• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于各类特征对齐迁移网络的多时相遥感图像分类

    郭艳 宋佳珍 马丽 杨敏

    郭艳, 宋佳珍, 马丽, 杨敏, 2021. 基于各类特征对齐迁移网络的多时相遥感图像分类. 地球科学, 46(10): 3730-3739. doi: 10.3799/dqkx.2020.347
    引用本文: 郭艳, 宋佳珍, 马丽, 杨敏, 2021. 基于各类特征对齐迁移网络的多时相遥感图像分类. 地球科学, 46(10): 3730-3739. doi: 10.3799/dqkx.2020.347
    Guo Yan, Song Jiazhen, Ma Li, Yang Min, 2021. Class-Wise Feature Alignment Based Transfer Network for Multi-Temporal Remote Sensing Image Classification. Earth Science, 46(10): 3730-3739. doi: 10.3799/dqkx.2020.347
    Citation: Guo Yan, Song Jiazhen, Ma Li, Yang Min, 2021. Class-Wise Feature Alignment Based Transfer Network for Multi-Temporal Remote Sensing Image Classification. Earth Science, 46(10): 3730-3739. doi: 10.3799/dqkx.2020.347

    基于各类特征对齐迁移网络的多时相遥感图像分类

    doi: 10.3799/dqkx.2020.347
    基金项目: 

    国家自然科学基金项目 61771437

    详细信息
      作者简介:

      郭艳(1975-), 女, 副教授, 硕士生导师, 主要从事遥感数据处理、机器学习及其应用的研究.ORCID: 0000-0002-1557-3085.E-mail: 323110966@qq.com

      通讯作者:

      杨敏, E-mail: mimi10@126.com

    • 中图分类号: P237

    Class-Wise Feature Alignment Based Transfer Network for Multi-Temporal Remote Sensing Image Classification

    • 摘要: 为了在目标域遥感图像不存在标记数据的情况下实现自动分类,论文提出一种基于特征对齐的迁移网络.网络以各类类心对齐和协方差对齐作为迁移策略,全面描述域间各类别之间的对应关系,实现知识迁移.另外,网络采用线性修正单元作为激活函数,能够产生稀疏特征,提高分类效果.该迁移网络能够同时获得对齐的特征和自适应分类器,不需要目标域的标记数据,实现无监督迁移学习.在多时相的Hyperion高光谱遥感图像和WorldView-2多光谱遥感图像上的实验结果证明了该迁移网络的有效性.

       

    • 图  1  ReLU激活函数下的神经网络结构

      Fig.  1.  Neural network structure with ReLU activation function

      图  2  基于各类特征对齐的迁移网络

      Fig.  2.  Class-wise feature alignment based transfer network

      图  3  博茨瓦纳共和国奥卡万戈三角洲的Hyperion多时相遥感图像

      a. 5月图像;b. 5月标记图;c. 6月图像;d. 6月标记图;e. 7月图像;f. 7月标记图

      Fig.  3.  Multi-temporal Hyperion images captured from Okavango Delta, Botswana

      图  4  湖北武汉的WorldView-2多时相遥感图像

      a.2011年图像;b.2011年标记图;c.2012年图像;d.2012年标记图

      Fig.  4.  Multi-temporal WordView-2 images captured from Wuhan, Hubei Province, China

      图  5  BOT5-6数据的CFATN对齐效果

      a.第1类对齐前;b.第1类对齐后;c.第2类对齐前;d.第2类对齐后;e.第6类对齐前;f.第6类对齐后;g.第9类对齐前;h.第9类对齐后

      Fig.  5.  Alignment performance of CFATN for "May-June" data of Hyperion-BOT image

      表  1  Hyperion-BOT和WV2-WH多时相遥感图像的类别名称和样本数目

      Table  1.   The category and sample number of the multi- temporal images captured by different sensors

      ID 类名 5月 6月 7月
      Hyperion-BOT
      1 水体 297 361 185
      2 泛滥平原 437 308 96
      3 河岸 448 303 164
      4 火迹 354 335 186
      5 岛屿内陆 337 370 131
      6 林地 357 324 169
      7 稀树草原 330 342 171
      8 短可乐豆木 239 299 152
      9 裸露土地 215 229 96
      ID 类名 2011年 2012年
      WV2-WH
      1 红房顶 2 511 2 963
      2 森林 3 592 3 144
      3 灰房顶 4 425 4 528
      4 白房顶 3 082 5 301
      下载: 导出CSV

      表  2  不同迁移学习算法的多时相遥感图像的整体分类精度(%)和Kappa系数

      Table  2.   OA(%) and Kappa coefficient of multi-temporal images based on different transfer learning algorithms

      数据集 SVM RNN SSTCA DTN TLDA DANN CFATN
      精度(%)
      Hyperion-BOT BOT5-6 69.63 74.16 76.91 85.51 78.44 88.23 93.17
      BOT6-5 60.62 68.38 77.27 79.36 69.21 78.15 84.01
      BOT5-7 88.05 75.56 88.81 87.70 84.15 86.79 91.56
      BOT7-5 56.44 60.58 68.48 79.99 67.85 68.69 84.47
      BOT6-7 90.59 91.48 91.63 91.26 92.30 94.47 95.70
      BOT7-6 88.05 85.44 87.53 91.68 90.39 89.40 94.85
      WV2-WH 2011—2012 84.92 84.58 89.07 89.58 90.17 93.73 94.42
      2012—2011 69.67 85.86 85.66 78.33 85.94 87.57 93.11
      Kappa系数
      Hyperion-BOT BOT5-6 0.66 0.71 0.74 0.84 0.77 0.87 0.92
      BOT6-5 0.56 0.64 0.74 0.77 0.65 0.75 0.82
      BOT5-7 0.87 0.72 0.87 0.86 0.82 0.85 0.90
      BOT7-5 0.51 0.56 0.65 0.77 0.64 0.65 0.82
      BOT6-7 0.89 0.90 0.91 0.90 0.91 0.94 0.95
      BOT7-6 0.87 0.84 0.86 0.91 0.89 0.88 0.94
      WV2-WH 2011—2012 0.80 0.79 0.85 0.86 0.87 0.91 0.92
      2012—2011 0.58 0.81 0.81 0.70 0.81 0.83 0.90
      下载: 导出CSV

      表  3  不同激活函数CFATN算法的多时相遥感图像整体分类精度(%)

      Table  3.   OA(%) of multi-temporal image based on the CFATN algorithm with different activation functions

      激活函数 Hyperion-BOT WV2-WH
      BOT5-6 BOT6-5 BOT5-7 BOT7-5 BOT6-7 BOT7-6 2011—2012 2012—2011
      ReLU 93.17 84.01 91.56 84.85 95.70 94.85 94.21 93.11
      Sigmoid 90.70 83.78 89.63 79.50 95.26 91.57 92.55 91.20
      下载: 导出CSV
    • [1] Bruzzone, L., Marconcini, M., 2010. Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5): 770-787. https://doi.org/10.1109/TPAMI.2009.57
      [2] Cheng, G.X., Niu, R.Q., Zhang, K.X., et al., 2018. Opencast Mining Area Recognition in High-Resolution Remote Sensing Images Using Convolutional Neural Networks. Earth Science, 43(Suppl. 2): 256-262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2021.htm
      [3] Deng, B., Jia, S., Shi, D. M., 2020. Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 1422-1435. https://doi.org/10.1109/TGRS.2019.2946318
      [4] Ganin, Y., Ustinova, E., Ajakan, H., et al., 2017. Domain-Adversarial Training of Neural Networks. Domain Adaptation in Computer Vision Applications. Springer International Publishing, Cham, 189-209. https://doi.org/10.1007/978-3-319-58347-1_10
      [5] Gao, C.X., Sang, N., 2014. Deep Learning for Object Detection in Remote Sensing Image. Bulletin of Surveying and Mapping, (S1): 108-111(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=CHTB2014S1025&dbcode=CJFD&year=2014&dflag=pdfdown
      [6] Glorot, X., Bordes, A., Bengio, Y., 2011. Deep Sparse Rectifier Neural Networks. In: Gordon, G. J., Dunson, D. B., Dudík, M., eds., Proceedings of International Conference on 14th Artificial Intelligence and Statistics, AISTATS 2011. JMLR, Cambridge, 315-323.
      [7] Jhuo, I. H., Liu, D., Lee, D.T., et al., 2012. Robust Visual Domain Adaptation with Low-Rank Reconstruction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012. IEEE Computer Society, Los Alamitos, 2168-2175. https://doi.org/10.1109/CVPR.2012.6247924
      [8] Li, W.K., Zhang, W., Qin, J.H., et al., 2020. "Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images. Earth Science, 45(6): 1948-1955(in Chinese with English abstract).
      [9] Li, Z. K., Tang, X. Y., Li, W., et al., 2020. A Two-Stage Deep Domain Adaptation Method for Hyperspectral Image Classification. Remote Sensing, 12(7): 1054-1073. https://doi.org/10.3390/rs12071054
      [10] Liu, D.W., Han, L., Han, X.Y., 2016. High Spatial Resolution Remote Sensing Image Classification Based on Deep Learning. Acta Optica Sinica, 36(4): 0428001(in Chinese with English abstract). doi: 10.3788/AOS201636.0428001
      [11] Liu, Z.X., Ma, L., Du, Q., 2020. Class-Wise Distribution Adaptation for Unsupervised Classification of Hyperspectral Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 508-521. https://doi.org/10.1109/TGRS.2020.2997863
      [12] Ma, L., Crawford, M. M., Zhu, L., et al., 2019. Centroid and Covariance Alignment-Based Domain Adaptation for Unsupervised Classification of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 57(4): 2305-2323. https://doi.org/10.1109/TGRS.2018.2872850
      [13] Matasci, G., Volpi, M., Kanevski, M., et al., 2015. Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 53(7): 3550-3564. doi: 10.1109/TGRS.2014.2377785
      [14] Pan, S. J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
      [15] Rajan, S., Ghosh, J., Crawford, M.M., 2006. Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3408-3417. https://doi.org/10.1109/TGRS.2006.878442
      [16] Sun, H., Liu, S., Zhou, S. L., et al., 2016. Transfer Sparse Subspace Analysis for Unsupervised Cross-View Scene Model Adaptation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 2901-2909. https://doi.org/10.1109/JSTARS.2015.2500961
      [17] Sun, Z., Wang, C., Wang, H. Y., et al., 2013. Learn Multiple-Kernel SVMS for Domain Adaptation in Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters, 10(5): 1224-1228. https://doi.org/10.1109/LGRS.2012.2236818
      [18] Sun, B. C., Feng, J. S., Saenko, K., 2017. Correlation Alignment for Unsupervised Domain Adaptation. In: Advances in Computer Vision and Pattern Recognition, Springer, Berlin, 153-171. https://doi.org/10.1007/978-3-319-58347-1_8
      [19] Tong, X. Y., Xia, G. S., Lu, Q. K., et al., 2020. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sensing of Environment, 237: 111322. https://doi.org/10.1016/j.rse.2019.111322
      [20] Vakalopoulou, M., Karantzalos, K., Komodakis, N., et al., 2015. Building Detection in Very High Resolution Multispectral Data with Deep Learning Features. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Milan, Italy, 1873-1876. https://doi.org/10.1109/IGARSS.2015.7326158
      [21] Wang, M., Deng, W. H., 2018. Deep Visual Domain Adaptation: A Survey. Neurocomputing, 312: 135-153. https://doi.org/10.1016/j.neucom.2018.05.083
      [22] Wang, Z. M., Du, B., Shi, Q., et al., 2019. Domain Adaptation with Discriminative Distribution and Manifold Embedding for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 16(7): 1155-1159. https://doi.org/10.1109/LGRS.2018.2889967
      [23] Xing, C., Ma, L., Yang, X. Q., 2016. Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images. Journal of Sensors, 2016: 1-10. https://doi.org/10.1155/2016/3632943
      [24] Yang, H. L., Crawford, M. M., 2015. Spectral and Spatial Proximity-Based Manifold Alignment for MultitemporalHyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 54(1): 51-64. https://doi.org/10.1109/TGRS.2015.2449736
      [25] Yeh, Y. R., Huang, C. H., Wang, Y. C., 2014. Heterogeneous Domain Adaptation and Classification by Exploiting the Correlation Subspace. IEEE Transactions on Image Processing, 23(5): 2009-2018. https://doi.org/10.1109/tip.2014.2310992
      [26] Zhang, B.Y., Liu, Y.Y., Yuan, H.W., et al., 2018. A Joint Unsupervised Cross-Domain Model via Scalable Discriminative Extreme Learning Machine. Cognitive Computation, 10(4): 577-590. https://doi.org/10.1007/s12559-018-9555-z
      [27] Zhang, F., Du, B., Zhang, L.P., 2016. Scene Classification via a Gradient Boosting Random Convolutional Network Framework. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1793-1802. https://doi.org/10.1109/TGRS.2015.2488681
      [28] Zhang, L., 2019. Transfer Adaptation Learning: A Decade Survey. In: Computing Research Repository. arXiv preprint. arXiv: abs/1903.04687
      [29] Zhang, X., Yu, F. X., Chang, S. F., et al., 2015. Deep Transfer Network: Unsupervised Domain Adaptation: arXiv: 1503.00591[cs. CV]. https://arxiv.org/abs/1503.00591
      [30] Zheng, G.Z., Le, X.D., Wang, H.P., et al., 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12): 2345-2353(in Chinese with English abstract). http://www.researchgate.net/publication/322615468_Inversion_of_Water_Depth_from_WorldView-02_Satellite_Imagery_Based_on_BP_and_RBF_Neural_Network
      [31] Zhuang, F., Cheng, X., Luo, P., 2015. Supervised Representation Learning: Transfer Learning with Deep Autoencoders. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015. AAAI Press, Palo Alto CA, 4119-4125.
      [32] 程国轩, 牛瑞卿, 张凯翔, 等, 2018. 基于卷积神经网络的高分遥感影像露天采矿场识别. 地球科学, 43(增刊2): 256-262. doi: 10.3799/dqkx.2018.987
      [33] 高常鑫, 桑农, 2014. 基于深度学习的高分辨率遥感影像目标检测. 测绘通报, (S1): 108-111. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2014S1025.htm
      [34] 李文凯, 张唯, 秦家豪, 等, 2020. 基于DEM和高分辨率遥感影像的"膨胀-融合"式地表沟壑提取. 地球科学, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
      [35] 刘大伟, 韩玲, 韩晓勇, 2016. 基于深度学习的高分辨率遥感影像分类研究. 光学学报, 36(4): 0428001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201604039.htm
      [36] 郑贵洲, 乐校冬, 王红平, 等, 2017. 基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演. 地球科学, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  462
    • HTML全文浏览量:  226
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-13
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回