• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海湾盆地黄河口凹陷渤中29-6油田原油稠化机制及成藏模式

    王飞龙 汤国民 陈容涛 王广源 于倩

    王飞龙, 汤国民, 陈容涛, 王广源, 于倩, 2021. 渤海湾盆地黄河口凹陷渤中29-6油田原油稠化机制及成藏模式. 地球科学, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331
    引用本文: 王飞龙, 汤国民, 陈容涛, 王广源, 于倩, 2021. 渤海湾盆地黄河口凹陷渤中29-6油田原油稠化机制及成藏模式. 地球科学, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331
    Wang Feilong, Tang Guomin, Chen Rongtao, Wang Guangyuan, Yu Qian, 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331
    Citation: Wang Feilong, Tang Guomin, Chen Rongtao, Wang Guangyuan, Yu Qian, 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331

    渤海湾盆地黄河口凹陷渤中29-6油田原油稠化机制及成藏模式

    doi: 10.3799/dqkx.2020.331
    基金项目: 

    现代古生物学和地层学国家重点实验室开发课题研究计划项目 203117

    中海石油(中国)有限公司“七年行动计划”重大科技专项课题 CNOOC-KJ 135 ZDXM 36 TJ 08 TJ

    详细信息
      作者简介:

      王飞龙(1981-), 男, 高级工程师, 硕士, 主要从事油气地球化学工作.ORCID: 0000-0001-6707-7633.E-mail: wangfl3@cnooc.com.cn

    • 中图分类号: P618

    Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin

    • 摘要: 渤中29-6油田位于黄河口凹陷北部陡坡带,具有双洼供烃的有利位置,已发现原油整体表现为稠油特征,生标特征复杂多样,其油气来源及稠油成因机理尚不明确.在前人研究基础之上,基于原油分析化验数据,利用地球化学分析方法,系统梳理了渤中29-6油田稠油来源,阐明了该原油稠化机理,并建立了原油的稠化模式及成藏模式,结果表明:(1)渤中29-6油田表现为双洼混合供烃的特征,其中高硫油主要来源于黄河口东洼,而低硫油主要来源于黄河口中洼;(2)渤中29-6油田整体表现为浅层稠油,其原油物性受二次充注作用、断层活动性、母源条件这3个因素的联合控制,其中断层活动性控制整体原油稠化级别,二次充注作用和母源条件分别可以改善和加剧原油稠化作用,并形成了低熟—弱断弱充注、成熟—强断弱充注、成熟—强断强充注、低熟—强断强充注这4种原油稠化模式;(3)渤中29-6油田具有双洼供烃成藏模式,且因距离洼陷远近而不同,近源形成单洼供烃—断裂垂向输导—强/弱充注—强降解—源上稠油成藏模式,远源形成双洼供烃—砂体或不整合侧向输导—弱充注—强/弱降解稠油成藏模式;(4)渤中29-6油田围区可划分为4个区带:I区原油物性最好,II区和IV区稠化最严重,物性最差,III区原油物性居中.由于二次充注作用可以明显改善原油物性,中—轻原油勘探和开发应优选I区和III区.

       

    • 图  1  黄河口凹陷构造单元划分及勘探概况

      Fig.  1.  Division of structural units and exploration activities of the Huanghekou sag

      图  2  渤中29-6油田原油物性特征

      Fig.  2.  Crude oil physical characteristics of Bozhong 29-6 oilfield group

      图  3  渤中29-6油田原油饱和烃总离子流色谱图、萜烷和甾烷质量色谱图

      Fig.  3.  Mass chromatograms of the saturated hydrocarbons of crude oil in Bozhong 29-6 oilfield group

      图  4  黄河口地区原油物性特征及生标参数特征

      Fig.  4.  Physical properties and parametric relationship of biomarker compounds of oil from Huanghekou sag

      图  5  原油二次充注强度与粘度相关关系

      Fig.  5.  Correlation between secondary charge strength and viscosity of crude oil

      图  6  不同含硫量原油生物降解强度与粘度相关

      红色为含硫量 > 2%;绿色为含硫量在0.5%~2.0%之间;橙黄色为含硫量 < 0.5%

      Fig.  6.  Correlation between viscosity and biodegradation intensity of crude oilwith different sulfur content

      图  7  断层活动性与原油生物降解强度相关关系

      Fig.  7.  Correlation between fault activity and biodegradation intensity of crude oil

      图  8  断层活动性与原油物性相关关系

      红色为含硫量 > 2%;绿色为含硫量在0.5%~2.0%之间;橙黄色为含硫量 < 0.5%

      Fig.  8.  Correlation between fault activity and viscosity of crude oil

      图  9  渤中29-6油田原油稠化模式

      氧分多少表示断层活动强弱;箭头大小表示充注强弱

      Fig.  9.  Crude oil thickening model in Bozhong 29-6 oilfield group

      图  10  渤中29-6油田稠油成藏模式

      Fig.  10.  Heavy oil accumulation model in Bozhong 29-6 oilfield

      图  11  渤中29-6油田围区原油物性分布预测

      Fig.  11.  Prediction of crude oil physical property distribution in the surrounding area of Bozhong 29-6 oilfield

      表  1  黄河口中洼和东洼地区油田断层活动性及原油地球化学参数

      Table  1.   Fault activity and crude oil geochemical parameters in Zhongwa and Dongwa areas of the Yellow River depression

      井号 序号 平均深度(m) 层位 断距(m) 粘度(mPa·s) 含硫量(%) C25降藿烷/C30藿烷 (Pr+Ph)/ C30藿烷
      BZ29-6a 1 1 466.2 NmL 100 585.2 0.34 064 0.11
      2 1 687.4 Ng 100 776.5 0.32 0.47 0.06
      BZ29-6b 1 1 477.5 NmL 100 84.0 0.24 0.20 2.36
      BZ29-6c 1 1 203.5 NmL 90 486.4 0.33 0.41 0.17
      2 1 395.0 NmL 90 2 823.0 0.74 0.86 0.38
      3 1 789.9 Ng 90 219.2 2.35 0.21 3.07
      BZ29-6d 1 1 436.8 NmL 60 2 088.0 1.02 0.50 0.22
      2 1 500.0 NmL 60 969.3 1.11 0.40 0.26
      3 1 552.0 Ng 60 763.5 0.59 0.37 0.24
      4 1 590.0 Ng 60 234.2 1.09 0.25 0.33
      BZ29-6e 1 1 853.0 NmL 120 617.2 0.35 0.53 0.52
      BZ29-5a 1 1 413.5 NmL 95 39.4 0.19 0.12 2.88
      2 1 391.5 NmL 95 47.8 0.17 0.09 2.88
      BZ29-4b 1 1 435.5 NmL 110 18.1 0.16 0.08 7.27
      BZ36-1a 1 1 298.4 NmL 40 7 193.0 2.96 0.22 0.06
      BZ36-1b 1 1 412.4 NmL 30 1 259.0 3.56 0.07 0.50
      2 1 549.3 Ng 30 221.4 2.90 0.01 0.70
      3 1 560.7 Ng 30 624.6 3.00 0.01 0.88
      下载: 导出CSV
    • [1] Aitken, C. M., Jones, D. M., Larter, S. R., 2004. Anaerobic Hydrocarbon Biodegradation in Deep Subsurface Oil Reservoirs. Nature, 431(7006): 291-294. https://doi.org/10.1038/nature02922.
      [2] Connan, J., 1984. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D., Advances in Petroleum Geochemistry. Academic Press, London.
      [3] Dusseault, M. B., 2001. Comparing Venezuelan and Canadian Heavy Oil and Tar Sands. Canadian International Petroleum Conference, Calgary.
      [4] Feng, Z. H., Liao, G. Z., Fang, W., et al., 2003. Formation of Heavy Oil and Correlation of Oil-Source in the Western Slope of the Northern Songliao Basin. Petroleum Exploration and Development, 30(4): 25-28 (in Chinese with English abstract). http://www.researchgate.net/publication/283815064_Formation_of_heavy_oil_and_correlation_of_oil-source_in_the_western_slope_of_the_northern_Songliao_Basin
      [5] Fu, Q., Liu, B. B., Xia, Q. L., et al., 2013a. Characteristics and Migration-Accumulation Directions of Sulfur-Rich Oils in BZ35/36 Structures in Huanghekou Sag, Bohai Bay Basin. Acta Petrolei Sinica, 34(1): 37-46 (in Chinese with English abstract). http://www.researchgate.net/publication/286850375_Characteristics_and_migration-accumulation_directions_of_sulfur-rich_oils_in_BZ3536_structures_in_Huanghekou_sag_Bohai_Bay_Basin
      [6] Fu, Q., Liu, B. B., Xu, C. H., et al., 2013b. The Couple Relationship of Quantitative Analysis of the Structures and Oil & Gas Accumulation in Huanghekou Depression, Bohai Bay Basin. Acta Petrolei Sinica, 34(S2): 112-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2014.htm
      [7] Guo, Y. H., Zhou, X. H., Li, J. P., et al., 2010. Crude Features and Origins of the Neogene Heavy Oil Reservoirs in the Bohai Bay. Oil & Gas Geology, 31(3): 375-380, 385 (in Chinese with English abstract).
      [8] Hu, S. Z., Zhang, D. M., Tang, J., et al., 2009. Review of the Genesis of Heavy Oil. Geological Science and Technology Information, 28(2): 94-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200902016.htm
      [9] Huang, H. P., Larter, S. R., Bowler, B. F. J., et al., 2004. A Dynamic Biodegradation Model Suggested by Petroleum Compositional Gradients within Reservoir Columns from the Liaohe Basin, NE China. Organic Geochemistry, 35(3): 299-316. https://doi.org/10.1016/j.orggeochem.2003.11.003
      [10] Jiang, X., Wu, K. Q., Liu, L. F., et al., 2018. Characteristics of Hydrocarbon Source Rock in Huanghekou Sag and Its Distribution in Sequence Stratigraphic Framework. Journal of Northwest University (Natural Science Edition), 48(5): 709-717 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDZ201805013.htm
      [11] Kong, Q. Y., Zou, H. Y., Hu, Y. F., et al., 2009. Geochemical Characteristics of Paleogene Hydrocarbon Source Rock in Huanghekou Sag. Journal of Xi'an Shiyou University (Natural Science Edition), 24(2): 5-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200902003.htm
      [12] Larter, S., Huang, H. P., Adams, J., et al., 2006. The Controls on the Composition of Biodegraded Oils in the Deep Subsurface: Part II-Geological Controls on Subsurface Biodegradation Fluxes and Constraints on Reservoir-Fluid Property Prediction. AAPG Bulletin, 90(6): 921-938. https://doi.org/10.1306/01270605130
      [13] Li, C. M., Li, S. M., Li, X., et al., 2005. Origin of the Heavy Oils from the Bamianhe Oilfield, Dongying Depression. Geoscience, 19(2): 279-286 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ20050200H.htm
      [14] Li, S. M., Pang, X. Q., Gao, X. Z., et al., 2008. Genetic Mechanism of Heavy Oil in Western Depression of Liaohe River. Science in China (Series D), 38(S1): 138-149 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG2008S2018.htm
      [15] Li, Z. Y., Qiao, M., Ren, W. P., 2012. Current Development of Venezuela Extra Heavy Crude and Canadian Oil Sands Processing. Acta Petrolei Sinica (Petroleum Processing Section), 28(3): 517-524 (in Chinese with English abstract). http://www.researchgate.net/publication/296561912_Current_development_of_Venezuela_extra_heavy_crude_and_Canadian_oil_sands_processing
      [16] Ni, C. H., Bao, J. P., Wang, P. H., et al., 2005. Novel Progress on Source Correlation of Biodegradation Crude Oil. Xinjiang Petroleum Geology, 26(6): 711-714 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JHSX2005S5013.htm
      [17] Niu, J., Huang, H. P., Jiang, W. L., et al., 2016. Factors such as Multi-Stage Charge Mixing and Biodegradation Affecting the Viscosity of Heavy Oil in the Le'an Oilfield. Geochimica, 45(5): 441-450 (in Chinese with English abstract).
      [18] Peter, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge.
      [19] Qiu, G. Q., Li, S. M., Pang, X. Q., et al., 2004. Characteristics and Genetic Mechanisms of Heavy Oils on the North Steep Slope of the Dongying Depression in the Bohai Bay Basin, East China. Acta Geologica Sinica, 78(6): 854-862 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200406017&dbcode=CJFD&year=2004&dflag=pdfdown
      [20] Rubinstein, I., Stuause, O. P., Spycherelle, C., et al., 1977. The Origin of the Oil Sand Bitumens of Alberta: A Chemical and a Microbiological Simulation Study. Geochimica et Cosmochimica Acta, 41(9): 1341-1353. https://doi.org/10.1016/0016-7037(77)90077-1
      [21] Shang, P., Chen, H. H., Hu, S. Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026 (in Chinese with English abstract).
      [22] Song, C. Y., 2006. Type and Formation Way of Severe Biodegradation Oil in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 13(4): 15-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200604006.htm
      [23] Sun, H. F., Zhou, X. H., Peng, W. X., et al., 2011. Late-Stage Hydrocarbon Accumulation and Enrichment in the Huanghekou Sag, Southern Bahai Sea. Petroleum Exploration and Development, 38(3): 307-313 (in Chinese with English abstract). http://www.researchgate.net/publication/279964932_Late-stage_hydrocarbon_accumulation_and_enrichment_in_the_Huanghekou_Sag_southern_Bohai_Sea
      [24] Tang, G. M., Wang, F. L., Wang, Q. B., et al., 2019. Genesis and Accumulation Models of Sulfur-Rich Heavy Oil in Laizhou Bay Sag, Bohai Sea. Oil & Gas Geology, 40(2): 284-293 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201902008.htm
      [25] Wang, B. J., Xu, C. G., Wu, K., et al., 2019. The Neogene Extra-Super Heavy Oil Reservoir Characteristics and Formation Mechanism in Liaodong Bay Depression. Earth Science, 44(9): 3088-3100 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909023.htm
      [26] Wenger, L. M., Isaksen, G. H., 2002. Control of Hydrocarbon Seepage Intensity on Level of Biodegradation in Sea Bottom Sediments. Organic Geochemistry, 33(12): 1277-1292. https://doi.org/10.1016/S0146-6380(02)00116-X
      [27] Wu, K. Q., Jiang, X., Sun, H. F., 2015. Model of Lacustrine Source Rocks in Offshore Oil Kitchen Sags: A Case Study of Paleogene in Huanghekou Sag. Geological Science and Technology Information, 34(2): 63-70 (in Chinese with English abstract).
      [28] Wu, K. Q., Wu, J. F., Liu, L. F., et al., 2014. Tectonic Transport and Its Impact on Hydrocarbon Accumulation: Two Cases of Bodong and Miaoxi Sag. China Offshore Oil and Gas, 26(2): 6-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD201402002.htm
      [29] Xu, C. G., Wang, B. J., Wang, F. L., et al., 2016. Neogene Extra Heavy Oil Accumulation Model and Process in Liaodong Bay Depression: A Case Study of Lvda 5-2N Oilfield. Acta Petrolei Sinica, 37(5): 599-609 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYXB201605004&dbcode=CJFD&year=2016&dflag=pdfdown
      [30] Xu, T., Hou, D. J., Zhao, Z. B., et al., 2017. Controlling Factors for the Development of High-Quality Source Rocks in Yellow River Mouth East Sag of Bohai Bay Basin. Journal of Northeast Petroleum University, 41(1): 11-20, 32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY201701002.htm
      [31] Yang, H.F., Wang, D.Y., Gao, Y.F., et al., 2019. Neogene Natural Gas Genesis and Hydrocarbon Differential Enrichment Mechanism in the Basin Marginal Sag of Bohai Bay Basin: A Case Study of the Eastern Subsag of Huanghekou Sag. Acta Petrolei Sinica, 40(5): 509-518 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201905001.htm
      [32] Zhu, F. B., Xiao, L. L., Tang, X. Y., 2004. Heavy Oil Genetic Types and Oil-Source Correlation in Western Depression, Liaohe Basin. Geological Science and Technology Information, 23(4): 55-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200404012.htm
      [33] 冯子辉, 廖广志, 方伟, 等, 2003. 松辽盆地北部西斜坡区稠油成因与油源关系. 石油勘探与开发, 30(4): 25-28. doi: 10.3321/j.issn:1000-0747.2003.04.008
      [34] 傅强, 刘彬彬, 夏庆龙, 等, 2013a. 黄河口凹陷BZ35/36构造高硫原油特征及运聚方向. 石油学报, 34(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301004.htm
      [35] 傅强, 刘彬彬, 徐春华, 等, 2013b. 渤海湾盆地黄河口凹陷构造定量分析与油气富集耦合关系. 石油学报, 34(S2): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2014.htm
      [36] 郭永华, 周心怀, 李建平, 等, 2010. 渤海海域新近系稠油油藏原油特征及形成机制. 石油与天然气地质, 31(3): 375-380, 385. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003020.htm
      [37] 胡守志, 张冬梅, 唐静, 等, 2009. 稠油成因研究综述. 地质科技情报, 28(2): 94-97. doi: 10.3969/j.issn.1000-7849.2009.02.017
      [38] 姜雪, 吴克强, 刘丽芳, 等, 2018. 黄河口凹陷烃源岩特征及其在层序地层格架中的分布. 西北大学学报(自然科学版), 48(5): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201805013.htm
      [39] 孔庆莹, 邹华耀, 胡艳飞, 等, 2009. 黄河口凹陷古近系烃源岩的地球化学特征. 西安石油大学学报(自然科学版), 24(2): 5-8. doi: 10.3969/j.issn.1673-064X.2009.02.002
      [40] 李春梅, 李素梅, 李雪, 等, 2005. 山东东营凹陷八面河油田稠油成因分析. 现代地质, 19(2): 279-286. doi: 10.3969/j.issn.1000-8527.2005.02.018
      [41] 李素梅, 庞雄奇, 高先志, 等, 2008. 辽河西部凹陷稠油成因机制. 中国科学(D辑), 38(S1): 138-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1017.htm
      [42] 李振宇, 乔明, 任文坡, 2012. 委内瑞拉超重原油和加拿大油砂沥青加工利用现状. 石油学报(石油加工), 28(3): 517-524. doi: 10.3969/j.issn.1001-8719.2012.03.027
      [43] 倪春华, 包建平, 王鹏辉, 等, 2005. 生物降解原油的油源对比研究新进展. 新疆石油地质, 26(6): 711-714. doi: 10.3969/j.issn.1001-3873.2005.06.033
      [44] 牛君, 黄海平, 蒋文龙, 等, 2016. 乐安油田多期充注及生物降解作用对稠油黏度的影响分析. 地球化学, 45(5): 441-450. doi: 10.3969/j.issn.0379-1726.2016.05.001
      [45] 邱桂强, 李素梅, 庞雄奇, 等, 2004. 东营凹陷北部陡坡带稠油地球化学特征与成因. 地质学报, 78(6): 854-862. doi: 10.3321/j.issn:0001-5717.2004.06.017
      [46] 尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
      [47] 宋长玉, 2006. 济阳坳陷严重生物降解油的类型与形成途径. 油气地质与采收率, 13(4): 15-17. doi: 10.3969/j.issn.1009-9603.2006.04.005
      [48] 孙和风, 周心怀, 彭文绪, 等, 2011. 渤海南部黄河口凹陷晚期成藏特征及富集模式. 石油勘探与开发, 38(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103012.htm
      [49] 汤国民, 王飞龙, 王清斌, 等, 2019. 渤海海域莱州湾凹陷高硫稠油成因及其成藏模式. 石油与天然气地质, 40(2): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902008.htm
      [50] 王冰洁, 徐长贵, 吴奎, 等, 2019. 辽东湾坳陷新近系特-超稠油油藏特征及形成机理. 地球科学, 44(9): 3088-3100. doi: 10.3799/dqkx.2018.186
      [51] 吴克强, 姜雪, 孙和风, 2015. 近海富生油凹陷湖相烃源岩发育模式: 以黄河口凹陷古近系为例. 地质科技情报, 34(2): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502010.htm
      [52] 吴克强, 吴景富, 刘丽芳, 等, 2014. 构造迁移及其对油气成藏的影响: 以渤海渤东、庙西凹陷为例. 中国海上油气, 26(2): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201402002.htm
      [53] 徐长贵, 王冰洁, 王飞龙, 等, 2016. 辽东湾坳陷新近系特稠油成藏模式与成藏过程: 以旅大5-2北油田为例. 石油学报, 37(5): 599-609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605004.htm
      [54] 许婷, 侯读杰, 赵子斌, 等, 2017. 渤海湾盆地黄河口东洼优质烃源岩发育控制因素. 东北石油大学学报, 41(1): 11-20, 32. doi: 10.3969/j.issn.2095-4107.2017.01.002
      [55] 杨海风, 王德英, 高雁飞, 等, 2019. 渤海湾盆地盆缘洼陷新近系天然气成因与油气差异富集机理: 以黄河口凹陷东洼为例. 石油学报, 40(5): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905001.htm
      [56] 朱芳冰, 肖伶俐, 唐小云, 2004. 辽河盆地西部凹陷稠油成因类型及其油源分析. 地质科技情报, 23(4): 55-58. doi: 10.3969/j.issn.1000-7849.2004.04.012
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  451
    • HTML全文浏览量:  259
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-08
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回