Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum
-
摘要: 基于土压盾构在极软岩地层中近距离下穿既有建筑的背景,采用ABAQUS有限元数值模拟与现场实测相结合的方法,从地表和建筑物竖向位移变化及其控制的角度出发研究既有建筑对盾构施工的影响.实测结果表明:地表和建筑物在盾构下穿过程中会呈现出先隆起后沉降的趋势,其中在盾尾脱出阶段地表和建筑物会产生较大速率的沉降.数值模拟结果表明:建筑物改变了地层原有的应力场,使地表最终沉降峰值向靠近建筑物方向偏移并增大,沉降槽宽度也在一定程度上增大.本研究对于土压盾构穿越地层敏感区域具有较强的理论指导意义.同时,在工程实践方面,也对土压盾构采用施工参数调节与补强注浆来进行沉降控制提出了具体的指导方案.Abstract: In this paper, based on the background of the earth pressure shield tunneling through the existing buildings in the extremely soft rock formation at a short distance, using the method of combining ABAQUS finite element numerical simulation and on-site monitoring, from the perspective of surface and building vertical displacement changes and their control, the impact of existing buildings on shield construction is studied. The actual measurement results show that the ground surface and buildings will show a trend of uplift first and then subsidence during the underpass of the shield. Among them, the surface and buildings will settle at a relatively large rate during the shield tail exit stage. Numerical simulation results show that the building changes the original stress field of the stratum, and the final settlement peak of the ground surface shifts and increases toward the direction of the building, and the width of the settlement trough is also increased in a smaller range. The research in this paper has a strong theoretical guiding significance for the earth pressure shield to penetrate the sensitive area of the formation. At the same time, in terms of engineering practice, a specific guidance plan for the use of construction parameter adjustment and reinforcement grouting for settlement control of the earth pressure shield is also proposed.
-
表 1 模型材料参数
Table 1. Material parameters of the model
材料名称 密度(g/cm3) 弹性模量(GPa) 泊松比$ \mu $ C(kPa) φ(°) 厚度(m) 人工填土 1.75 0.02 0.18 5 10 0.50 粉质黏土 1.90 0.05 0.32 30 16 5.50 极软岩1 2.10 0.30 0.30 50 22 18.40 极软岩2 2.20 0.50 0.31 65 19 15.60 注浆层 1.90 9×10-4 0.40 0.10 盾壳 7.50 205.00 0.30 0.10 衬砌 2.10 28.00 0.30 0.35 条形基础 2.50 20.00 0.20 2.00 -
[1] Jiang, H.S., Hou, X.Y., 2003. Theoretical Study and Analysis of Site Observation on the Influence of Shield Excavation on Soft Clays around Tunnel. Chinese Journal of Rock Mechanics and Engineering, 22(9): 1514-1520(in Chinese with English abstract). [2] Liao, S.M., Liu, J.H., Wang, R.L., et al., 2009. Shield Tunneling and Environment Protection in Shanghai Soft Ground. Tunnelling and Underground Space Technology, 24(4): 454-465. https://doi.org/10.1016/j.tust.2008.12.005 [3] Liu, Z.W., Wang, M.S., Dong, X.P., 2003. Analysis on Ground Surface Subsidence of Metro Tunnel Induced by Shield Construction. Chinese Journal of Rock Mechanics and Engineering, 22(8): 1297-1301(in Chinese with English abstract). [4] Lv, J., Li, X.L., Fu, H.L., et al., 2020. Influence of Shield Tunnel Construction on Ground Surface Settlement under the Condition of Upper-Soft and Lower-Hard Composite Strata. Journal of Vibroengineering, 22(5): 1126-1144. https://doi.org/10.21595/jve.2020.20967 [5] Pan, Z., 2016. Study on Soil Disturbance and Its Classified Settlement Due to EPB TBM Excavation (Dissertation). China University of Mining & Technology, Beijing(in Chinese with English abstract). [6] Shao, Y., 2016. Land Subsidence and Deformation by Shield Tunnelling Construction of Line 4 in Suzhou Subway (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract). [7] Tan, F., Wang, J., Jiao, Y.Y., et al., 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908(in Chinese with English abstract). [8] Wang, X.R., Jiang, H.J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). [9] Wang, X.R., Zhou, F., Zhang, Z., et al., 2016. Dynamic Deformation of the Oversized Cross-Section Rectangular Pipe-Jacking Tunnel. Earth Science, 41(11): 1959-1965(in Chinese with English abstract). [10] Wu, H.N., Shen, S. L., Chen, R.P., etal., 2020. Three-Dimensional Numerical Modeling on Localised Leakage in Segmental Lining of Shield Tunnels. Computers and Geotechnics, 122: 103549. https://doi.org/10.1016/j.compgeo.2020.103549 [11] Yang, Z.F., 2015. Research on the Mechanics Mechanism and Control Technology of Shield Tunnel Approaching Construction on Suzhou Metro Tunnel(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [12] Zhang, M.J., Li, S.H., Li, P.F., 2020. Numerical Analysis of Ground Displacement and Segmental Stress and Influence of Yaw Excavation Loadings for a Curved Shield Tunnel. Computers and Geotechnics, 118: 103325. https://doi.org/10.1016/j.compgeo.2019.103325 [13] Zhu, J.X., 2014. Mechanical Properties of Soft Rock and Prevention of Engineering Hazards. Environmental Protection and Circular Economy, 34(1): 36-38, 51(in Chinese with English abstract). [14] 蒋洪胜, 侯学渊, 2003. 盾构掘进对隧道周围土层扰动的理论与实测分析. 岩石力学与工程学报, 22(9): 1514-1520. doi: 10.3321/j.issn:1000-6915.2003.09.022 [15] 刘招伟, 王梦恕, 董新平, 2003. 地铁隧道盾构法施工引起的地表沉降分析. 岩石力学与工程学报, 22(8): 1297-1301. doi: 10.3321/j.issn:1000-6915.2003.08.013 [16] 潘茁, 2016. 盾构施工全过程引起的土体扰动与分层沉降特性研究(博士学位论文). 北京: 中国矿业大学. [17] 邵颍, 2016. 苏州地铁4号线盾构施工引起地面沉降变形研究(硕士学位论文). 北京: 中国矿业大学. [18] 谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. doi: 10.3799/dqkx.2020.155 [19] 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269 [20] 王晓睿, 周峰, 张振, 等, 2016. 超大断面矩形顶管隧道施工动态变形规律. 地球科学, 41(11): 1959-1965. doi: 10.3799/dqkx.2016.136 [21] 杨哲峰, 2015. 苏州地铁盾构近接施工力学机理与控制技术研究(博士学位论文). 武汉: 中国地质大学. [22] 朱俊勋, 2014. 软岩的力学特性及工程危害防治. 环境保护与循环经济, 34(1): 36-38, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201401013.htm