• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    既有建筑对极软岩地层中土压盾构的施工影响

    王晓睿 蔡松 杨伟 郑培信

    王晓睿, 蔡松, 杨伟, 郑培信, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326
    引用本文: 王晓睿, 蔡松, 杨伟, 郑培信, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326
    Wang Xiaorui, Cai Song, Yang Wei, Zheng Peixin, 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326
    Citation: Wang Xiaorui, Cai Song, Yang Wei, Zheng Peixin, 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326

    既有建筑对极软岩地层中土压盾构的施工影响

    doi: 10.3799/dqkx.2020.326
    基金项目: 

    河南省科技攻关项目 182102210062

    河南省交通运输厅横向项目资助 2020J5

    详细信息
      作者简介:

      王晓睿(1975-),男,教授,主要从事数值计算的研究及其岩石裂纹扩展方面的应用.ORCID:0000-0001-5686-4332. E-mail:wxrui203@163.com

    • 中图分类号: P642

    Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum

    • 摘要: 基于土压盾构在极软岩地层中近距离下穿既有建筑的背景,采用ABAQUS有限元数值模拟与现场实测相结合的方法,从地表和建筑物竖向位移变化及其控制的角度出发研究既有建筑对盾构施工的影响.实测结果表明:地表和建筑物在盾构下穿过程中会呈现出先隆起后沉降的趋势,其中在盾尾脱出阶段地表和建筑物会产生较大速率的沉降.数值模拟结果表明:建筑物改变了地层原有的应力场,使地表最终沉降峰值向靠近建筑物方向偏移并增大,沉降槽宽度也在一定程度上增大.本研究对于土压盾构穿越地层敏感区域具有较强的理论指导意义.同时,在工程实践方面,也对土压盾构采用施工参数调节与补强注浆来进行沉降控制提出了具体的指导方案.

       

    • 图  1  隧洞与建筑物平面关系示意(单位:m)

      Fig.  1.  Schematic diagram of the plane relationship between the tunnel and the building (unit: m)

      图  2  隧洞与建筑物剖面关系示意(单位:m)

      Fig.  2.  Schematic diagram of the cross-sectional relationship between the tunnel and the building (unit: m)

      图  3  观测方案平面示意图(单位:m)

      Fig.  3.  Schematic diagram of the plane of the observation project(unit: m)

      图  4  观测方案剖面示意图(单位:m)

      Fig.  4.  Schematic diagram of the cross-section of the observation project(unit: m)

      图  5  地表竖向位移实测历程曲线

      Fig.  5.  The monitoring process curve of the vertical displacement of the ground surface

      图  6  盾构穿越段的5个特征位置

      Fig.  6.  Five characteristic positions of shield tunneling

      图  7  不同特征位置处的现场实测值

      Fig.  7.  On-site monitoring values under different characteristic positions

      图  8  计算模型网格

      Fig.  8.  Computational model grid

      图  9  建筑物存在时的平衡应力场(a)和无建筑物存在时的平衡应力场(b)

      Fig.  9.  The equilibrium stress field when the building exists (a) and the equilibrium stress field when there is no building (b)

      图  10  建筑物存在时的地表竖向位移云图(a)和无建筑物存在时的地表竖向位移云图(b)

      Fig.  10.  Cloud map of surface vertical displacement when buildings exist (a) and when there is no building (b)

      图  11  P-P'断面地表竖向位移对比分析曲线

      Fig.  11.  Comparative analysis curve of surface vertical displacement of P-P' section

      图  12  建筑物竖向位移动态变化对比分析曲线

      Fig.  12.  Comparative analysis curves of the dynamic change of the vertical displacement of the building

      表  1  模型材料参数

      Table  1.   Material parameters of the model

      材料名称 密度(g/cm3 弹性模量(GPa) 泊松比$ \mu $ C(kPa) φ(°) 厚度(m)
      人工填土 1.75 0.02 0.18 5 10 0.50
      粉质黏土 1.90 0.05 0.32 30 16 5.50
      极软岩1 2.10 0.30 0.30 50 22 18.40
      极软岩2 2.20 0.50 0.31 65 19 15.60
      注浆层 1.90 9×10-4 0.40 0.10
      盾壳 7.50 205.00 0.30 0.10
      衬砌 2.10 28.00 0.30 0.35
      条形基础 2.50 20.00 0.20 2.00
      下载: 导出CSV
    • [1] Jiang, H.S., Hou, X.Y., 2003. Theoretical Study and Analysis of Site Observation on the Influence of Shield Excavation on Soft Clays around Tunnel. Chinese Journal of Rock Mechanics and Engineering, 22(9): 1514-1520(in Chinese with English abstract).
      [2] Liao, S.M., Liu, J.H., Wang, R.L., et al., 2009. Shield Tunneling and Environment Protection in Shanghai Soft Ground. Tunnelling and Underground Space Technology, 24(4): 454-465. https://doi.org/10.1016/j.tust.2008.12.005
      [3] Liu, Z.W., Wang, M.S., Dong, X.P., 2003. Analysis on Ground Surface Subsidence of Metro Tunnel Induced by Shield Construction. Chinese Journal of Rock Mechanics and Engineering, 22(8): 1297-1301(in Chinese with English abstract).
      [4] Lv, J., Li, X.L., Fu, H.L., et al., 2020. Influence of Shield Tunnel Construction on Ground Surface Settlement under the Condition of Upper-Soft and Lower-Hard Composite Strata. Journal of Vibroengineering, 22(5): 1126-1144. https://doi.org/10.21595/jve.2020.20967
      [5] Pan, Z., 2016. Study on Soil Disturbance and Its Classified Settlement Due to EPB TBM Excavation (Dissertation). China University of Mining & Technology, Beijing(in Chinese with English abstract).
      [6] Shao, Y., 2016. Land Subsidence and Deformation by Shield Tunnelling Construction of Line 4 in Suzhou Subway (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract).
      [7] Tan, F., Wang, J., Jiao, Y.Y., et al., 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908(in Chinese with English abstract).
      [8] Wang, X.R., Jiang, H.J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract).
      [9] Wang, X.R., Zhou, F., Zhang, Z., et al., 2016. Dynamic Deformation of the Oversized Cross-Section Rectangular Pipe-Jacking Tunnel. Earth Science, 41(11): 1959-1965(in Chinese with English abstract).
      [10] Wu, H.N., Shen, S. L., Chen, R.P., etal., 2020. Three-Dimensional Numerical Modeling on Localised Leakage in Segmental Lining of Shield Tunnels. Computers and Geotechnics, 122: 103549. https://doi.org/10.1016/j.compgeo.2020.103549
      [11] Yang, Z.F., 2015. Research on the Mechanics Mechanism and Control Technology of Shield Tunnel Approaching Construction on Suzhou Metro Tunnel(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [12] Zhang, M.J., Li, S.H., Li, P.F., 2020. Numerical Analysis of Ground Displacement and Segmental Stress and Influence of Yaw Excavation Loadings for a Curved Shield Tunnel. Computers and Geotechnics, 118: 103325. https://doi.org/10.1016/j.compgeo.2019.103325
      [13] Zhu, J.X., 2014. Mechanical Properties of Soft Rock and Prevention of Engineering Hazards. Environmental Protection and Circular Economy, 34(1): 36-38, 51(in Chinese with English abstract).
      [14] 蒋洪胜, 侯学渊, 2003. 盾构掘进对隧道周围土层扰动的理论与实测分析. 岩石力学与工程学报, 22(9): 1514-1520. doi: 10.3321/j.issn:1000-6915.2003.09.022
      [15] 刘招伟, 王梦恕, 董新平, 2003. 地铁隧道盾构法施工引起的地表沉降分析. 岩石力学与工程学报, 22(8): 1297-1301. doi: 10.3321/j.issn:1000-6915.2003.08.013
      [16] 潘茁, 2016. 盾构施工全过程引起的土体扰动与分层沉降特性研究(博士学位论文). 北京: 中国矿业大学.
      [17] 邵颍, 2016. 苏州地铁4号线盾构施工引起地面沉降变形研究(硕士学位论文). 北京: 中国矿业大学.
      [18] 谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. doi: 10.3799/dqkx.2020.155
      [19] 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      [20] 王晓睿, 周峰, 张振, 等, 2016. 超大断面矩形顶管隧道施工动态变形规律. 地球科学, 41(11): 1959-1965. doi: 10.3799/dqkx.2016.136
      [21] 杨哲峰, 2015. 苏州地铁盾构近接施工力学机理与控制技术研究(博士学位论文). 武汉: 中国地质大学.
      [22] 朱俊勋, 2014. 软岩的力学特性及工程危害防治. 环境保护与循环经济, 34(1): 36-38, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201401013.htm
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  359
    • HTML全文浏览量:  107
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-30
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回