• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于分形理论研究土壤结构及其水分特征关系

    戴磊 王贵玲 何雨江

    戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
    引用本文: 戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
    Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
    Citation: Dai Lei, Wang Guiling, He Yujiang, 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345

    基于分形理论研究土壤结构及其水分特征关系

    doi: 10.3799/dqkx.2020.345
    基金项目: 

    国家自然科学基金项目 41672249

    国家自然科学基金项目 41877201

    河北省省级科技计划项目 20374201D

    详细信息
      作者简介:

      戴磊(1983-), 男, 博士研究生, 从事多孔介质结构表征、传递过程与岩土方面研究.ORCID: 0000-0002-1692-270X.E-mail: davy202628@163.com

      通讯作者:

      王贵玲, E-mail: guilingw@163.com

    • 中图分类号: P341

    The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory

    • 摘要: 为定量获得土壤结构对其水力性质的指示作用,室内实验选用华北平原子牙河流域原状土样为研究对象,用张力计法和激光粒度分析仪分别测定土壤水分特征曲线和样品粒度分布,基于分形理论计算土壤粒度分布的分形维数,采用实验测定与模型验证相结合的方法对水分特征曲线进行分析.结果表明,土壤颗粒粒度分布在[10 μm,50 μm]区间内的分段分维值是表征土壤粒度累积分布显著上升段特征的关键参数,与0~80 kPa吸力范围内的土壤水分特征曲线幂函数模型拟合参数(ab)有极显著相关关系.研究区内土壤水分特征曲线以分形形式表达的幂函数模型为:θ=100.78×(3-D)S(D-3)/3,利用土壤结构分形特征能够有效指示其水力性质.

       

    • 图  1  采样点分布

      Fig.  1.  Schematic diagram of sampling sites distribution

      图  2  粒径分布

      曲线图为粒径频数分布;散点图为粒径累积分布

      Fig.  2.  The distribution of grain size constitutes

      图  3  正定采样点S1分维拟合图

      x轴为$\lg \frac{{{d_i}}}{{{d_{\max }}}}$;y轴为$\lg \frac{{V\left({\delta < {d_i}} \right)}}{{{V_0}}}$

      Fig.  3.  Fractal dimension fitting diagram of ZD sampling (S1)

      图  4  流域内不同位置采样剖面土壤水分特征曲线

      Fig.  4.  SWCC curves at different sampling positions and soil depths

      图  5  ab分别与D2的拟合关系

      Fig.  5.  a & b are fitted with D2, respectively

      表  1  采样点地理位置

      Table  1.   Geographical data of soil sampling locations

      地理位置 样品编号 坐标 高程(m) 取样深度(m) 地貌
      ZD S1 114°34'36.10"E, 38°08'14.10"N 73 0.43~0.53 山前平原
      S2 0.9~1.0
      S3 1.40~1.50
      JZ S4 115°17'55.42"E, 37°34'58.09"N 27 0.87~0.97 冲积平原
      S5 1.1~1.2
      HJ S6 116°07'55.00"E, 38°23'53.00"N 13 0.67~0.77 冲积平原
      S7 1.25~1.35
      DC S8 116°37'37.30"E, 38°39'32.88"N 7 0.7~0.8 冲积平原
      S9 0.87~0.97
      YGD S10 117°32'24.00"E, 39°00'48.00"N 2 0.5~0.6 滨海平原
      S11 0.7~0.8
      YF S12 117°34'12.70"E, 38°59'25.43"N 2 0.35~0.45 滨海平原
      S13 0.6~0.7
      S14 0.96~1.06
      下载: 导出CSV

      表  2  采样点分段分维数

      Table  2.   Subsection fractal dimension of sampling point

      采样点 编号 粒径特征区间(μm) 分段分维数
      I1 I2 D1 D2
      ZD S1 5~30 10~50 2.000 3 2.365 2
      S2 5~30 10~50 2.039 6 2.194 3
      S3 5~30 10~50 2.365 8 2.679 1
      JZ S4 5~30 10~50 0.963 3 1.445 2
      S5 5~30 10~50 2.262 9 2.739 3
      HJ S6 5~30 10~50 1.780 7 2.164 0
      S7 5~30 10~50 1.238 4 1.639 6
      DC S8 5~30 10~50 2.380 9 2.790 6
      S9 5~30 10~50 1.970 0 2.402 4
      YGD S10 5~30 10.000~42.603 2.614 2 2.872 8
      S11 5~30 10.00~38.93 2.740 3 2.918 0
      YF S12 5~30 10.000~35.573 2.757 2 2.922 9
      S13 5~30 10.000~35.573 2.771 5 2.926 3
      S14 5~30 10.00~38.93 2.783 3 2.925 7
      注:对于最大粒径小于50 μm的粒度分布,取粒径最大值作为区间右边界,如滨海新区的S10~S14采样点.
      下载: 导出CSV

      表  3  不同采样点下幂函数经验公式拟合结果

      Table  3.   The fitting results of empirical formula in different sampling points

      采样点 编号 幂函数参数拟合结果
      a b R2
      ZD S1 56.455 3 -0.162 38 0.916 6
      S2 70.747 4 -0.315 4 0.922 7
      S3 55.502 7 -0.330 1 0.950 0
      JZ S4 180.803 6 -0.529 1 0.767 5
      S5 77.985 9 -0.213 4 0.850 5
      HJ S6 114.335 7 -0.412 3 0.979 2
      S7 213.844 1 -0.534 9 0.987 7
      DC S8 44.891 58 -0.147 88 0.973 3
      S9 52.983 8 -0.150 55 0.949 8
      YGD S10 42.066 2 -0.047 56 0.945 7
      S11 47.767 4 -0.038 6 0.937 3
      YF S12 39.325 6 -0.116 05 0.966 9
      S13 40.956 4 -0.048 6 0.981 8
      S14 49.236 3 -0.060 2 0.947 8
      下载: 导出CSV

      表  4  土壤结构分维与土-水特征曲线拟合参数的Pearson相关系数

      Table  4.   Pearson correlation coefficient between FDs and SWCC fitting parameters

      项目 D D1 D2
      a -0.494 -0.89** -0.901**
      b 0.16 0.901** 0.906**
      注:**表明在p < 0.01水平上极显著相关.
      下载: 导出CSV
    • [1] Baliarda, C. P., Romeu, J., Cardama, A., 2000. The Koch Monopole: A Small Fractal Antenna. IEEE Transactions on Antennas and Propagation, 48(11): 1773-1781. https://doi.org/10.1109/8.900236
      [2] Bird, N. R. A., Perrier, E., Rieu, M., 2000. The Water Retention Function for a Model of Soil Structure with Pore and Solid Fractal Distributions. European Journal of Soil Science, 51(1): 55-63. https://doi.org/10.1046/j.1365-2389.2000.00278.x
      [3] Brady, N. C., Weil, R. R., 2008. The Nature and Properties of Soils, 14th Edition. Pearson Education, Inc., New Jersey.
      [4] Cai, J. C., Hu, X. Y., 2015. Fractal Theory in Porous Media and Its Applications. Science Press, Beijing (in Chinese).
      [5] Chakraborti, R. K., Gardner, K. H., Atkinson, J. F., et al., 2003. Changes in Fractal Dimension during Aggregation. Water Research, 37(4): 873-883. https://doi.org/10.1016/S0043-1354(02)00379-2
      [6] Cheng, D. B., Cai, C. F., Peng, Y. P., et al., 2009. Estimating Soil Water Retention Curve Based on Fractal Dimension of Soil Particle Size Distribution of Purple Soil. Acta Pedologica Sinica, 46(1): 30-36 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trxb200901005
      [7] de Gennes, P. G., 1985. Partial Filling of a Fractal Structure by a Wetting Fluid. In: Adler, D., Fritzsche, H., Ovshinsky, S. R., eds., Physics of Disordered Materials. Springer, Boston. https://doi.org/10.1007/978-1-4613-2513-0_19
      [8] Ding, Y. K., Rong, N., Shan, B. Q., 2016. Impact of Extreme Oxygen Consumption by Pollutants on Macroinvertebrate Assemblages in Plain Rivers of the Ziya River Basin, North China. Environmental Science and Pollution Research, 23(14): 14147-14156. https://doi.org/10.1007/s11356-016-6404-z
      [9] Du, S. H., Shi, Y. M., Guan, P., 2019. Fluid Filling Rule in Intra-Granular Pores of Feldspar and Fractal Characteristics: A Case Study on Yanchang Formation Tight Sandstone Reservoir in Ordos Basin. Earth Science, 44(12): 4252-4263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912035.htm
      [10] Ersahin, S., Gunal, H., Kutlu, T., et al., 2006. Estimating Specific Surface Area and Cation Exchange Capacity in Soils Using Fractal Dimension of Particle-Size Distribution. Geoderma, 136(3-4): 588-597. https://doi.org/10.1016/j.geoderma.2006.04.014
      [11] Fu, X. L., Shao, M. G., Lu, D. Q., et al., 2011. Soil Water Characteristic Curve Measurement without Bulk Density Changes and Its Implications in the Estimation of Soil Hydraulic Properties. Geoderma, 167-168: 1-8. https://doi.org/10.1016/j.geoderma.2011.08.012
      [12] Gardner, W. R., Hillel, D., Benyamini, Y., 1970. Post-Irrigation Movement of Soil Water: 1. Redistribution. Water Resources Research, 6(3): 851-861. https://doi.org/10.1029/wr006i003p00851
      [13] Hao, C., Liang, Y. Y., Meng, W. Q., et al., 2009. Relations between Plant Community Characteristic and Soil Physicochemical Factors in Natural Wetlands of Binhai New District, Tianjin. Wetland Science, 7(3): 266-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXSD200903011.htm
      [14] He, Y. J., Lin, W. J., Wang, G. L., 2013. In-Situ Monitoring on the Soil Water-Heat Movement of Deep Vadose Zone by TDR100 System. Journal of Jilin University (Earth Science Edition), 43(6): 1972-1979 (in Chinese with English abstract).
      [15] Huang, G. H., Zhan, W. H., 2002. Modeling Soil Water Retention Curve with Fractal Theory. Advances in Water Science, 13(1): 55-60 (in Chinese with English abstract).
      [16] Jin, T. X., Cai, X., Chen, Y., et al., 2019. A Fractal-Based Model for Soil Water Characteristic Curve over Entire Range of Water Content. Capillarity, 2(4): 66-75. https://doi.org/10.26804/capi.2019.04.02
      [17] Lin, D., Jin, M. G., Ma, B., et al., 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768 (in Chinese with English abstract). http://www.researchgate.net/publication/288539192_Characteristics_of_infiltration_recharge_at_thickening_vadose_zone_using_soil_hydraulic_parameters
      [18] Ma, C. M., 2013. Experimental Instruction of Vadose Hydrology. China University of Geosciences Press, Wuhan (in Chinese).
      [19] Mandelbrot, B. B., 1983. The Fractal Geometry of Nature (Revised and Enlarged Edition). WH Freeman and Co., New York.
      [20] Nam, S., Gutierrez, M., Diplas, P., et al., 2010. Comparison of Testing Techniques and Models for Establishing the SWCC of Riverbank Soils. Engineering Geology, 110(1-2): 1-10. https://doi.org/10.1016/j.enggeo.2009.09.003
      [21] Niu, H., Liang, X., Li, J., et al., 2016. Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui. Earth Science, 41(3): 499-507 (in Chinese with English abstract).
      [22] Pachepsky, Y., Crawford, J. W., Rawls, W. J., 2000. Fractals in Soil Science. Elsevier, Amsterdam.
      [23] Peng, H. T., Horton, R., Lei, T. W., et al., 2015. A Modified Method for Estimating Fine and Coarse Fractal Dimensions of Soil Particle Size Distributions Based on Laser Diffraction Analysis. Journal of Soils and Sediments, 15(4): 937-948. https://doi.org/10.1007/s11368-014-1044-8
      [24] Phoon, K. K., Santoso, A., Quek, S. T., 2010. Probabilistic Analysis of Soil-Water Characteristic Curves. Journal of Geotechnical and Geoenvironmental Engineering, 136(3): 445-455. https://doi.org/10.1061/(asce)gt.1943-5606.0000222
      [25] Rajesh, S., Roy, S., Madhav, S., 2017. Study of Measured and Fitted SWCC Accounting the Irregularity in the Measured Dataset. International Journal of Geotechnical Engineering, 11(4): 321-331. https://doi.org/10.1080/19386362.2016.1219541
      [26] Rieu, M., Sposito, G., 1991. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory. Soil Science Society of America Journal, 55(5): 1231-1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x
      [27] Sillers, W. S., Fredlund, D. G., Zakerzaheh, N., 2001. Mathematical Attributes of Some Soil-Water Characteristic Curve Models. Geotechnical and Geological Engineering, 19: 243-283. doi: 10.1023/A:1013109728218
      [28] Tyler, S. W., Wheatcraft, S. W., 1990. Fractal Processes in Soil Water Retention. Water Resources Research, 26(5): 1047-1054. https://doi.org/10.1029/wr026i005p01047
      [29] Tyler, S. W., Wheatcraft, S. W., 1992. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations. Soil Science Society of America Journal, 56(2): 362-369. https://doi.org/10.2136/sssaj1992.03615995005600020005x
      [30] Wang, Y. Y., He, Y. J., 2019. The Indicative Effect of Soil Fractal Structure on Its Hydraulic Properties. Earth Science Frontiers, 26(6): 66-74 (in Chinese with English abstract).
      [31] Wei, Y., Wang, Y. Q., Han, J. C., et al., 2019. Analysis of Water Retention Characteristics of Oil-Polluted Earthy Materials with Different Textures Based on van Genuchten Model. Journal of Soils and Sediments, 19(1): 373-380. https://doi.org/10.1007/s11368-018-2026-z
      [32] Xu, Y. F., Dong, P., 2004. Fractal Approach to Hydraulic Properties in Unsaturated Porous Media. Chaos, Solitons & Fractals, 19(2): 327-337. https://doi.org/10.1016/S0960-0779(03)00045-6
      [33] Yang, X. X., Wang, X. L., Wang, J. P., et al., 2019. Spatial Variation Analysis of Soil Moisture and Salinity in Tianjin Binhai New Area. Science of Soil and Water Conservation, 17(3): 39-47 (in Chinese with English abstract).
      [34] Zhang, C., Liu, Y. J., Zhang, Z. L., et al., 2019. Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area. Earth Science, 44(10): 3252-3264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910007.htm
      [35] 蔡建超, 胡祥云, 2015. 多孔介质分形理论与应用. 北京: 科学出版社.
      [36] 程冬兵, 蔡崇法, 彭艳平, 等, 2009. 根据土壤粒径分形估计紫色土水分特征曲线. 土壤学报, 46(1): 30-36. doi: 10.3321/j.issn:0564-3929.2009.01.005
      [37] 杜书恒, 师永民, 关平, 2019. 长石粒内孔流体充注规律及分形特征: 以鄂尔多斯盆地延长组致密砂岩储层为例. 地球科学, 44(12): 4252-4263. doi: 10.3799/dqkx.2018.199
      [38] 郝翠, 梁耀元, 孟伟庆, 等, 2009. 天津滨海新区自然湿地植物分布与土壤理化性质的关系. 湿地科学, 7(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD200903011.htm
      [39] 何雨江, 蔺文静, 王贵玲, 2013. 利用TDR100系统原位监测深厚包气带水热动态. 吉林大学学报(地球科学版), 43(6): 1972-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306029.htm
      [40] 黄冠华, 詹卫华, 2002. 土壤水分特性曲线的分形模拟. 水科学进展, 13(1): 55-60. doi: 10.3321/j.issn:1001-6791.2002.01.010
      [41] 林丹, 靳孟贵, 马斌, 等, 2014. 包气带增厚区土壤水力参数及其对入渗补给的影响. 地球科学, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
      [42] 马传明, 2013. 包气带水文学实验指导. 武汉: 中国地质大学出版社.
      [43] 牛宏, 梁杏, 李静, 等, 2016. 衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示. 地球科学, 41(3): 499-507. doi: 10.3799/dqkx.2016.041
      [44] 王艳艳, 何雨江, 2019. 土壤分形结构对其水力性质的指示作用. 地学前缘, 26(6): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906012.htm
      [45] 杨晓潇, 王秀兰, 王计平, 等, 2019. 天津市滨海新区土壤水盐空间变异分析. 中国水土保持科学, 17(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201903006.htm
      [46] 张超, 刘永江, 张照录, 等, 2019. 延边地区古洞河韧性剪切带变形特征及变形时代. 地球科学, 44(10): 3252-3264. doi: 10.3799/dqkx.2016.041
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  354
    • HTML全文浏览量:  217
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-12
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回