• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏昌都白格滑坡斜坡地质结构特征及成因机制

    曹鹏 黎应书 李宗亮 巴仁基 张世涛

    曹鹏, 黎应书, 李宗亮, 巴仁基, 张世涛, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
    引用本文: 曹鹏, 黎应书, 李宗亮, 巴仁基, 张世涛, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
    Cao Peng, Li Yingshu, Li Zongliang, Ba Renji, Zhang Shitao, 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
    Citation: Cao Peng, Li Yingshu, Li Zongliang, Ba Renji, Zhang Shitao, 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333

    西藏昌都白格滑坡斜坡地质结构特征及成因机制

    doi: 10.3799/dqkx.2020.333
    基金项目: 

    国家自然科学基金—云南联合基金项目 U1502231

    中国地质调查局项目 DD20190640

    详细信息
      作者简介:

      曹鹏(1993-), 男, 在读硕士研究生, 第四纪地质专业, ORCID: 0000-0003-1003-6974.E-mail: 1664085300@qq.com

      通讯作者:

      张世涛, E-mail: zhangshitao9918@sina.com

    • 中图分类号: P694

    Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet

    • 摘要: 在西藏昌都市江达县波罗乡发生的两次高位大型滑坡,形成堰塞体阻断金沙江,其溃决洪水对下游造成了巨大损失.本文基于野外地质调查与工程验证、遥感影像、倾斜摄影测量、岩体微观特征,结合区域地质资料进行分析研究.结果表明:(1)白格滑坡发育于金沙江构造混杂岩带,坡体属于河谷型构造破碎松散体;(2)坡体物质主要由弱变形构造透镜体岩块和强变形错动带(糜棱岩带、碎裂岩带、断层泥)组成,镜下岩石结构破坏严重,岩石强度显著降低;(3)断层破碎带控制滑坡体两侧及后缘边界,为滑坡提供了侧向及后缘的切割面;(4)不连续错动带为白格滑坡的滑动层,在重力卸荷作用下发生贯通,导致坡体发生多期次崩滑;(5)综合坡体失稳启动分析,白格滑坡为"推移式+牵引式"混合型滑坡;(6)白格滑坡是在内动力和外动力耦合作用相互交替下促进形成,加之金沙江对坡脚掏蚀,松散体在重力卸荷作用下剪切破坏致使滑坡发生.白格滑坡事件可为研究金沙江构造混杂岩带中大型滑坡形成机制提供依据,同时也为该区域防灾减灾研究提供理论指导.

       

    • 图  1  滑坡区域地质构造图

      1. 三叠系上统阿堵拉组;2. 三叠系上统波里拉组;3. 三叠系上统甲丕拉组;4. 三叠系上统洞卡组;5. 三叠系中统瓦拉寺组;6. 三叠系下统色容寺组;7. 三叠系下统普水桥组;8. 二叠系‒三叠系岗托岩组;9. 三叠系上统图姆沟组;10. 辉绿岩脉;11. 花岗闪长岩脉;12. 花岗闪长岩;13. 二长花岗岩;14. 志留纪碳酸盐岩块;15. 断层;16. 金沙江;17. 滑体边界及滑动方向;18. 金沙江构造混杂岩带

      Fig.  1.  Regional geological structure of landslide area

      图  2  白格滑坡正射影像三维图

      Fig.  2.  Three dimensional orthographic image of the Baige landslide

      图  3  白格斜坡地质结构

      1.片岩岩块;2. 钠长透闪岩岩块;3. 蛇纹岩岩块;4. 千枚岩岩块;5. 大理岩岩块;6. 千枚状板岩岩块;7. 花岗闪长斑岩岩脉;8. 糜棱岩;9. 第四纪;10. 构造角砾岩带;11. 大理岩;12. 断层;13. 金沙江;14. 滑体边界及滑动方向;15. 高程;16. 剖面线

      Fig.  3.  Geologic structure of the Baige slope

      图  4  白格滑坡地质剖面

      Fig.  4.  Geological profile of the Baige landslide

      图  5  白格斜坡破碎岩体结构特征

      Fig.  5.  Structural characteristics of fractured rock mass in the Baige slope

      图  6  错动带岩体宏观与微观特征

      Fig.  6.  Macroscopic and microscopic characteristics of rock mass in dislocation zone

      图  7  白格斜坡不同岩石类型破碎微观结构

      Fig.  7.  Microstructure of different fractured rock types in Baige slope

      图  8  金沙江淘蚀作用

      Fig.  8.  Erosion of Jinsha River

      图  9  破碎带岩体演变

      Fig.  9.  Evolution of rock mass in discontinued zone

      图  10  白格滑坡前Google Earth影像(a);滑坡后缘及中部正射影像(b);滑坡后缘音频大地电磁测深图(c)

      Fig.  10.  Pre-sliding Google Earth image of the Baige landslide (a); orthograph image of main scarp and middle of landslide (b); audio-frequency magnetotelluric sounding of main scarp of landslide (c)

      图  11  白格滑坡高密度电法探测剖面

      Fig.  11.  Geophysical prospecting results of the Baige landslide

      图  12  监测孔滑动层破碎岩体特征(a)及深部位移曲线图(b)

      Fig.  12.  Characteristics of fractured rock mass in sliding layer of monitoring hole (a) and deep displacement curve (b)

      图  13  滑坡形成过程

      Fig.  13.  Sliding process

    • [1] Bai, Y. J., Ni, H. Y., Ge, H., 2019. Advances in Research on the Geohazard Effect of Active Faults on the Southeastern Margin of the Tibetan Plateau. Journal of Geomechanics, 25(6): 1116-1128 (in Chinese with English abstract).
      [2] Cao, W. T., Yan, D. P., Qiu, L., et al., 2015. Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 113: 748-765. https://doi.org/10.1016/j.jseaes.2015.09.003
      [3] Chen, J. P., Li, H. Z., 2016. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass along the Rapidly Uplift Section at the Upstream of Jinsha River. Journal of Jilin University (Earth Science Edition), 46(4): 1153-1167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201604013.htm
      [4] Deng, J. H., Gao, Y. J., Yu, Z. Q., et al., 2019. Analysis on the Formation Mechanism and Process of Baige Landslides Damming the Upper Reach of Jinsha River, China. Advanced Engineering Sciences, 51(1): 9-16 (in Chinese with English abstract).
      [5] Fan, X. M., Xu, Q., Alonso-Rodriguez, A., et al., 2019. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response. Landslides, 16(5): 1003-1020. https://doi.org/10.1007/s10346-019-01159-x
      [6] Feng, W. K., Zhang, G. Q., Bai, H. L., et al., 2019. A Preliminary Analysis of the Formation Mechanism and Development Tendency of the Huge Baige Landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 27(2): 415-425 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902023.htm
      [7] He, Q. L., Li, X. L., Wang, Z. Y., 2016. The Application of High Density Electrical Method to the Exploration Management of Landslide Geological Disasters. Chinese Journal of Engineering Geophysics, 13(1): 99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDQ201601019.htm
      [8] Huang, R. Q., 2004. Mechanism of Large Scale Landslides in Western China. Advance in Earth Sciences, 19(3): 443-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200306006.htm
      [9] Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      [10] Huang, R. Q., 2009. Mechanism and Geomechanical Modes of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200906023.htm
      [11] Lin, S., Wang, W., Deng, X. H., et al., 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146 (in Chinese with English abstract).
      [12] Mao, X. H., Zhang, J. X., Lu, Z. L., et al., 2020. Structural Style and Geochronology of Ductile Shear Zones in the Western North Qinling Orogenic Belt, Central China: Implications for Paleozoic Orogeny in the Central China Orogeny. Journal of Asian Earth Sciences, 201: 104498. https://doi.org/10.1016/j.jseaes.2020.104498
      [13] Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414. https://doi.org/10.1007/s10346-019-01177-9
      [14] Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905012.htm
      [15] Robertson, A., 2004. Development of Concepts Concerning the Genesis and Emplacement of Tethyan Ophiolites in the Eastern Mediterranean and Oman Regions. Earth-Science Reviews, 66(3-4): 331-387. https://doi.org/10.1016/j.earscirev.2004.01.005
      [16] Tian, S. F., Chen, N. S., Wu, H., et al., 2020. New Insights into the Occurrence of the Baige Landslide along the Jinsha River in Tibet. Landslides, 17(5): 1207-1216. https://doi.org/10.1007/s10346-020-01351-4
      [17] Torgoev, A., Lamair, L., Torgoev, I., et al., 2013. A Review of Recent Case Studies of Landslides Investigated in the Tien Shan Using Microseismic and Other Geophysical Methods. In: Ugai, K., Yagi, H., Wakai, A., eds., Earthquake-Induced Landslides. Springer, Berlin. https://doi.org/10.1007/978-3-642-32238-9_29
      [18] Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784 (in Chinese with English abstract).
      [19] Wang, B. D., Wang, L. Q., Wang, D. B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201808001.htm
      [20] Wang, G. C., Zhang, K. X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727 (in Chinese with English abstract).
      [21] Wang, G. C., Zhang, P., 2019. A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5): 1688-1704 (in Chinese with English abstract).
      [22] Wang, T. L., Liu, C. P., Hao, W. Z., et al., 2014. Geological Research on Jinpingzi Giant Landslide of Wudongde Hydropower Station. Yangtze River, 45(20): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201420015.htm
      [23] Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806016.htm
      [24] Xu, Z. M., Liu, W. L., Huang, R. Q., 2011. Engineering Geological Characteristics of Zhaizicun Giant Ancient Landslide along Jinsha River and Its Occurrence Mechanisms. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3539-3550 (in Chinese with English abstract).
      [25] Xu, Z. Q., Wang, Q., Li, Z. H., et al., 2016. Indo-Asian Collision: Tectonic Transition from Compression to Strike Slip. Acta Geologica Sinica, 90(1): 1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639
      [26] Zeng, Q. G., Wang, B. D., Xiluo, L., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract).
      [27] Zhang, K. X., Feng, Q. L., Song, B.W., et al., 2014. Non-Smithian Strata in the Orogen. Earth Science Frontiers, 21(2): 36-47 (in Chinese with English abstract).
      [28] Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286 (in Chinese with English abstract).
      [29] Zhang, Y. S., Wu, R. A., Guo, C. B., et al., 2018. Research Progress and Prospect on Reactivation of Ancient Landslides. Advances in Earth Science, 33(7): 728-740 (in Chinese with English abstract).
      [30] Zhang, Y. S., Yao, X., Yu, K., et al., 2016. Late-Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525-536. https://doi.org/10.1111/1755-6724.12688
      [31] Zhang, Z., He, S. M., Liu, W., et al., 2019. Source Characteristics and Dynamics of the October 2018 Baige Landslide Revealed by Broadband Seismograms. Landslides, 16(4): 777-785. https://doi.org/10.1007/s10346-019-01145-3
      [32] Zhou, J. Y., Wang, J. H., 2019. Early Tectonic Uplift Affecting Sedimentary Filling and Evolution of Paleogene Basins in the Central-Eastern Tibetan Plateau. Acta Geologica Sinica, 93(8): 1793-1813 (in Chinese with English abstract).
      [33] 白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状. 地质力学学报, 25(6): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906030.htm
      [34] 陈剑平, 李会中, 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理. 吉林大学学报(地球科学版), 46(4): 1153-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604013.htm
      [35] 邓建辉, 高云建, 余志球, 等, 2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析. 工程科学与技术, 51(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901002.htm
      [36] 冯文凯, 张国强, 白慧林, 等, 2019. 金沙江"10·11"白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 27(2): 415-425. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902023.htm
      [37] 何清立, 李霄龙, 王志勇, 2016. 高密度电法在滑坡地质灾害勘查治理中的应用. 工程地球物理学报, 13(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201601019.htm
      [38] 黄润秋, 2004. 中国西部地区典型岩质滑坡机理研究. 地球科学进展, 19(3): 443-450. doi: 10.3321/j.issn:1001-8166.2004.03.016
      [39] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      [40] 黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm
      [41] 林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074
      [42] 潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905012.htm
      [43] 王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083
      [44] 王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550. doi: 10.3799/dqkx.2018.160
      [45] 王国灿, 张克信, 曹凯, 等, 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学, 35(5): 713-727. doi: 10.3799/dqkx.2010.086
      [46] 王国灿, 张攀, 2019. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示. 地球科学, 44(5): 1688-1704. doi: 10.3799/dqkx.2019.056
      [47] 王团乐, 刘冲平, 郝文忠, 等, 2014. 乌东德水电站金坪子巨型滑坡地质研究. 人民长江, 45(20): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201420015.htm
      [48] 许强, 郑光, 李为乐, 等, 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
      [49] 徐则民, 刘文连, 黄润秋, 2011. 金沙江寨子村巨型古滑坡的工程地质特征及其发生机制. 岩石力学与工程学报, 30(S2): 3539-3550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2025.htm
      [50] 许志琴, 王勤, 李忠海, 等, 2016. 印度-亚洲碰撞: 从挤压到走滑的构造转换. 地质学报, 90(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
      [51] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
      [52] 张克信, 冯庆来, 宋博文, 等, 2014. 造山带非史密斯地层. 地学前缘, 21(2): 36-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402005.htm
      [53] 张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
      [54] 张永双, 吴瑞安, 郭长宝, 等, 2018. 古滑坡复活问题研究进展与展望. 地球科学进展, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm
      [55] 周江羽, 王江海, 2019. 青藏高原中东部早期构造隆升对古近纪盆地充填和演化的影响. 地质学报, 93(8): 1793-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201908001.htm
    • 加载中
    图(13)
    计量
    • 文章访问数:  1114
    • HTML全文浏览量:  945
    • PDF下载量:  115
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-12
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回