The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin
-
摘要: 柴达木盆地厚达万米的新生代沉积物记录了青藏高原东北部隆升和古气候变化信息.本文基于盆地北缘大红沟剖面高分辨率的磁极性年代标尺,对该剖面古—新近纪河湖相沉积物进行了颜色测量,首次获得了柴达木盆地长时间尺度(52~7 Ma)的色度参数变化序列.在此基础上,综合沉积相与区域构造和古气候记录,探讨了影响河湖相沉积物颜色参数的因素及柴达木盆地古—新近纪的气候演变.结果表明,大红沟剖面沉积物颜色的变化与全球温度变化趋势基本一致,说明温度是影响颜色参数,特别是红度(a*)的主要因素;沉积相变化,尤其是水面上、下的氧化—还原环境变化对颜色参数也有重要影响.根据色度参数在时间标尺上的变化,将柴达木盆地的气候变化划分为8个阶段:(a)52.0~44.2 Ma湿热,(b)44.2~33.7 Ma在干湿波动中逐渐变干,(c)33.7~27.1 Ma进一步变干,(d)27.1~19.7 Ma逐渐变湿,(e)19.7~17.0 Ma较干旱,(f)17.0~13.3 Ma气候湿润,(g)13.3~9.5 Ma快速变干,(h)9.5~7.0 Ma进一步变干旱.影响柴达木盆地古—新近纪气候变化的主要因素包括全球温度、副特提斯海、青藏高原构造隆升和东亚夏季风.Abstract: Cenozoic sediments up to 10 000 meters thick in the Qaidam basin recorded the Tibetan plateau uplift and paleoclimate changes. Based on the high-resolution magnetic polarity dating scale of the Dahonggou section in the northern margin of the basin,the color measurement of the Paleo-Neogene fluvial and lacustrine sediments in this section is performed. Furthermore,integrating the sedimentary facies,regional tectonic and paleoclimate records,this paper discusses the factors affecting the color parameters of river-lacustrine sediments and the climate evolution of the Qaidam basin during the Paleo-Neogene period. The research results show that the change of sediment color in Dahonggou section is basically consistent with the global temperature trend,indicating that temperature is the main factor affecting color parameters,especially the redness (a*) value,but the sedimentary facies changes,especially changes in the oxidation-reduction environment above and below the water,also have an important influence on the color parameters. According to the changes of color parameters on the time scale,the climate change in the Qaidam basin has been divided into 8 stages: (a) hot and humid during 52.0-44.2 Ma,(b) gradually becomes dry in the fluctuation of dryness and wetness during 44.2-33.7 Ma,(c) further dries during 33.7-27.1 Ma,(d) gradually becomes wet during 27.1-19.7 Ma,(e) relatively dry during 19.7-17.0 Ma,(f) warm and humid during 17.0-13.3 Ma,(g) rapidly dries during 13.3-9.5 Ma,(h) becomes further arid during 9.5-7.0 Ma. The main factors affecting the Paleo-Neogene climate change in the Qaidam basin include global temperature,the Para-Tethys Sea,the uplift of the Tibetan plateau and the East Asian summer monsoon.
-
Key words:
- Tibetan plateau /
- Qaidam basin /
- Paleo-Neogene /
- color /
- paleoclimate /
- stratigraphy
-
图 1 柴达木盆地及邻区构造示意图(a)和大红沟剖面区域地质图(b)
Fig. 1. Structural map of Qaidam basin and adjacent regions (a); geological map of the Dahonggou anticline (b)
表 1 柴达木盆地北缘大红沟剖面色度参数阶段划分
Table 1. Stages of color parameters in Dahonggou section
阶段 深度(m) 年龄(Ma) 平均值 L* a* b* (h) 4 100~4 601 9.5~7.0 60.02 7.36 20.66 (g) 3 505~4 100 13.3~9.5 59.34 7.10 20.31 (f) 3 086~3 505 17.0~13.3 58.18 8.87 20.65 (e) 2 661~3 086 19.7~17.0 55.34 10.37 20.42 (d) 1 577~2 661 27.1~19.7 56.20 5.56 17.70 (c) 1 145~1 577 33.7~27.1 55.71 5.00 16.37 (b) 460~1 145 44.2~33.7 54.43 6.34 14.07 (a) 0~460 52.0~44.2 49.11 15.49 18.34 -
[1] An, Z. S., Zhang, P. Z., Wang, E. Q., et al., 2006. Changes of the Monsoon-Arid Environment in China and Growth of the Tibetan Plateau since the Miocene. Quaternary Sciences, 26(5): 678-693 (in Chinese with English abstract). [2] Dai, S., Liu, J. W., Zhang, M. Z., et al., 2011. Climate Change during 140.66-124.19 Ma Recorded by the Color of the Sediments of the Hekou Group from Lanzhou-Minhe Basin. Acta Geologica Sinica, 85(6): 1058-1067 (in Chinese with English abstract). [3] Dettman, D. L., Fang, X. M., Garzione, C. N., et al., 2003. Uplift-Driven Climate Change at 12 Ma: a Long δ18O Record from the NE Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 214(1-2): 267-277. https://doi.org/10.1016/S0012-821X(03)00383-2 [4] Fang, X. M., Fang, Y. H., Zan, J. B., et al., 2019a. Cenozoic Magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and Its Constraints on Paleontological, Sedimentological and Tectonomorphological Evolution. Earth-Science Reviews, 190: 460-485. https://doi.org/10.1016/j.earscirev.2019.01.021 [5] Fang, X. M., Galy, A., Yang, Y. B., et al., 2019b. Paleogene Global Cooling-Induced Temperature Feedback on Chemical Weathering, as Recorded in the Northern Tibetan Plateau. Geology, 47(10): 992-996. https://doi.org/10.1130/g46422.1 [6] Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. https://doi.org/10.1016/j.epsl.2007.03.042 [7] Helmke, J. P., Schulz, M., Bauch, H. A., 2002. Sediment-Color Record from the Northeast Atlantic Reveals Patterns of Millennial-Scale Climate Variability during the Past 500, 000 Years. Quaternary Research, 57(1): 49-57. https://doi.org/10.1006/qres.2001.2289 [8] Hoorn, C., Straathof, J., Abels, H. A., et al., 2012. A Late Eocene Palynological Record of Climate Change and Tibetan Plateau Uplift (Xining Basin, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 344-345: 16-38. https://doi.org/10.1016/j.palaeo.2012.05.011 [9] Ji, J. F., Chen, J., Balsam, W., et al., 2007. Quantitative Analysis of Hematite and Goethite in the Chinese Loess-Paleosol Sequences and Its Implication for Dry and Humid Variability. Quaternary Sciences, 27(2): 221-229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200702006.htm [10] Ji, J. L., Zhang, K. X., Clift, P. D., et al., 2017. High-Resolution Magnetostratigraphic Study of the Paleogene-Neogene Strata in the Northern Qaidam Basin: Implications for the Growth of the Northeastern Tibetan Plateau. Gondwana Research, 46: 141-155. https://doi.org/10.1016/j.gr.2017.02.015 [11] Ji, J. L., Zhang, K. X., Qiang, T., et al., 2010. Magnetostratigraphy of the Neogene Strata in Xunhua Basin, Qinghai Province. Earth Science, 35(5): 803-810 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201005008.htm [12] Jiang, H. C., Ding, Z. L., Xiong, S. F., 2007. Magnetostratigraphy of the Neogene Sikouzi Section at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(1-2): 223-234. https://doi.org/10.1016/j.palaeo.2006.07.016 [13] Kaya, M. Y., Dupont-Nivet, G., Proust, J. N., et al., 2019. Paleogene Evolution and Demise of the Proto-Paratethys Sea in Central Asia (Tarim and Tajik Basins): Role of Intensified Tectonic Activity at Ca. 41 Ma. Basin Research, 31(3): 461-486. https://doi.org/10.1111/bre.12330 [14] Lease, R. O., 2014. Cenozoic Mountain Building on the Northeastern Tibetan Plateau. Special Paper of the Geological Society of America, 507: 115-127. https://doi.org/10.1130/2014.2507. [15] Lu, J. F., Song, B. W., Chen, R. M., et al., 2010. Palynological Assemblage of Eocene-Oligocene Pollen and Their Biostratigraphic Correlation in Dahonggou, Daqaidam Area, Qaidam Basin. Earth Science, 35(5): 839-848 (in Chinese with English abstract). [16] Meijer, N., Dupont-Nivet, G., Abels, H. A., et al., 2019. Central Asian Moisture Modulated by Proto-Paratethys Sea Incursions since the Early Eocene. Earth and Planetary Science Letters, 510: 73-84. https://doi.org/10.1016/j.epsl.2018.12.031 [17] Miao, Y. F., Fang, X. M., Herrmann, M., et al., 2011. Miocene Pollen Record of KC-1 Core in the Qaidam Basin, NE Tibetan Plateau and Implications for Evolution of the East Asian Monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1-2): 30-38. https://doi.org/10.1016/j.palaeo.2010.10.026 [18] Ogg, J. G., 2012. Geomagnetic Polarity Time Scale. In: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G., eds., The Geological Time Scale 2012. Elsevier, Amsterdam. [19] Page, M., Licht, A., Dupont-Nivet, G., et al., 2019. Synchronous Cooling and Decline in Monsoonal Rainfall in Northeastern Tibet during the Fall into the Oligocene Icehouse. Geology, 47(3): 203-206. https://doi.org/10.1130/g45480.1 [20] Song, B. W., Ji, J. L., Wang, C. W., et al., 2017. Intensified Aridity in the Qaidam Basin during the Middle Miocene: Constraints from Ostracod, Stable Isotope, and Weathering Records. Canadian Journal of Earth Sciences, 54(3): 242-256. https://doi.org/10.1139/cjes-2016-0052 [21] Song, B. W., Spicer, R. A., Zhang, K. X., et al., 2020. Qaidam Basin Leaf Fossils Show Northeastern Tibet was High, Wet and Cool in the Early Oligocene. Earth and Planetary Science Letters, 537: 116175. https://doi.org/10.1016/j.epsl.2020.116175 [22] Song, B. W., Zhang, K. X., Hou, Y. F., et al., 2019. New Insights into the Provenance of Cenozoic Strata in the Qaidam Basin, Northern Tibet: Constraints from Combined U-Pb Dating of Detrital Zircons in Recent and Ancient Fluvial Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 533: 109254. https://doi.org/10.1016/j.palaeo.2019.109254 [23] Song, B. W., Zhang, K. X., Ji, J. L., et al., 2011. Outcrop Sequence Stratigraphy of the Paleogene Strata of Dahonggou Region in the Northeast Margin of Qaidam Basin. Geological Science and Technology Information, 30(3): 25-32 (in Chinese with English abstract). [24] Song, B. W., Zhang, K. X., Lu, J. F., et al., 2013. The Middle Eocene to Early Miocene Integrated Sedimentary Record in the Qaidam Basin and Its Implications for Paleoclimate and Early Tibetan Plateau Uplift. Canadian Journal of Earth Sciences, 50(2): 183-196. https://doi.org/10.1139/cjes-2012-0048 [25] Sun, J. M., Liu, W. G., Liu, Z. H., et al., 2017. Effects of the Uplift of the Tibetan Plateau and Retreat of Neotethys Ocean on the Stepwise Aridification of Mid-Latitude Asian Interior. Bulletin of Chinese Academy of Sciences, 32(9): 951-958 (in Chinese with English abstract). [26] Sun, X. J., Wang, P. X., 2005. How Old is the Asian Monsoon System?-Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3-4): 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005 [27] Sun, Y. Y., Liu, J., Liang, Y., et al., 2020. Cenozoic Moisture Fluctuations on the Northeastern Tibetan Plateau and Association with Global Climatic Conditions. Journal of Asian Earth Sciences, 200: 104490. https://doi.org/10.1016/j.jseaes.2020.104490 [28] Tang, Z. H., Ding, Z. L., White, P. D., et al., 2011. Late Cenozoic Central Asian Drying Inferred from a Palynological Record from the Northern Tian Shan. Earth and Planetary Science Letters, 302(3-4): 439-447. https://doi.org/10.1016/j.epsl.2010.12.042 [29] Wang, W. T., Zheng, W. J., Zhang, P. Z., et al., 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1): 15887. https://doi.org/10.1038/ncomms15887 [30] Wang, Y. Z., Wu, C. D., Ma, J., et al., 2019. Strata Color Rhythm of the Cretaceous-Neogene and Evolution of Palaeoenvironment and Palaeoclimate in Junggar Basin. Journal of Palaeogeography, 21(3): 451-468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201903007.htm [31] Xiao, G. Q., Guo, Z. T., Dupont-Nivet, G., et al., 2012. Evidence for Northeastern Tibetan Plateau Uplift between 25 and 20 Ma in the Sedimentary Archive of the Xining Basin, Northwestern China. Earth and Planetary Science Letters, 317-318: 185-195. https://doi.org/10.1016/j.epsl.2011.11.008 [32] Xie, S. C., Pancost, R. D., Chen, L., et al., 2012. Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291-294. https://doi.org/10.1130/g32570.1 [33] Xu, Y. D., Zhang, K. X., Wang, G. C., et al., 2010. Geological Significance of Miocene-Early Pleistocene Palynological Zones in the Gyirong Basin, Southern Tibet. Earth Science, 35(5): 759-773 (in Chinese with English abstract). [34] Yang, S. L., Ding, Z. L., 2003. Color Reflectance of Chinese Loess and Its Implications for Climate Gradient Changes during the Last Two Glacial-Interglacial Cycles. Geophysical Research Letters, 30(20): 2058. https://doi.org/10.1029/2003gl018346 [35] Yang, S. L., Fang, X. M., Li, J. J., et al., 2001. Qualitative to Semi-Quantitative Relationship between Topsoil Color and Climate. Science in China (Series D), 31(S1): 175-181(in Chinese). http://europepmc.org/abstract/med/11713630 [36] Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846. https://doi.org/10.1130/b26180.1 [37] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. https://doi.org/10.1126/science.1059412 [38] Zhang, C. X., Xiao, G. Q., Guo, Z. T., et al., 2015. Evidence of Late Early Miocene Aridification Intensification in the Xining Basin Caused by the Northeastern Tibetan Plateau Uplift. Global and Planetary Change, 128: 31-46. https://doi.org/10.1016/j.gloplacha.2015.02.002 [39] Zhang, Y. B., Sun, D. H., Li, Z. J., et al., 2014. Cenozoic Record of Aeolian Sediment Accumulation and Aridification from Lanzhou, China, Driven by Tibetan Plateau Uplift and Global Climate. Global and Planetary Change, 120: 1-15. https://doi.org/10.1016/j.gloplacha.2014.05.009 [40] Zhuang, G. S., Hourigan, J. K., Koch, P. L., et al., 2011. Isotopic Constraints on Intensified Aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 312(1-2): 152-163. https://doi.org/10.1016/j.epsl.2011.10.005 [41] 安芷生, 张培震, 王二七, 等, 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长. 第四纪研究, 26(5): 678-693. doi: 10.3321/j.issn:1001-7410.2006.05.002 [42] 戴霜, 刘俊伟, 张明震, 等, 2011. 兰州-民和盆地八盘峡剖面河口群沉积物色度纪录的140.66~124.19 Ma间气候变化. 地质学报, 85(6): 1058-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201106014.htm [43] 季峻峰, 陈骏, Balsam, W., 等, 2007. 黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究. 第四纪研究, 27(2): 221-229. doi: 10.3321/j.issn:1001-7410.2007.02.007 [44] 季军良, 张克信, 强泰, 等, 2010. 青海循化盆地新近纪磁性地层学. 地球科学, 35(5): 803-810. doi: 10.3799/dqkx.2010.093 [45] 路晶芳, 宋博文, 陈锐明, 等, 2010. 柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比. 地球科学, 35(5): 839-848. doi: 10.3799/dqkx.2010.097 [46] 宋博文, 张克信, 季军良, 等, 2011. 柴达木盆地东北缘大红沟地区古近系露头层序地层. 地质科技情报, 30(3): 25-32. doi: 10.3969/j.issn.1000-7849.2011.03.003 [47] 孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, 32(9): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709010.htm [48] 王熠哲, 吴朝东, 马健, 等, 2019. 准噶尔盆地白垩纪-新近纪地层颜色韵律与古环境和古气候演化. 古地理学报, 21(3): 451-468. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903007.htm [49] 徐亚东, 张克信, 王国灿, 等, 2010. 西藏南部吉隆盆地中新世-早更新世孢粉组合带及其地质意义. 地球科学, 35(5): 759-773. doi: 10.3799/dqkx.2010.090 [50] 杨胜利, 方小敏, 李吉均, 等, 2001. 表土颜色和气候定性至半定量关系研究. 中国科学(D辑: 地球科学), 31(S1): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1026.htm