., et al., 2020. Research Progress on Marine Oil and Gas Accumulation in Tarim Basin. Petroleum Geology and Experiment, 42(1): 1-12 (in Chinese with English abstract). [12] Guo, X. W., Chen, J. X., Yuan, S. Q., et al., 2020. Constraint of In-Situ Calcite U-Pb Dating by Laser Ablation on Geochronology of Hydrocarbon Accumulation in Petroliferous Basins: A Case Study of Dongying Sag in the Bohai Bay Basin. Acta Petrolei Sinica, 41(3): 284-291 (in Chinese with English abstract). [13] He, D. F., Li, D. S., Tong, X. G., et al., 2008. Accumulation and Distribution of Oil and Gas Controlled by Paleo-Uplift in Poly-History Superimposed Basin. Acta Petrolei Sinica, 29(4): 475-488 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYXB200804002&dbcode=CJFD&year=2008&dflag=pdfdown [14] He, Z. L., Yun, L., You, D. H., et al., 2019. Genesis and Distribution Prediction of the Ultra-Deep Carbonate Reservoirs in the Transitional Zone between the Awati and Manjiaer Depressions, Tarim Basin. Earth Science Frontiers, 26(1): 13-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201901003.htm [15] Hu, W. X., Chen, Q., Wang, X. L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818 (in Chinese with English abstract). http://www.researchgate.net/publication/308353614_REE_models_for_the_discrimination_of_fluids_in_the_formation_and_evolution_of_dolomite_reservoirs [16] Hu, W. X., Jin, Z. J., Zhang, Y. J., et al., 2006. Mineralogy and Geochemical Records of Episodic Reservoiring of Hydrocarbon: Example from the Reservoirs in the Northwest Margin of Junggar Basin. Oil & Gas Geology, 27(4): 442-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200604002.htm [17] Huang, S. J., Shi, H., Zhang, M., et al., 2004. Application of Strontium Isotope Stratigraphy to Dating Ordovician Marine Sediments-An Case Study from the Well Tazhong 12 in Tarim Basin. Acta Sedimentologica Sinica, 22(1): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200401000.htm [18] Jin, Z. J., Cao, J., Hu, W. X., et al., 2008. Episodic Petroleum Fluid Migration in Fault Zones of the Northwestern Junggar Basin (Northwest China): Evidence from Hydrocarbon-Bearing Zoned Calcite Cement. AAPG Bulletin, 92(9): 1225-1243. https://doi.org/10.1306/06050807124 [19] Lander, R. H., Larese, R. E., Bonnell, L. M., 2008. Toward more Accurate Quartz Cement Models: The Importance of Euhedral Versus Noneuhedral Growth Rates. AAPG Bulletin, 92(11): 1537-1563. https://doi.org/10.1306/07160808037 [20] Lawrence, M. G., Greig, A., Collerson, K. D., et al., 2006. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39-72. https://doi.org/10.1007/s10498-005-4471-8 [21] Li, Z., Huang, S. J., Liu, J. Q., et al., 2010. Buried Diagenesis, Structurally Controlled Thermal-Fluid Process and Their Effect on Ordovician Carbonate Reservoirs in Tahe, Tarim Basin. Acta Sedimentologica Sinica, 28(5): 969-979 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=CJXB201005016&dbcode=CJFD&year=2010&dflag=pdfdown [22] Liu, E. T., Zhao, J. X., Pan, S. Q., et al., 2019. A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712 (in Chinese with English abstract). http://www.researchgate.net/publication/333043516_A_New_Technology_of_Basin_Fluid_Geochronology_In-Situ_U-Pb_Dating_of_Calcite [23] Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911001.htm [24] Lü, H. T., Ding, Y., Geng, F., 2014. Hydrocarbon Accumulation Patterns and Favorable Exploration Areas of the Ordovician in Tarim Basin. Oil & Gas Geology, 35(6): 798-805 (in Chinese with English abstract). [25] McArthur, J. M., Howarth, R. J., Bailey, T. R., 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age. The Journal of Geology, 109(2): 155-170. https://doi.org/10.1086/319243 [26] Nuriel, P., Weinberger, R., Rosenbaum, G., et al., 2012. Timing and Mechanism of Late-Pleistocene Calcite Vein Formation across the Dead Sea Fault Zone, Northern Israel. Journal of Structural Geology, 36: 43-54. https://doi.org/10.1016/j.jsg.2011.12.010 [27] Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535-1549. https://doi.org/10.1306/08110909100 [28] Parnell, J., 2010. Potential of Palaeofluid Analysis for Understanding Oil Charge History. Geofluids, 10(1-2), 73-82. https://doi.org/10.1111/j.1468-8123.2009.00268.x [29] Peng, J. T., Zhang, D. L., Hu, R. Z., et al., 2010. Inhomogeneous Distribution of Rare Earth Elements (REEs) in Scheelite from the Zhazixi W-Sb Deposit, Western Hunan and Its Geological Implications. Geological Review, 56(6): 810-819 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzlp201006006 [30] Qi, L. X., Yun, L., 2010. Development Characteristics and Main Controlling Factors of the Ordovician Carbonate Karst in Tahe Oilfield. Oil & Gas Geology, 31(1): 1-12 (in Chinese with English abstract). [31] Rossi, C., Marfil, R., Ramseyer, K., et al., 2001. Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt's Western Desert. Journal of Sedimentary Research, 71(3): 459-472. https://doi.org/10.1306/2dc40955-0e47-11d7-8643000102c1865d [32] Shen, A. J., Hu, A. P., Cheng, T., et al., 2019. Laser Ablation in Situ U-Pb Dating and Its Application to Diagenesis-Porosity Evolution of Carbonate Reservoirs. Petroleum Exploration and Development, 46(6): 1062-1074 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-exploration-development-english_thesis/0201278853602.html [33] Suchy, V., Heijlen, W., Sykorova, I., et al., 2000. Geochemical Study of Calcite Veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): Evidence for Widespread Post-Variscan Fluid Flow in the Central Part of the Bohemian Massif. Sedimentary Geology, 131(3-4): 201-219. https://doi.org/10.1016/S0037-0738(99)00136-0 [34] Wang, B., Zhao, Y. Q., He, S., et al., 2020. Hydrocarbon Accumulation Stages and Their Controlling Factors in the Northern Ordovician Shunbei 5 Fault Zone, Tarim Basin. Oil & Gas Geology, 41(5): 965-974 (in Chinese with English abstract). [35] Wang, D., Wang, G. Z., Liu, S. G., et al., 2012. Geochemical Tracing of the Cambrian-Ordovician Reservoir Fluid in Well Yingdong-2, Eastern Tarim Basin. Oil & Gas Geology, 33(6): 867-876 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201206007.htm [36] Worden, R. H., Benshatwan, M. S., Potts, G. J., et al., 2016. Basin-Scale Fluid Movement Patterns Revealed by Veins: Wessex Basin, UK. Geofluids, 16(1): 149-174. https://doi.org/10.1111/gfl.12141 [37] Yang, X. Y., He, S., He, Z. L., et al., 2013. Characteristics and Pale-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1): 19-26 (in Chinese with English abstract). http://www.researchgate.net/publication/288171368_Characteristics_and_pale-fluid_activity_implications_of_fluid-inclusion_and_isotope_of_calcite_veins_in_Jingshan_area [38] Yun, L., Jiang, H. S., 2007. Hydrocarbon Accumulation Conditions and Enrichment Rules in Tahe Oilfield. Oil & Gas Geology, 28(6): 768-775 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200706011.htm [39] Yun, L., Zhai, X. X., 2008. Discussion on Characteristics of the Cambrian Reservoirs and Hydrocarbon Accumulation in Well Tashen-1, Tarim Basin. Oil & Gas Geology, 29(6): 726-732 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYYT200806006&dbcode=CJFD&year=2008&dflag=pdfdown [40] Zhai, X. X., 2006. Exploration Practices in Frontiers of Tahe Oilfield. Oil & Gas Geology, 27(6): 751-761 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYYT200606006.htm [41] 蔡春芳, 李开开, 李斌, 等, 2009. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析. 岩石学报, 25(10): 2399-2404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910009.htm [42] 曹剑, 胡文瑄, 姚素平, 等, 2007. 准噶尔盆地石炭-二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移. 沉积学报, 25(5): 722-729. doi: 10.3969/j.issn.1000-0550.2007.05.010 [43] 陈红汉, 鲁子野, 曹自成, 等, 2016. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用. 石油学报, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm [44] 陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm [45] 顾忆, 黄继文, 贾存善, 等, 2020. 塔里木盆地海相油气成藏研究进展. 石油实验地质, 42(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001003.htm [46] 郭小文, 陈家旭, 袁圣强, 等, 2020. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束——以渤海湾盆地东营凹陷为例. 石油学报, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm [47] 何登发, 李德生, 童晓光, 等, 2008. 多期叠加盆地古隆起控油规律. 石油学报, 29(4): 475-488. doi: 10.3321/j.issn:0253-2697.2008.04.001 [48] 何治亮, 云露, 尤东华, 等, 2019. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测. 地学前缘, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htm [49] 胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm [50] 胡文瑄, 金之钧, 张义杰, 等, 2006. 油气幕式成藏的矿物学和地球化学记录——以准噶尔盆地西北缘油藏为例. 石油与天然气地质, 27(4): 442-450. doi: 10.3321/j.issn:0253-9985.2006.04.002 [51] 黄思静, 石和, 张萌, 等, 2004. 锶同位素地层学在奥陶系海相地层定年中的应用——以塔里木盆地塔中12井为例. 沉积学报, 22(1): 1-5. doi: 10.3969/j.issn.1000-0550.2004.01.001 [52] 李忠, 黄思静, 刘嘉庆, 等, 2010. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造-热流体作用及其有效性. 沉积学报, 28(5): 969-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005016.htm [53] 刘恩涛, Zhao, J. X., 潘松圻, 等, 2019. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958 [54] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [55] 吕海涛, 丁勇, 耿锋, 2014. 塔里木盆地奥陶系油气成藏规律与勘探方向. 石油与天然气地质, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm [56] 彭建堂, 张东亮, 胡瑞忠, 等, 2010. 湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义. 地质论评, 56(6): 810-819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006007.htm [57] 漆立新, 云露, 2010. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素. 石油与天然气地质, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm [58] 沈安江, 胡安平, 程婷, 等, 2019. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用. 石油勘探与开发, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm [59] 王斌, 赵永强, 何生, 等, 2020. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素. 石油与天然气地质, 41(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005008.htm [60] 王东, 王国芝, 刘树根, 等, 2012. 塔东地区英东2井寒武系-奥陶系储层流体地球化学示踪. 石油与天然气地质, 33(6): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206007.htm [61] 杨兴业, 何生, 何治亮, 等, 2013. 京山地区方解石脉包裹体、同位素特征及古流体指示意义. 中国石油大学学报(自然科学版), 37(1): 19-26. doi: 10.3969/j.issn.1673-5005.2013.01.004 [62] 云露, 蒋华山, 2007. 塔河油田成藏条件与富集规律. 石油与天然气地质, 28(6): 768-775. doi: 10.3321/j.issn:0253-9985.2007.06.010 [63] 云露, 翟晓先, 2008. 塔里木盆地塔深1井寒武系储层与成藏特征探讨. 石油与天然气地质, 29(6): 726-732. doi: 10.3321/j.issn:0253-9985.2008.06.004 [64] 翟晓先, 2006. 塔河大油田新领域的勘探实践. 石油与天然气地质, 27(6): 751-761. doi: 10.3321/j.issn:0253-9985.2006.06.005