A Petrographic Classification Scheme of Metamorphic Rocks Based on Fabric-Components
-
摘要: 为建立一个较严密、系统的常见变质岩石的岩相学分类,采用既反映岩石结构构造特征又蕴含岩石基本组成的变质岩组构组分作为岩石分类的一级分类指标,以岩石结构、构造和组构组分的成分依次作为二、三和四级指标,划分了归属于造山区域变质岩、接触热变质岩、断层动力变质岩、蚀变交代变质岩和混合岩这5个大类变质成因的基本岩石.如岩石的地质产状已知,可用对应于地质产状的成因类型变质岩替换组构组分,升级为一级分类指标,然后用同样程序进行划分.本分类方案中,造山区域变质岩与接触热变质岩因具有相同组构组分,因此,大部分基本岩石名称相同,但可借助其地质产状和一些特征变质矿物的特殊显微构造的有无将它们区分开来.本分类方案的分类效果优于国内外现有的岩相学分类方案.Abstract: In this paper, a classification scheme is proposed for the common metamorphic rocks. In this scheme, the fabric-components reflecting both the structure-texture and compositions of metamorphic rocks are used as the first-order index, and the texture, structure and mineral composition are sequentially used as the secondary-, third- and fourth-order indexes for classification of the five genetic types of orogenic-regional, contact thermal, fault-related dynamic, altered-metasomatic metamorphic and migmatitic rocks. When geological occurrence of rocks is clear, the genetic type can replace the corresponding fabric component and becomes the first-order index for classification with the same procedures. Most orogenic-regional and contact thermal metamorphic rocks share the same names and features due to having the same fabric-components. However, it would be easy to distinguish a regional rock from a contact one according to their mode of occurrence and other characteristic microstructures of some diagnostic minerals. The effect of this classification is better than the petrographic classification schemes available in the world.
-
Key words:
- fabric-components /
- petrographic classification scheme /
- metamorphic rocks /
- petrology
-
表 1 基于组构组分的常见变质岩岩相学分类
Table 1. The fabric component-based petrographical classification for metamorphic rocks
组构组分 结构类型 构造类型 组构组分成分 岩石名称 成因类型 变晶矿物或变晶矿物组合 变晶 变余、隐晶 板状 泥质、粉砂质、砂质、凝灰质变余碎屑;云母、绿泥石、叶腊石等变质矿物和碳质;少量变余斑晶 板岩,斑点板岩或瘤状板岩** 造山区域变质岩和(或)接触热变质岩 鳞片、变余 千枚状 云母、绿泥石、硬绿泥石、叶腊石和与板岩相同的变余物质成分 千枚岩 鳞片针柱状 片状 蛇纹石、滑石、菱镁矿、云母、绿泥石、角闪石、Al2SiO5多型、硬绿泥石、十字石、方解石、石英、钠长石、帘石等 片岩 鳞片柱粒状 片麻状或条带状 主要矿物斜长石、钾长石和石英(长石+石英≥50%,长石≥25%,次要矿物云母、闪石、辉石和Al2SiO5多型,或钙硅酸盐矿物等 片麻岩 粒状柱状 块状或弱定向 晕长石、帘石、普通角闪石 绿帘角闪岩* 钙质斜长石(30%~50%)、普通角闪石或单斜辉石(40%~60%)为主,次要石榴子石、黑云母、石英等 斜长角闪岩/斜长辉岩* 粒、柱、柱粒状 紫苏辉石±单斜辉石±普通角闪石±黑云母=40%~70%,斜长石(≥20%)±钾长石±石英30%~60% 麻粒岩* 石榴子石+绿辉石为主,无原生斜长石,可有蓝晶石、蓝闪石、多硅白云母、金红石、石英等 榴辉岩* 鳞片柱粒状、粒状 石英(> 75%),次要矿物长石或云母、闪石和磁铁矿等 石英岩 方解石、白云石等碳酸盐矿物≥50%,其他可有橄榄石、辉石、闪石、滑石、钙镁硅酸盐等 大理岩 角岩结构 蛇纹石、滑石、菱镁矿、云母、绿泥石、Al2SiO5多型,硬绿泥石、十字石、长石、石英、角闪石、帘石、辉石、方柱石、方解石等 角岩** 鳞片、粒、粒柱或鳞片粒柱状 蛇纹石、滑石、菱镁矿、云母、绿泥石、Al2SiO5多型,硬绿泥石、十字石、长石、石英、角闪石、帘石、辉石、方柱石、方解石等 XX岩* 碎斑、基质(碎基、动态重结晶或静态重结晶颗粒) 变形‒变晶 碎裂 压扁状 透镜状岩石砾碎块+少量透镜状或近棱角状岩石质矿物质碎基 构造砾岩 断层动力变质岩 块状 岩石角砾碎斑+棱角状岩石和矿物碎基 构造角砾岩 棱角状岩石碎块和矿物碎斑: < 2 mm的矿物或岩石碎基 碎裂岩类 碎裂、玻璃 碎粉质矿物或岩石碎基+黑色熔融玻璃 假玄武玻璃 糜棱 流状 眼球状碎斑+碎基+ > 10%动态重结晶物质 糜棱岩类 鳞片变晶糜棱‒柱粒状变晶糜棱 千糜状 显微片柱状硅酸盐;基质为显著的动‒静态过渡重结晶条带 千糜岩 糜棱片状 云母、闪石、静态重结晶石英或方解石;眼球碎斑偶见 糜棱片岩 糜棱片麻状 片、柱状矿物、静态重结晶长石+石英≥50%,长石≥25% 糜棱片麻岩 浅色体 变晶‒结晶 总体变晶或岩浆结晶、局部交代 混合构造 浅色体≤20% 混合岩化XX岩 混合岩 浅色体=20%~60% 混合岩 浅色体≥60% 云染岩或混合花岗岩 蚀变交代矿物、变余或残变矿物 变晶‒交代 总体变晶,局部残变或变余和变质交代 块状、不规则状和斑杂状,变余构造 蛇纹石、滑石 蛇纹岩/滑石岩 蚀变交代变质岩 绿泥石、钠长石、帘石、阳起石 青磐岩 白云母、石英;电气石、黄玉、萤石富等挥发分矿物 云英岩 石英、绢云母、黄铁矿 黄铁绢英岩 石英、绢云母、叶腊石、高岭石、红柱石、蓝线石、石膏等 次生石英岩 高岭石、埃洛石、蒙脱石、绢云母、叶腊石、蛋白石、玉髓等 热液粘土岩 石榴子石、帘石、单斜辉石,方解石和/或白云石≤50% 矽卡岩 注:造山区域变质岩和接触热变质中,*仅为造山区域变质岩,**仅为接触热变质岩,其余为两者共有. -
[1] Best, M. G., 2003. Igneous and Metamorphic Petrology (2nd Edition). Blackwell Science Ltd., Malden. [2] Chen, M. Y., Jin, W., Zheng, C. Q., 2009. Metamorphic Rock Identification Manual. Geological Publishing House, Beijing, 29-30 (in Chinese). [3] Chen, N. S., Chen, B. H., Mason, R., et al., 2018. Using Contact Metamorphic Criteria in Contact Aureole to Preliminarily Discriminate Magma Emplacement Mechanisms of Fangshan Pluton, Beijing. Earth Science, 43(1): 99-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201801008.htm [4] Chen, N. S., Gong, S. L., Sun, M., et al., 2006a. How High are the P-T Conditions for Paleoproterozoic Metamorphism of the Huangtuling Felsic Granulite, North Dabieshan, Central China?. Journal of China University of Geosciences, 17(4): 291-301. https://doi.org/10.1016/S1002-0705(07)60002-8 [5] Chen, N. S., Sun, M., You, Z. D., et al., 1998. Well-Preserved Garnet Growth Zoning in Granulite from the Dabie Mountains, Central China. Journal of Metamorphic Geology, 16(2): 213-222. https://doi.org/10.1111/j.1525-1314.1998.00074.x [6] Chen, Y., Ye, K., Liu, J. B., et al., 2006b. Multistage Metamorphism of the Huangtuling Granulite, Northern Dabie Orogen, Eastern China: Implications for the Tectonometamorphic Evolution of Subducted Lower Continental Crust. Journal of Metamorphic Geology, 24(7): 633-654. https://doi.org/10.1111/j.1525-1314.2006.00659.x [7] Cheng, S. H., You, Z. D., 2016. Metamorphic Petrology. Geological Publishing House, Beijing (in Chinese). [8] Cheng, Y. Q., Shen, Q. H., Liu, G. H., et al., 1963. Some Basic Problems and Working Methods of Metamorphic Rocks. China Industrial Press, Beijing (in Chinese). [9] Dong, Y. F., Zheng, C. Q., Zhou, X. W., et al., 2018. Metamorphism and Its Tectonic Implications of Early Mesozoic Pelitic Granulites from Badu Complex of Southwestern Zhejiang Province, South China. Earth Science, 43(1): 259-277 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=SDMA201810001038 [10] Fettes, D., Desmons, J., 2007. Metamorphic Rocks: A Classification and Glossary of Terms. Cambriage of University Press, Cambriage. [11] Fritsch, W., Meixner H., Wieseneder, H., 1967. Zur Quantitativen Klassification der Kristallinen Schiefer. Neues Jahrbuch für Mineralogie Monatsheft, 12: 364-376. [12] Hyndman, D. W., 1985. Petrology of Igneous and Metamorphic Rocks (2nd Edition). McGraw-Hill Book Company, New York. [13] Johannes, W., 1983. On the Origin of Layered Migmatites. In: Atherton, M. P., Gribble, C. D., eds., Migmatites, Melting and Metamorphism. Shiva Publishing Ltd., Cheshire. [14] Lu, F. X., Sang, L. K., 2002. Petrology. Geological Publishing House, Beijing (in Chinese). [15] Lu, L. Z., Xu, W. L., 2011. Petrology. Geological Publishing House, Beijing (in Chinese). [16] Mao, X. H., Zhang, J. X., Yu, S. Y., et al., 2018. Metamorphism of Qinling Complex in Northern West Qinling Orogen: Petrology, Phase Equilibria Modelling of Paragneiss and Their Geological Implication. Earth Science, 43(1): 278-295 (in Chinese with English abstract). http://www.researchgate.net/publication/324675048_Metamorphism_of_Qinling_Complex_in_Northern_West_Qinling_Orogen_Petrology_Phase_Equilibria_Modelling_of_Paragneiss_and_Their_Geological_Implication [17] Mason, R., 1990. Petrology of Metamorphic Rocks (Second Edition). Uniwin Hyman Ltd., London. [18] Mason, R., Burton, K. W., Yuan, Y. M., et al., 2010. Chiastolite. Gondwana Research, 18(1): 222-229. https://doi.org/10.1016/j.gr.2010.03.005 [19] Mehnert, K. R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam. [20] Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2005. Glossary of Geology (Fifth Edition). American Geological Institute, Alexandria. [21] Raymond, L. A., 1995. Petrology: The Study of Igneous, Sedimentary, Metamorphic Rocks. WCB Publisher, New York. [22] Raymond, L. A., 2002. Petrology: The Study of Igneous, Sedimentary, Metamorphic Rocks (2nd Edition). McGraw Hill, New York. [23] Sang, L. K., Ma, C. Q., 2012. Petrology (Second Edition). China University of Geosciences Press, Wuhan (in Chinese). [24] Wang, R. M., You, Z. D., Fu, G. Q., 1989. Metamorphic Petrology. Geological Publishing House, Beijing (in Chinese). [25] Winkler, H. G. F., 1976. Petrogenesis of Metamorphic Rocks (Fifth Edition). Springer-Verlag, New York. [26] Winter, J. D., 2014. Principles of Igneous and Metamorphic Petrology (Second Edition). Pearson Education Limited, Edinburgh. [27] Yang, T. T., 2020. Study of Metamorphic Zones and Conditions of the Contact Aureole on Western Margin of the Fangshan Pluton (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [28] 陈曼云, 金巍, 郑常青, 2009. 变质岩鉴定手册. 北京: 地质出版社, 29-30. [29] 陈能松, 陈冰寒, Mason, R., 等, 2018. 用接触变质作用标志初步判别北京房山岩体的岩浆侵位机制. 地球科学, 43(1): 99-108. doi: 10.3799/dqkx.2018.006 [30] 程素华, 游振东, 2016. 变质岩岩石学. 北京: 地质出版社. [31] 程裕淇, 沈其韩, 刘国惠, 等, 1963. 变质岩的一些基本问题和工作方法. 北京: 中国工业出版社. [32] 董云峰, 郑常青, 周喜文, 等, 2018. 浙西南八都杂岩早中生代泥质麻粒岩变质作用及构造意义. 地球科学, 43(1): 259-277. doi: 10.3799/dqkx.2018.016 [33] 路凤香, 桑隆康, 2002. 岩石学. 北京: 地质出版社. [34] 卢良兆, 许文良, 2011. 岩石学. 北京: 地质出版社. [35] 毛小红, 张建新, 于胜尧, 等, 2018. 西秦岭北缘秦岭杂岩变质作用: 副片麻岩岩石学、相平衡模拟及其地质意义. 地球科学, 43(1): 278-295. doi: 10.3799/dqkx.2018.017 [36] 桑隆康, 马昌前, 2012. 岩石学(第二版). 武汉: 中国地质大学出版社. [37] 王仁民, 游振东, 富公勤, 1989. 变质岩石学. 北京: 地质出版社. [38] 杨婷婷, 2020. 房山岩体西缘接触变质带特征和变质条件研究(硕士学位论文). 武汉: 中国地质大学.
计量
- 文章访问数: 601
- HTML全文浏览量: 356
- PDF下载量: 124
- 被引次数: 0