[1] |
Bai, Y. J., Ni, H. Y., Ge, H., 2019. Advances in Research on the Geohazard Effect of Active Faults on the Southeastern Margin of the Tibetan Plateau. Journal of Geomechanics, 25(6): 1116-1128 (in Chinese with English abstract).
|
[2] |
Cao, W. T., Yan, D. P., Qiu, L., et al., 2015. Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 113: 748-765. https://doi.org/10.1016/j.jseaes.2015.09.003
|
[3] |
Chen, J. P., Li, H. Z., 2016. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass along the Rapidly Uplift Section at the Upstream of Jinsha River. Journal of Jilin University (Earth Science Edition), 46(4): 1153-1167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201604013.htm
|
[4] |
Deng, J. H., Gao, Y. J., Yu, Z. Q., et al., 2019. Analysis on the Formation Mechanism and Process of Baige Landslides Damming the Upper Reach of Jinsha River, China. Advanced Engineering Sciences, 51(1): 9-16 (in Chinese with English abstract).
|
[5] |
Fan, X. M., Xu, Q., Alonso-Rodriguez, A., et al., 2019. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response. Landslides, 16(5): 1003-1020. https://doi.org/10.1007/s10346-019-01159-x
|
[6] |
Feng, W. K., Zhang, G. Q., Bai, H. L., et al., 2019. A Preliminary Analysis of the Formation Mechanism and Development Tendency of the Huge Baige Landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 27(2): 415-425 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902023.htm
|
[7] |
He, Q. L., Li, X. L., Wang, Z. Y., 2016. The Application of High Density Electrical Method to the Exploration Management of Landslide Geological Disasters. Chinese Journal of Engineering Geophysics, 13(1): 99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDQ201601019.htm
|
[8] |
Huang, R. Q., 2004. Mechanism of Large Scale Landslides in Western China. Advance in Earth Sciences, 19(3): 443-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200306006.htm
|
[9] |
Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
|
[10] |
Huang, R. Q., 2009. Mechanism and Geomechanical Modes of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200906023.htm
|
[11] |
Lin, S., Wang, W., Deng, X. H., et al., 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146 (in Chinese with English abstract).
|
[12] |
Mao, X. H., Zhang, J. X., Lu, Z. L., et al., 2020. Structural Style and Geochronology of Ductile Shear Zones in the Western North Qinling Orogenic Belt, Central China: Implications for Paleozoic Orogeny in the Central China Orogeny. Journal of Asian Earth Sciences, 201: 104498. https://doi.org/10.1016/j.jseaes.2020.104498
|
[13] |
Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414. https://doi.org/10.1007/s10346-019-01177-9
|
[14] |
Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905012.htm
|
[15] |
Robertson, A., 2004. Development of Concepts Concerning the Genesis and Emplacement of Tethyan Ophiolites in the Eastern Mediterranean and Oman Regions. Earth-Science Reviews, 66(3-4): 331-387. https://doi.org/10.1016/j.earscirev.2004.01.005
|
[16] |
Tian, S. F., Chen, N. S., Wu, H., et al., 2020. New Insights into the Occurrence of the Baige Landslide along the Jinsha River in Tibet. Landslides, 17(5): 1207-1216. https://doi.org/10.1007/s10346-020-01351-4
|
[17] |
Torgoev, A., Lamair, L., Torgoev, I., et al., 2013. A Review of Recent Case Studies of Landslides Investigated in the Tien Shan Using Microseismic and Other Geophysical Methods. In: Ugai, K., Yagi, H., Wakai, A., eds., Earthquake-Induced Landslides. Springer, Berlin. https://doi.org/10.1007/978-3-642-32238-9_29
|
[18] |
Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784 (in Chinese with English abstract).
|
[19] |
Wang, B. D., Wang, L. Q., Wang, D. B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201808001.htm
|
[20] |
Wang, G. C., Zhang, K. X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727 (in Chinese with English abstract).
|
[21] |
Wang, G. C., Zhang, P., 2019. A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5): 1688-1704 (in Chinese with English abstract).
|
[22] |
Wang, T. L., Liu, C. P., Hao, W. Z., et al., 2014. Geological Research on Jinpingzi Giant Landslide of Wudongde Hydropower Station. Yangtze River, 45(20): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201420015.htm
|
[23] |
Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201806016.htm
|
[24] |
Xu, Z. M., Liu, W. L., Huang, R. Q., 2011. Engineering Geological Characteristics of Zhaizicun Giant Ancient Landslide along Jinsha River and Its Occurrence Mechanisms. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3539-3550 (in Chinese with English abstract).
|
[25] |
Xu, Z. Q., Wang, Q., Li, Z. H., et al., 2016. Indo-Asian Collision: Tectonic Transition from Compression to Strike Slip. Acta Geologica Sinica, 90(1): 1-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.12639
|
[26] |
Zeng, Q. G., Wang, B. D., Xiluo, L., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract).
|
[27] |
Zhang, K. X., Feng, Q. L., Song, B.W., et al., 2014. Non-Smithian Strata in the Orogen. Earth Science Frontiers, 21(2): 36-47 (in Chinese with English abstract).
|
[28] |
Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286 (in Chinese with English abstract).
|
[29] |
Zhang, Y. S., Wu, R. A., Guo, C. B., et al., 2018. Research Progress and Prospect on Reactivation of Ancient Landslides. Advances in Earth Science, 33(7): 728-740 (in Chinese with English abstract).
|
[30] |
Zhang, Y. S., Yao, X., Yu, K., et al., 2016. Late-Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525-536. https://doi.org/10.1111/1755-6724.12688
|
[31] |
Zhang, Z., He, S. M., Liu, W., et al., 2019. Source Characteristics and Dynamics of the October 2018 Baige Landslide Revealed by Broadband Seismograms. Landslides, 16(4): 777-785. https://doi.org/10.1007/s10346-019-01145-3
|
[32] |
Zhou, J. Y., Wang, J. H., 2019. Early Tectonic Uplift Affecting Sedimentary Filling and Evolution of Paleogene Basins in the Central-Eastern Tibetan Plateau. Acta Geologica Sinica, 93(8): 1793-1813 (in Chinese with English abstract).
|
[33] |
白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状. 地质力学学报, 25(6): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906030.htm
|
[34] |
陈剑平, 李会中, 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理. 吉林大学学报(地球科学版), 46(4): 1153-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604013.htm
|
[35] |
邓建辉, 高云建, 余志球, 等, 2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析. 工程科学与技术, 51(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901002.htm
|
[36] |
冯文凯, 张国强, 白慧林, 等, 2019. 金沙江"10·11"白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 27(2): 415-425. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902023.htm
|
[37] |
何清立, 李霄龙, 王志勇, 2016. 高密度电法在滑坡地质灾害勘查治理中的应用. 工程地球物理学报, 13(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201601019.htm
|
[38] |
黄润秋, 2004. 中国西部地区典型岩质滑坡机理研究. 地球科学进展, 19(3): 443-450. doi: 10.3321/j.issn:1001-8166.2004.03.016
|
[39] |
黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
|
[40] |
黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm
|
[41] |
林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074
|
[42] |
潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905012.htm
|
[43] |
王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083
|
[44] |
王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550. doi: 10.3799/dqkx.2018.160
|
[45] |
王国灿, 张克信, 曹凯, 等, 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学, 35(5): 713-727. doi: 10.3799/dqkx.2010.086
|
[46] |
王国灿, 张攀, 2019. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示. 地球科学, 44(5): 1688-1704. doi: 10.3799/dqkx.2019.056
|
[47] |
王团乐, 刘冲平, 郝文忠, 等, 2014. 乌东德水电站金坪子巨型滑坡地质研究. 人民长江, 45(20): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201420015.htm
|
[48] |
许强, 郑光, 李为乐, 等, 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm
|
[49] |
徐则民, 刘文连, 黄润秋, 2011. 金沙江寨子村巨型古滑坡的工程地质特征及其发生机制. 岩石力学与工程学报, 30(S2): 3539-3550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2025.htm
|
[50] |
许志琴, 王勤, 李忠海, 等, 2016. 印度-亚洲碰撞: 从挤压到走滑的构造转换. 地质学报, 90(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
|
[51] |
曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
|
[52] |
张克信, 冯庆来, 宋博文, 等, 2014. 造山带非史密斯地层. 地学前缘, 21(2): 36-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402005.htm
|
[53] |
张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
|
[54] |
张永双, 吴瑞安, 郭长宝, 等, 2018. 古滑坡复活问题研究进展与展望. 地球科学进展, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm
|
[55] |
周江羽, 王江海, 2019. 青藏高原中东部早期构造隆升对古近纪盆地充填和演化的影响. 地质学报, 93(8): 1793-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201908001.htm
|