Emplacement Depth of Early Cretaceous Granitoid Intrusions in Periphery of Wulong Gold Deposit in Liaodong Peninsula and Their Geological Implications
-
摘要: 早白垩世岩浆活动对辽东半岛五龙地区金矿形成可能具有明显的制约作用,并可能为含金流体提供了热源及动力.五龙金矿南、北早白垩世三股流岩体和五龙背岩体角闪石-斜长石温压计计算结果表明,这2个岩体角闪石结晶温度为640.8~757.4 ℃,对应岩浆的侵位深度为5.9~9.7 km.角闪石TiO2-Al2O3图解表明,三股流和五龙背岩体岩浆源区为壳幔混源.三股流和五龙背岩体侵位深度的差异表明,晚白垩世晚期至早始新世和晚始新世至渐新世五龙地区发生的两期强烈的差异性隆升和剥露过程使五龙岩体、三股流岩体及五龙背岩体在研究区大面积出露,含金矿脉随着区域性隆升到达近地表.考虑到辽东半岛与胶东半岛的相似构造背景,认为五龙地区具有进一步金矿勘探的价值.Abstract: Early Cretaceous magmatism in the Liaodong Peninsula is of great significance for the formation of Wulong gold deposit and probably provided the heat source and power for the gold-bearing fluid. Results from geothermobarometry of hornblende-plagioclase applied to the Early Cretaceous Sanguliu and Wulongbei granitoid intrusions,located in the north and south parts of the Wulong area respectively,demonstrate that hornblendes in the Sanguliu and Wulongbei granitoid intrusions crystallized at temperatures from 640.8 to 757.4 ℃ and the emplacement depth of the magma is from 5.9 to 9.7 km. On the TiO2-Al2O3 diagram,samples from the Sanguliu and Wulongbei granitoid intrusions plot in the area of mixed source of crust and mantle. The difference of the emplacement depth between the Sanguliu and Wulongbei granitoid intrusions indicates that the large areas of emergence of the Wulong,Sanguliu and Wulongbei granitoid intrusions were formed by the strong differential exhumation and denudation during the times from late Late Cretaceous to Early Eocene and from Late Eocene to Oligocene. Simultaneously,the gold-bearing veins reached the near surface by regional uplift. The Wulong area is worth further gold exploration considering that the Liaodong Peninsula has the similar tectonic settings with the Jiaodong Peninsula.
-
图 1 五龙金矿及周缘区域地质图
Fig. 1. Geological map of the Wulong gold deposit and its surrounding areas
图 3 三股流和五龙背岩体角闪石分类图解
Fig. 3. Hornblende classification of the Sanguliu and Wulongbei plutons
图 4 三股流岩体和五龙背岩体角闪石TiO2-Al2O3 图解
Fig. 4. TiO2-Al2O3 diagram of hornblende from the Sanguliu and Wulongbei plutons
表 1 三股流和五龙背岩体角闪石矿物组成
Table 1. Compositions of hornblende from the Sanguliu and Wulongbei plutons
岩体 三股流 样品号 LD18-11 LD18-11 LD18-11 LD18-11 LD18-11 LD18-11 LD18-12 LD18-12 LD18-12 LD18-12 LD18-13 测点号 1 2 3 4 5 6 1 2 3 4 1 SiO2 45.58 45.79 45.30 45.76 44.73 46.10 46.03 45.70 49.59 44.49 46.60 TiO2 1.16 1.24 1.66 1.05 1.45 1.01 0.95 1.13 0.42 1.50 1.33 Al2O3 8.18 8.10 8.28 8.13 8.43 7.58 6.30 6.51 4.64 8.02 7.52 FeO* 19.00 18.58 19.02 19.01 19.54 18.49 17.74 17.69 15.57 19.60 19.03 MgO 10.07 10.13 9.57 9.94 9.33 10.40 10.46 10.98 12.54 9.48 9.86 MnO 0.45 0.43 0.41 0.46 0.46 0.46 0.47 0.44 0.47 0.50 0.53 CaO 10.91 11.22 11.50 10.99 10.65 10.99 11.08 11.20 11.83 11.26 11.33 Na2O 1.38 1.24 1.34 1.24 1.46 1.29 1.49 1.64 0.86 1.88 1.48 K2O 0.92 0.91 0.98 0.86 0.92 0.90 0.80 0.83 0.49 1.13 0.98 总量 97.64 97.64 98.05 97.45 96.96 97.22 95.33 96.12 96.39 96.93 98.66 据Holland and Blundy (1994)配位计算(23个氧原子) Si 6.807 6.835 6.782 6.843 6.756 6.898 7.038 6.935 7.361 6.725 6.920 Aliv 1.193 1.165 1.218 1.157 1.244 1.102 0.962 1.065 0.639 1.275 1.080 Alvi 0.247 0.261 0.243 0.277 0.256 0.235 0.174 0.099 0.174 0.155 0.237 Ti 0.131 0.139 0.187 0.119 0.164 0.114 0.109 0.129 0.047 0.171 0.148 Fe3+ 0.520 0.448 0.341 0.503 0.514 0.489 0.344 0.397 0.299 0.359 0.337 Mg 2.242 2.254 2.135 2.216 2.100 2.320 2.384 2.484 2.773 2.136 2.181 Mn 0.056 0.054 0.052 0.058 0.059 0.058 0.061 0.057 0.059 0.064 0.067 Fe2+ 1.805 1.844 2.039 1.828 1.906 1.785 1.925 1.834 1.634 2.116 2.026 M4位 Fe 0.049 0.028 0.000 0.047 0.048 0.040 0.000 0.013 0.000 0.002 0.000 Ca 1.746 1.795 1.841 1.761 1.723 1.762 1.813 1.821 1.866 1.823 1.799 Na 0.205 0.177 0.159 0.192 0.229 0.198 0.187 0.165 0.134 0.175 0.201 A位 Na 0.195 0.180 0.231 0.168 0.197 0.176 0.256 0.316 0.115 0.377 0.225 K 0.174 0.173 0.188 0.165 0.177 0.172 0.156 0.160 0.092 0.218 0.186 A位总和 0.370 0.354 0.419 0.332 0.375 0.348 0.412 0.476 0.207 0.595 0.411 总和 15.370 15.354 15.416 15.332 15.375 15.348 15.410 15.476 15.191 15.595 15.407 岩体 三股流 五龙背 样品号 LD18-24 LD18-24 LD18-25 LD18-25 LD18-25 LD18-27 LD18-27 LD18-39 LD18-39 LD18-39 测点号 1 2 1 2 3 1 2 1 2 3 SiO2 47.50 47.98 44.86 43.96 42.16 48.44 48.77 45.86 47.74 48.69 TiO2 0.79 0.87 1.66 1.41 0.74 0.66 0.72 1.42 0.59 0.73 Al2O3 6.57 6.18 7.75 8.05 7.39 5.23 4.90 6.52 4.83 5.76 FeO* 18.11 18.46 20.36 20.87 21.45 17.69 17.59 21.80 14.45 16.92 MgO 10.84 10.99 9.71 8.53 8.58 11.08 11.29 8.36 12.08 11.81 MnO 0.45 0.38 0.48 0.54 0.59 0.44 0.46 1.35 0.37 0.46 CaO 11.42 11.59 10.99 10.97 11.13 11.35 11.32 10.18 13.91 11.48 Na2O 1.16 1.29 2.00 2.05 1.65 1.12 1.15 1.93 0.81 1.21 K2O 0.75 0.74 1.08 1.10 1.04 0.60 0.60 0.73 0.48 0.63 总量 97.58 98.46 98.89 97.48 94.72 96.62 96.79 98.14 95.26 97.69 据Holland and Blundy (1994)配位计算(23个氧原子) Si 7.063 7.087 6.713 6.715 6.658 7.254 7.285 6.931 7.147 7.182 Aliv 0.937 0.913 1.287 1.285 1.342 0.746 0.715 1.069 0.853 0.818 岩体 三股流 五龙背 Alvi 0.215 0.163 0.079 0.165 0.034 0.177 0.148 0.093 0.000 0.183 Ti 0.088 0.097 0.187 0.162 0.087 0.075 0.080 0.161 0.066 0.081 Fe3+ 0.400 0.370 0.444 0.371 0.546 0.342 0.341 0.521 0.697 0.369 Mg 2.402 2.419 2.165 1.942 2.020 2.474 2.514 1.883 2.695 2.596 Mn 0.057 0.047 0.061 0.070 0.079 0.056 0.058 0.172 0.047 0.057 Fe2+ 1.837 1.905 2.064 2.289 2.233 1.873 1.856 2.170 1.113 1.713 M4位 Fe 0.014 0.005 0.040 0.006 0.053 0.000 0.000 0.065 0.000 0.005 Ca 1.820 1.834 1.762 1.795 1.883 1.818 1.809 1.649 1.849 1.814 Na 0.165 0.161 0.198 0.199 0.064 0.182 0.191 0.286 0.151 0.181 A位 Na 0.169 0.209 0.382 0.409 0.442 0.144 0.142 0.278 0.083 0.165 K 0.142 0.139 0.206 0.215 0.209 0.115 0.114 0.140 0.092 0.119 A位总和 0.311 0.348 0.588 0.624 0.651 0.259 0.255 0.419 0.175 0.284 总和 15.311 15.348 15.588 15.624 15.651 15.256 15.252 15.419 14.793 15.284 表 2 三股流和五龙背岩体斜长石矿物组成
Table 2. Compositions of plagioclase from the Sanguliu and Wulongbei plutons
岩体 三股流 样品号 LD18-11 LD18-11 LD18-11 LD18-11 LD18-11 LD18-11 LD18-12 LD18-12 LD18-12 LD18-12 LD18-13 测点号 1 2 3 4 5 6 1 2 3 4 1 SiO2 59.31 57.95 58.49 60.13 58.23 58.24 63.98 62.29 63.35 63.79 63.28 TiO2 0.00 0.04 0.00 0.03 0.10 0.03 0.00 0.00 0.00 0.00 0.00 Al2O3 24.84 25.87 25.38 24.63 25.62 24.41 22.56 22.81 22.28 22.36 22.54 FeO* 0.13 0.05 0.08 0.08 0.05 0.11 0.10 0.11 0.00 0.21 0.04 MgO 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 MnO 0.00 0.00 0.03 0.04 0.00 0.01 0.00 0.00 0.03 0.02 0.00 CaO 6.83 8.02 7.90 6.62 7.89 7.14 4.46 4.82 3.82 3.97 4.45 Na2O 7.81 7.29 7.21 8.06 7.15 7.36 9.34 9.15 9.81 9.84 9.09 K2O 0.19 0.11 0.13 0.24 0.20 0.15 0.24 0.33 0.14 0.19 0.23 总量 99.11 99.33 99.21 99.84 99.25 97.48 100.69 99.51 99.42 100.37 99.62 按8个氧原子计算离子数 Si 2.671 2.612 2.637 2.687 2.625 2.667 2.813 2.780 2.819 2.816 2.810 Al 1.318 1.374 1.348 1.297 1.361 1.317 1.169 1.200 1.168 1.163 1.179 Ti 0.000 0.001 0.000 0.001 0.003 0.001 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.005 0.002 0.003 0.003 0.002 0.004 0.004 0.004 0.000 0.008 0.001 Mg 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 Mn 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.000 Ca 0.330 0.387 0.382 0.317 0.381 0.350 0.210 0.231 0.182 0.188 0.212 Na 0.682 0.637 0.630 0.698 0.625 0.653 0.797 0.792 0.846 0.842 0.782 K 0.011 0.006 0.007 0.014 0.012 0.009 0.013 0.019 0.008 0.011 0.013 总和 5.016 5.021 5.008 5.019 5.010 5.005 5.007 5.025 5.024 5.029 4.998 Ab 66.7 61.8 61.8 67.9 61.4 64.5 78.1 76.0 81.7 80.9 77.7 An 32.3 37.6 37.5 30.8 37.4 34.6 20.6 22.1 17.6 18.0 21.0 Or 1.0 0.6 0.7 1.3 1.1 0.9 1.3 1.8 0.7 1.0 1.3 岩体 三股流 五龙背 样品号 LD18-24 LD18-24 LD18-25 LD18-25 LD18-25 LD18-27 LD18-27 LD18-39 LD18-39 LD18-39 测点号 1 2 1 2 3 1 2 1 2 3 SiO2 63.42 63.37 64.78 65.45 64.14 63.21 60.78 64.90 64.04 60.15 TiO2 0.00 0.02 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.04 Al2O3 22.55 22.57 22.07 21.64 21.95 22.77 24.12 21.46 22.95 25.42 FeO* 0.03 0.10 0.15 0.08 0.13 0.09 0.14 0.14 0.07 0.07 MgO 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.01 0.01 MnO 0.00 0.01 0.03 0.03 0.00 0.00 0.02 0.00 0.01 0.01 CaO 4.25 4.26 3.33 3.34 3.66 4.58 6.45 2.89 4.31 7.28 Na2O 9.50 9.62 10.03 9.99 9.94 9.43 8.26 10.25 9.35 7.00 K2O 0.25 0.14 0.22 0.25 0.22 0.31 0.26 0.41 0.16 0.20 总量 100.01 100.09 100.61 100.80 100.05 100.46 100.06 100.05 100.89 100.18 按8个氧原子计算离子数 Si 2.808 2.805 2.845 2.866 2.837 2.792 2.710 2.866 2.807 2.672 Al 1.177 1.177 1.142 1.117 1.144 1.186 1.267 1.117 1.185 1.331 Ti 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 Fe2+ 0.001 0.004 0.006 0.003 0.005 0.003 0.005 0.005 0.003 0.003 Mg 0.000 0.000 0.000 0.001 0.001 0.000 0.002 0.000 0.001 0.000 Mn 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 Ca 0.202 0.202 0.156 0.157 0.173 0.217 0.308 0.137 0.202 0.347 Na 0.816 0.826 0.854 0.848 0.852 0.808 0.714 0.877 0.795 0.603 K 0.014 0.008 0.012 0.014 0.012 0.017 0.015 0.023 0.009 0.011 总和 5.018 5.022 5.017 5.006 5.024 5.025 5.021 5.025 5.002 4.968 Ab 79.1 79.7 83.5 83.2 82.1 77.5 68.9 84.6 79.0 62.8 An 19.6 19.5 15.3 15.4 16.7 20.8 29.7 13.2 20.1 36.1 Or 1.4 0.7 1.2 1.4 1.2 1.7 1.4 2.2 0.9 1.2 表 3 三股流岩体和五龙背岩体结晶压力和侵位深度
Table 3. Crystallization pressure and emplacement depth of the Sanguliu and Wulongbei plutons
岩体名称 样品号 测点号 Altot T(℃) P-A & S
(105 kPa)P-J & R
(105 kPa)Dp
(km)样品深度(km) 岩体平均深度(km) 三股流岩体 LD18-11 1 1.440 752.4 2.78 2.73 10.1 11.1 9.7 2 1.426 729.0 3.12 2.67 11.4 3 1.461 736.0 3.16 2.82 11.5 4 1.434 704.8 3.49 2.70 12.7 5 1.500 757.4 2.94 2.99 10.7 6 1.337 725.7 2.77 2.29 10.1 LD18-12 1 1.136 676.3 2.39 1.45 8.7 9.1 2 1.164 711.8 2.18 1.56 7.9 3 1.027 653.3 1.99 0.98 7.2 4 1.430 705.3 3.47 2.69 12.6 LD18-13 1 1.317 672.0 3.28 2.21 12.0 12.0 LD18-24 1 1.152 640.8 2.64 1.51 9.6 8.9 2 1.076 653.8 2.23 1.19 8.1 LD18-25 1 1.366 720.5 2.98 2.42 10.8 12.3 2 1.450 699.5 3.63 2.77 13.2 3 1.377 682.6 3.47 2.46 12.7 LD18-27 1 0.924 641.7 1.51 0.55 5.5 4.7 2 0.863 676.4 1.09 0.29 4.0 五龙背岩体 LD18-39 1 1.162 692.6 2.37 1.55 8.6 5.9 5.9 2 0.853 670.5 1.07 0.25 3.9 3 1.001 710.9 1.45 0.88 5.3 注:P-J & R(±0.5 kbar)=4.23AlT-3.36 (Johnson and Rutherford, 1989), r2=0.99;P-A & S(±0.6 kbar)=4.76 AlT-3.01-{[T(℃)-675]/85}×{0.530 AlT +0.005 294[T(℃)-675]}, r2=0.99.r2为公式相关系数;Altot为测点全铝含量;P-A & S为根据Anderson and Smith(1995)计算的压力;P-J & R为根据Johnson and Rutherford(1989)计算的压力;Dp为测点获得的侵位深度. -
[1] Anderson, J. L., Smith, D. R., 1995. The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer. American Mineralogist, 80(5-6): 549-559. https://doi.org/10.2138/am-1995-5-614 [2] Chen, Y. J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1268 (in Chinese with English abstract). [3] Davis, G. A., Zheng, Y. D., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Geological Society of American Memoir, 194: 171-197. https://doi.org/10.1130/0-8137-1194-0.171 [4] Dou, J. Z., Zhang, H. F., Tong, Y., et al., 2018. Application of Geothermo-Barometers to Mesozoic Granitoids in the Jiaodong Peninsula, Eastern China: Criteria for Selecting Methods of Pressure Estimation and Implications for Crustal Exhumation. Journal of Asian Earth Sciences, 160: 271-286. https://doi.org/10.1016/j.jseaes.2018.01.019 [5] Duan, X. X., Zeng, Q. D., Yang, J. H., et al., 2014. Geochronology, Geochemistry and Hf Isotope of Late Triassic Magmatic Rocks of Qingchengzi District in Liaodong Peninsula, Northeast China. Journal of Asian Earth Sciences, 91: 107-124. https://doi.org/10.1016/j.jseaes.2014.05.009 [6] Gong, L., Chen, H. Y., Xiao, B., et al., 2018. Mineral Chemistry of Hornblende in the Chihu-Fuxing Copper District, Xinjiang, and Its Geological Significance. Geochimica, 47(2): 149-168 (in Chinese with English abstract). [7] Gu, Y. C., 2019. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning (Dissertation). China University of Geosciences, Beijing, 1-156 (in Chinese with English abstract). [8] Guo, Q., 2019. Structural Regularity of Ore-Controlling and Mineralization Prediction of Wulong Gold Deposit in Liaodong (Dissertation). China University of Geosciences, Beijing, 1-66 (in Chinese with English abstract). [9] Hammarstrom, J. M., Zen, E., 1986. Aluminum in Hornblende: An Empirical Igneous Geobarometer. American Mineralogist, 71(11-12): 1297-1313. [10] Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole- Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116: 433-447. doi: 10.1007/BF00310910 [11] Johnson, M. C., Rutherford, M. J., 1989. Experimental Calibration of the Aluminum-in-Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rocks. Geology, 17(9): 837. https://doi.org/10.1130/0091-7613(1989)0170837:ecotai>2.3.co;2 doi: 10.1130/0091-7613(1989)0170837:ecotai>2.3.co;2 [12] Kong, R. Y., Yan, D. P., Qiu, L., et al., 2020. Early Cretaceous Tectonic Transition and SW-ward Basin Migration in Northern Liaodong Peninsula, NE China: Sedimentary, Structural, and Geochronological Constraints. Geological Journal, 55(8): 5681-5702. https://doi.org/10.1002/gj.3620 [13] Leake, B. E., 1978. Nomenclature of Amphiboles. Mineralogical Magazine, 42(324): 533-563. https://doi.org/10.1180/minmag.1978.042.324.21 [14] Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623 [15] Li, S. Z., Yang, Z. S., 1997. Types and Genesis of Palaeoproterozoic Granites in the Jiao-Liao Massif. Northwestern Geology, 30(3): 21-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI199703003.htm [16] Li, Z., Chen, B., Yan, X. L., 2019. The Liaohe Group: An Insight into the Paleoproterozoic Tectonic Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 326: 174-195. https://doi.org/10.1016/j.precamres.2018.01.009 [17] Liaoning Bureau of Geology and Mineral Resources, 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing, 33-280 (in Chinese). [18] Lin, W., Wang, Q. C., Wang, J., et al., 2011. Late Mesozoic Extensional Tectonics of the Liaodong Peninsula Massif: Response of Crust to Continental Lithosphere Destruction of the North China Craton. Science in China (Series D: Earth Sciences), 41(5): 638-653 (in Chinese). [19] Liu, C. H., Wu, C. L., Lei, M., et al., 2013. Mineral Composition and Temperature-Pressure Conditions of Dongjiangkou and Zhashui Granites in the Qinling Mountains. Acta Petrologica et Mineralogica, 32(3): 341-354 (in Chinese with English abstract). [20] Liu, J. L., Guan, H. M., Cui, Y. C., 2002. The Tectonic Framework of the Liaoji Paleoproterozoic Fold Zone. Progress in Precambrian Research, 25(3): 214-220 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ2002Z1019.htm [21] Liu, J. L., Ji, M., Shen, L., et al., 2011. Early Cretaceous Extensional Structures in the Liaodong Peninsula: Structural Associations, Geochronological Constraints and Regional Tectonic Implications. Science in China (Series D: Earth Sciences), 41(5): 618-637 (in Chinese). http://www.cqvip.com/QK/71135X/201107/37557799.html [22] Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2): 304-310. doi: 10.1007/BF00310745 [23] Schumacher, J. C., 1997. Appendix 2: The Estimate of Ferric Iron in Electron Microprobe Analysis of Amphiboles. European Journal of Mineralogy, 9: 643-651. [24] Tian, M. J., Li, D. Q., Li, B., et al., 2019. Geochemical Characteristics and Tectonic Significance of Granite from Nanfen Metamorphic Core Complexes in Liaoning. Earth Science, 44(10): 3551-3564 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910025.htm [25] Wang, Y., 2014. The Al-in-Hornblende Barometry for Calc-Alkaline Igneous Rocks: Retrospect, Evaluation and Applications. Geological Review, 60(4): 839-850 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZLP201404015.htm [26] Wang, Y. Z., Wang, F., Wu, L., et al., 2018. (U-Th)/He Thermochronology of Metallic Ore Deposits in the Liaodong Peninsula: Implications for Orefield Evolution in Northeast China. Ore Geology Reviews, 92: 348-365. https://doi.org/10.1016/j.oregeorev.2017.11.025 [27] Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 [28] Wei, J. H., Liu, C. Q., Tang, H. F., 2003. MetalIogeny of Gold Deposits and Evidence of Isotopes and Trace Elements for the Comagmatic Evolution of the Yanshanian Intrusive Rocks in the Wulong Area, Eastern Liaoning. Geological Review, 49(3): 265-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303007.htm [29] Wu, F., Zhang, S. H., Zhao, Y., et al., 2014. Emplacement Depths of the Early Permian Plutons in Guyang Area of Northern North China Block and Their Tectonic Implications. Geology in China, 41(3): 824-837 (in Chinese with English abstract). [30] Wu, F. Y., Lin, J., Wilde, S., et al., 2005a. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019 [31] Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005b. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 [32] Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract). [33] Wu, F. Y., Xu, Y. G., Gao, S., et al., 2008. Lithospheric Thinning and Destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract). [34] Xiao, S. Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28-29): 3022-3036 (in Chinese). doi: 10.1360/N972018-00682 [35] Yang, C. F., Ji, Z. J., Zhang, G. X., et al., 1997. Restraining Mechanism of Veins in Wulong Gold Deposit on Au Orebodies. Geology and Prospecting, 33(6): 7-11 (in Chinese with English abstract). [36] Yang, C. H., Du, L. L., Song, H. X., et al., 2018. Straitigraphic Division and Correction of the Pleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34 (4): 1019-1057 (in Chinese with English abstract). [37] Yang, C. W., Liu, J. L., Yang, H. X., et al., 2019. Tectonics of the Paleoproterozoic Jiao-Liao-Ji Orogenic Belt in the Liaodong Peninsula, North China Craton: A Review. Journal of Asian Earth Sciences, 176: 141-156. https://doi.org/10.1016/j.jseaes.2019.01.028 [38] Yang, F. C., Song, Y. H., Yang, J. L., et al., 2018. SHRIMP U-Pb Age and Geochemical Characteristics of Granites in Wulong-Sidaogou Gold Deposit, East Liaoning. Geotectonica et Metallogenia, 42(5): 940-954 (in Chinese with English abstract). [39] Zhang, G. R., Jiang, S. E., Han, X. P., et al., 2006. The Main Characteristics of Yalujiang Fault Zone and Its Significance. Geology and Resources, 15(1): 11-19 (in Chinese with English abstract). [40] Zhang, P., Zhao, Y., Kou, L. L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10): 3297-3313 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910010.htm [41] Zhang, S. H., Zhao, Y., Liu, J., et al., 2007. Emplacement Depth of the Late Paleozoic-Mesozoic Granitoid Intrusions from the Northern North China Block and Their Tectonic Implications. Acta Petrologica Sinica, 23(3): 625-638 (in Chinese with English abstract). [42] Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science in China (Series D: Earth Sciences), 45(8): 1153-1168 (in Chinese). doi: 10.1007/s11430-015-5139-x [43] 陈衍景, 张成, 李诺, 等, 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205002.htm [44] 龚林, 陈华勇, 肖兵, 等, 2018. 新疆赤湖-福兴铜矿区角闪石矿物化学特征及其地质意义. 地球化学, 47(2): 149-168. doi: 10.3969/j.issn.0379-1726.2018.02.005 [45] 顾玉超, 2019. 辽东五龙金矿区中生代构造-岩浆作用对金成矿制约(博士学位论文). 北京: 中国地质大学, 1-156. [46] 郭祺, 2019. 辽宁五龙金矿构造控矿规律及找矿预测(硕士学位论文). 北京: 中国地质大学, 1-66. [47] 李三忠, 杨振升, 1997. 胶辽地块古元古代花岗岩类型及成因. 西北地质, 30(3): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI199703003.htm [48] 辽宁省地质矿产局, 1989. 辽宁省区域地质志. 北京: 地质出版社, 33-280. [49] 林伟, 王清晨, 王军, 等, 2011. 辽东半岛晚中生代伸展构造——华北克拉通破坏的地壳响应. 中国科学(D辑: 地球科学), 41(5): 638-653. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105004.htm [50] 刘春花, 吴才来, 雷敏, 等, 2013. 秦岭东江口和柞水花岗岩的矿物成分特征及其形成的温压条件. 岩石矿物学杂志, 32(3): 341-354. doi: 10.3969/j.issn.1000-6524.2013.03.006 [51] 刘俊来, 关会梅, 崔迎春, 2002. 辽吉古元古宙褶皱带构造分区与构造演化. 前寒武纪研究进展, 25(3): 214-220. doi: 10.3969/j.issn.1672-4135.2002.03.014 [52] 刘俊来, 纪沫, 申亮, 等, 2011. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵. 中国科学(D辑: 地球科学), 41(5): 618-637. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105003.htm [53] 田茂军, 李帝铨, 李斌, 等, 2019. 辽宁南芬变质核杂岩核部花岗岩地球化学特征及构造意义. 地球科学, 44(10): 3551-3564. doi: 10.3799/dqkx.2018.299 [54] 汪洋, 2014. 钙碱性火成岩的角闪石全铝压力计: 回顾、评价和应用实例. 地质论评, 60(4): 839-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404015.htm [55] 魏俊浩, 刘丛强, 唐红峰, 2003. 辽东五龙地区燕山期侵入岩类同源岩浆演化微量元素、同位素证据与金矿成矿. 地质论评, 49(3): 265-271. doi: 10.3321/j.issn:0371-5736.2003.03.007 [56] 吴飞, 张拴宏, 赵越, 等, 2014. 华北地块北缘内蒙古固阳地区早二叠世岩体的侵位深度及其构造意义. 中国地质, 41(3): 824-837. doi: 10.3969/j.issn.1000-3657.2014.03.011 [57] 吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm [58] 吴福元, 杨进辉, 柳小明, 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [59] 肖世椰, 朱光, 张帅, 等, 2018. 辽东五龙金矿区成矿期构造过程与岩脉就位机制. 科学通报, 63(28-29): 3022-3036. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2018Z2011.htm [60] 杨春福, 纪兆家, 张国宪, 等, 1997. 五龙金矿脉岩对金矿体的制约机制. 地质与勘探, 33(6): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199706001.htm [61] 杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804012.htm [62] 杨凤超, 宋运红, 杨佳林, 等, 2018. 辽东五龙-四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义. 大地构造与成矿学, 42(5): 940-954. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805013.htm [63] 张国仁, 江淑娥, 韩晓平, 等, 2006. 鸭绿江断裂带的主要特征及其研究意义. 地质与资源, 15(1): 11-19. doi: 10.3969/j.issn.1671-1947.2006.01.002 [64] 张朋, 赵岩, 寇林林, 等, 2019. 辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地球科学, 44(10): 3297-3313. doi: 10.3799/dqkx.2019.129 [65] 张拴宏, 赵越, 刘健, 等, 2007. 华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义. 岩石学报, 23(3): 625-638. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703012.htm [66] 朱日祥, 范宏瑞, 李建威, 等, 2015. 拉通破坏性金矿床. 中国科学(D辑: 地球科学), 45(8): 1153-1168.