• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山北缘定远组双峰式火山岩-新元古代晚期裂解事件记录

    许雅雯 李承东 赵利刚 孙烜烨 许腾 滕雪明

    许雅雯, 李承东, 赵利刚, 孙烜烨, 许腾, 滕雪明, 2021. 大别山北缘定远组双峰式火山岩-新元古代晚期裂解事件记录. 地球科学, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
    引用本文: 许雅雯, 李承东, 赵利刚, 孙烜烨, 许腾, 滕雪明, 2021. 大别山北缘定远组双峰式火山岩-新元古代晚期裂解事件记录. 地球科学, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
    Xu Yawen, Li Chengdong, Zhao Ligang, Sun Xuanye, Xu Teng, Teng Xueming, 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
    Citation: Xu Yawen, Li Chengdong, Zhao Ligang, Sun Xuanye, Xu Teng, Teng Xueming, 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322

    大别山北缘定远组双峰式火山岩-新元古代晚期裂解事件记录

    doi: 10.3799/dqkx.2020.322
    基金项目: 

    国家自然科学基金项目 41272065

    中国地质调查局项目 DD20160043

    中国地质调查局项目 DD20190371

    详细信息
      作者简介:

      许雅雯(1963-), 女, 高级工程师, 主要从事岩石学及矿物学研究.ORCID: 0000-0001-7763-8908.E-mail: xuyawen66@163.com

      通讯作者:

      李承东, E-mail: tjlcd99@163.com

    • 中图分类号: P581;P597

    Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event

    • 摘要: 为了了解大别山北缘构造属性,对定远组地层组成、形成时代及地球化学特征进行调查与研究.野外调查表明,定远组主要由一套变火山岩及云母片岩、云母石英片岩、浅粒岩、板岩等组成,其中变火山岩包括变玄武岩与变流纹质火山岩,并构成典型的双峰式火山岩建造;此外,还含有早古生代构造地层单位.运用LA-ICP-MS对酸性火山岩锆石进行U-Pb定年,获得725.7±1.4 Ma、736.6±5.4 Ma的年龄,形成时代为新元古代,不是前人认为的早古生代.变玄武岩分为低Ti(TiO2=1.19%)和高Ti(TiO2平均含量为3.11%)两种类型.低Ti玄武岩稀土总量较低(低于N-MORB),岩浆来自亏损的地幔源区.高Ti玄武岩又可以分为两种类型,一类富集Nb、Ta等元素,不相容元素的比值接近大陆裂谷玄武岩;另一种类型亏损Nb、Ta、Th、U等元素,岩浆可能来源于被下地壳或蚀变大洋地壳改造的地幔,其Th/Ta为1.6,与大陆裂谷玄武岩相当.总之,变玄武岩地球化学特征具有很大差别,是地幔源区不均一的反映.变酸性火山岩富集大离子亲石元素Rb、Ba、Th、U、K,亏损Nb、Ta、P、Ti等元素,锆石Hf同位素分析显示主体εHft)值为-3.0~-10,二阶段Hf模式年龄TDM2(Hf)为1 630~2 258 Ma,揭示其来源于古老地壳的部分熔融.定远组新元古代双峰式火山岩形成于大陆裂谷环境,并非岛弧构造背景.定远组双峰式火山岩及广泛分布的同时代岩浆岩,揭示了扬子陆块北缘在新元古代(800~611 Ma)时期一次重要的大陆边缘裂解-岩浆事件,是Rodinia超级古大陆裂解作用深部地球动力学的地表响应.

       

    • 图  1  西大别山定远地区地质简图

      据河南省第三地质调查队, 1991, 1∶5万宣化镇幅说明书;河南省第三地质调查队, 1998, 1∶5万千斤河棚幅说明书

      Fig.  1.  Geological sketch map of Dingyuan area of the West Dabie belt

      图  2  定远组定年样品野外宏观及显微特征

      a.定远组变流纹质火山岩(浅色)与变玄武岩(深色)互层特征;b.11YX26变流纹岩变余斑状、基质霏细-微粒结构(正交×25);c. 11YX26变流纹岩变余流纹构造(单偏光×50);d.定远组变流纹质熔结凝灰岩变余塑性玻屑定向排列构成假流纹构造;e.11YX32绢云变质流纹岩变余斑状、基质隐晶-微粒结构镜下特征(正交×25);f.变玄武岩显微镜下特征(正交×100). Pl. 斜长石;Kfs. 钾长石;Chl. 绿泥石;Ep. 绿帘石;Act. 阳起石

      Fig.  2.  Macro and microscopic features of volcanic rocks from Dingyuan Formation

      图  3  定远组测年样品代表性锆石阴极发光特征及位置

      实线圆圈为U-Pb测点,虚线圆圈为Hf测点

      Fig.  3.  Representative CL images and dating spots of zircons from 11YX26 and 11YX32

      图  4  定远组变质流纹岩锆石U-Pb谐和图

      Fig.  4.  U-Pb concordia diagrams of the zircons from 11YX26 and 11YX32

      图  5  定远组火山岩TAS及硅碱图解

      Fig.  5.  TAS and SiO2-K2O diagrams for Dingyuan Formation volcanic rocks

      图  6  定远组火山岩稀土及微量元素特征

      Fig.  6.  The REE and trace element characteristics of the Dingyuan Formation volcanic rocks

      图  7  定远组玄武岩的La/Sm-Sm/Yb图解

      DMM.亏损地幔;PM.原始地幔;CLM.大陆岩石圈地幔;LC.下地壳;UC.上地壳;CC.大陆壳

      Fig.  7.  La/Sm-Sm/Yb diagram of the basalts from Dingyuan Formation

      图  8  定远组变玄武岩同化混染作用的判别图解

      Fig.  8.  Discrimination diagrams of assimilate-contamination for the basalts from Dingyuan Formation

      图  9  定远组变火山岩Zr-Zr/Y和Hf-Th-Nb图解

      Fig.  9.  Plots of Zr-Zr/Y and Hf-Th-Nb for the Dingyuan Formation volcanic rocks

      图  10  定远组玄武岩Nb/U-Nb/Th和Nb/Th-Th/U图解

      OIB.洋岛玄武岩;N-MORB.正常洋中脊;IAB.岛弧玄武岩;CC.大陆壳;PM.地幔柱

      Fig.  10.  Nb/U vs. Nb/Th diagram and Nb/Th vs. Th/U diagram of the basalts from Dingyuan Formation

      表  1  定远组变质流纹岩锆石U-Pb测年分析结果

      Table  1.   Zircon U-Pb dating data of meta-rhyolite from Dingfyuan Formation

      点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      11YX26
      1 894 211 3.014 4 0.064 3 0.000 3 1.052 0 0.009 9 0.118 7 0.000 9 750 11 730 5 723 5
      2 156 43 1.616 3 0.063 9 0.000 8 1.047 4 0.013 8 0.119 1 0.000 9 737 28 728 7 726 5
      3 269 92 1.609 2 0.064 3 0.000 5 1.051 9 0.013 0 0.118 7 0.001 0 750 19 730 6 723 6
      4 650 175 2.067 6 0.064 7 0.000 4 1.055 9 0.010 0 0.118 3 0.000 8 765 18 732 5 721 5
      5 1 104 234 2.472 6 0.063 8 0.000 2 1.051 7 0.006 1 0.119 6 0.000 6 744 7 730 3 728 4
      6 307 147 0.955 6 0.063 7 0.000 2 1.047 6 0.007 6 0.119 4 0.000 8 731 7 728 4 727 4
      7 247 81 1.379 5 0.064 9 0.000 4 1.065 2 0.009 1 0.119 1 0.000 9 772 11 736 4 726 5
      8 205 69 1.302 4 0.063 8 0.000 3 1.047 1 0.010 4 0.119 1 0.001 0 744 11 727 5 725 6
      9 122 48 1.107 7 0.064 2 0.000 4 1.051 9 0.011 4 0.118 8 0.001 1 750 10 730 6 724 6
      10 161 42 1.422 4 0.065 0 0.000 4 1.062 9 0.011 0 0.118 8 0.001 1 776 14 735 5 724 7
      11 487 129 1.522 5 0.064 4 0.000 3 1.058 2 0.009 4 0.119 0 0.000 8 767 9 733 5 725 5
      12 1 681 273 2.400 7 0.064 4 0.000 2 1.057 1 0.006 8 0.119 1 0.000 7 754 7 732 3 725 4
      13 4 537 658 2.668 9 0.063 5 0.000 1 1.040 0 0.005 4 0.118 8 0.000 6 724 6 724 3 724 3
      14 276 53 1.658 6 0.064 5 0.000 4 1.062 1 0.009 8 0.119 5 0.000 8 767 14 735 5 727 5
      15 11 0 305 1.376 9 0.063 9 0.000 2 1.048 5 0.008 6 0.119 0 0.000 9 739 1 728 4 725 5
      16 576 166 1.277 0 0.063 9 0.000 2 1.048 6 0.007 9 0.119 0 0.000 8 739 7 728 4 725 4
      17 1 186 260 1.615 4 0.064 0 0.000 2 1.048 4 0.008 6 0.118 9 0.000 9 739 1 728 4 724 5
      18 211 40 1.578 5 0.064 3 0.000 4 1.059 0 0.012 1 0.119 5 0.001 0 750 14 733 6 728 6
      19 718 128 1.768 1 0.064 1 0.000 3 1.054 8 0.009 9 0.119 4 0.001 0 746 7 731 5 727 6
      20 2 335 355 2.192 3 0.064 0 0.000 2 1.049 8 0.007 3 0.119 1 0.000 7 739 1 729 4 725 4
      21 1 392 243 1.612 2 0.064 2 0.000 2 1.056 8 0.007 5 0.119 4 0.000 7 750 13 732 4 727 4
      22 303 59 1.348 9 0.063 7 0.000 5 1.043 2 0.010 8 0.118 9 0.000 8 731 13 726 5 724 5
      23 286 55 1.249 6 0.063 9 0.000 5 1.048 9 0.009 5 0.119 1 0.000 7 739 21 728 5 725 4
      24 1 141 150 1.836 4 0.066 4 0.000 3 1.092 0 0.007 2 0.119 4 0.000 7 818 9 749 3 727 4
      25 294 49 1.519 1 0.064 5 0.000 4 1.059 0 0.009 2 0.119 2 0.000 8 767 12 733 5 726 5
      26 253 48 1.571 1 0.064 9 0.000 5 1.066 3 0.009 9 0.119 3 0.000 8 772 16 737 5 726 5
      27 1 959 216 2.180 9 0.064 8 0.000 3 1.066 1 0.006 1 0.119 4 0.000 5 766 5 737 3 727 3
      28 380 72 1.267 5 0.064 6 0.000 5 1.063 2 0.009 7 0.119 5 0.000 8 761 17 735 5 728 5
      29 478 57 1.520 4 0.063 9 0.000 7 1.046 9 0.012 5 0.118 9 0.000 8 739 19 727 6 724 5
      30 373 53 1.692 9 0.063 9 0.000 6 1.050 0 0.013 1 0.119 1 0.000 7 739 22 729 6 726 4
      31 256 43 1.382 0 0.064 3 0.000 6 1.052 9 0.010 8 0.118 8 0.000 8 754 14 730 5 724 4
      32 1 039 154 1.869 1 0.064 1 0.000 3 1.052 7 0.008 1 0.119 1 0.000 8 746 7 730 4 725 5
      33 328 62 1.737 2 0.064 0 0.000 3 1.052 5 0.009 6 0.119 2 0.000 8 743 11 730 5 726 5
      34 1 190 212 1.908 0 0.064 7 0.000 2 1.061 4 0.007 6 0.119 0 0.000 7 765 2 735 4 725 4
      35 244 50 1.687 3 0.065 0 0.000 5 1.066 3 0.009 9 0.119 0 0.000 8 776 16 737 5 725 5
      36 813 189 1.768 2 0.064 3 0.000 2 1.057 2 0.007 6 0.119 2 0.000 7 750 12 732 4 726 4
      37 247 67 1.727 8 0.065 3 0.000 8 1.073 5 0.011 9 0.119 4 0.000 6 783 25 740 6 727 4
      38 958 239 2.251 5 0.064 5 0.000 2 1.062 1 0.007 4 0.119 4 0.000 7 761 6 735 4 727 4
      39 237 91 1.582 1 0.064 9 0.000 3 1.065 5 0.008 3 0.119 1 0.000 8 772 10 737 4 726 4
      40 160 62 1.876 7 0.065 1 0.000 4 1.069 6 0.009 1 0.119 2 0.000 8 789 13 739 4 726 4
      11YX32
      1 932 241 1.049 8 0.534 2 0.265 0 17.548 0 6.662 6 0.227 4 0.047 1 4 339 1 038 2 965 382 1 321 248
      2 129 174 1.507 4 0.073 0 0.004 3 1.172 3 0.067 7 0.118 2 0.002 1 1 017 116 788 32 720 12
      3 256 451 1.031 7 0.066 5 0.002 8 1.163 5 0.047 6 0.126 9 0.001 5 833 89 784 22 770 9
      4 690 371 1.222 2 0.165 4 0.019 8 6.430 6 1.386 6 0.160 4 0.010 8 2 522 204 2 036 192 959 60
      5 292 358 1.782 5 0.067 9 0.003 0 1.119 1 0.048 6 0.120 0 0.001 9 865 91 763 23 730 11
      6 331 629 0.989 6 0.064 2 0.002 4 1.064 1 0.038 7 0.120 3 0.001 4 746 84 736 19 732 8
      7 521 647 1.673 9 0.062 9 0.002 4 1.085 1 0.041 1 0.124 5 0.001 6 706 81 746 20 756 9
      8 302 170 3.743 9 0.067 8 0.003 9 1.108 5 0.062 8 0.121 1 0.002 5 861 122 757 30 737 14
      9 92 137 1.338 9 0.075 2 0.004 7 1.222 1 0.072 9 0.121 2 0.002 4 1 076 125 811 33 737 14
      10 1 189 1439 1.404 0 0.084 0 0.002 5 1.515 7 0.042 5 0.129 8 0.001 3 1 292 56 937 17 787 7
      11 332 307 2.354 5 0.064 9 0.003 3 1.093 8 0.056 5 0.121 3 0.001 9 772 106 750 27 738 11
      12 332 575 0.965 5 0.064 3 0.002 6 1.212 0 0.049 0.135 5 0.001 9 750 86 806 23 819 11
      13 1 010 684 3.925 3 0.067 3 0.002 5 1.112 9 0.039 6 0.119 1 0.001 5 856 76 760 19 725 9
      14 416 615 1.285 2 0.067 3 0.002 7 1.159 7 0.043 3 0.124 4 0.001 6 848 81 782 20 756 9
      15 277 397 1.434 9 0.060 8 0.002 9 1.082 5 0.051 7 0.128 9 0.002 3 632 104 745 25 781 13
      16 431 685 1.180 6 0.072 0 0.003 0 1.204 2 0.046 3 0.121 4 0.001 9 985 118 803 21 739 11
      17 106 145 1.426 7 0.074 3 0.005 3 1.199 5 0.076 9 0.121 4 0.002 7 1 050 143 800 36 739 16
      18 89 139 1.121 0 0.063 8 0.004 1 1.229 3 0.079 9 0.139 9 0.002 9 744 137 814 36 844 16
      19 600 485 2.678 0 0.064 0 0.002 5 1.087 2 0.042 3 0.121 5 0.001 8 743 88 747 21 739 10
      20 149 238 1.257 1 0.062 0 0.003 4 1.022 6 0.053 7 0.121 3 0.002 4 672 117 715 27 738 14
      21 215 333 1.184 7 0.067 5 0.003 3 1.218 5 0.062 2 0.129 8 0.002 2 854 104 809 28 787 12
      22 271 469 1.080 2 0.062 1 0.002 9 1.048 8 0.048 6 0.121 5 0.001 5 676 100 728 24 739 9
      23 749 517 3.207 0 0.067 9 0.002 9 1.142 4 0.048 2 0.121 4 0.001 4 865 89 774 23 739 8
      下载: 导出CSV

      表  2  定远组变质流纹岩锆石Hf同位素分析结果

      Table  2.   Zircon Hf isotopic compositions of meta-rhyolite from Dingyuan Formation

      点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(t) TDM(Ma) T2DM(Ma) fLu/Hf
      11YX26.1 726 0.053 1 0.001 4 0.282 127 0.000 028 0.282 107 -7.5 1 605 2 108 -0.96
      11YX26.2 726 0.043 9 0.001 2 0.282 174 0.000 030 0.282 157 -5.8 1 531 1 999 -0.96
      11YX26.3 726 0.046 3 0.001 3 0.282 101 0.000 028 0.282 083 -8.4 1 636 2 161 -0.96
      11YX26.4 726 0.069 7 0.001 9 0.282 189 0.000 031 0.282 163 -5.5 1 537 1 985 -0.94
      11YX26.5 726 0.060 0 0.001 6 0.282 185 0.000 028 0.282 163 -5.5 1 530 1 985 -0.95
      11YX26.6 726 0.056 7 0.001 5 0.282 241 0.000 028 0.282 221 -3.5 1 445 1 856 -0.96
      11YX26.7 726 0.041 1 0.001 1 0.282 184 0.000 027 0.282 168 -5.0 1 513 1 974 -0.97
      11YX26.8 726 0.035 1 0.001 0 0.282 203 0.000 030 0.282 190 -4.6 1 480 1 926 -0.97
      11YX26.9 726 0.032 9 0.001 0 0.282 233 0.000 023 0.282 220 -3.5 1 437 1 859 -0.97
      11YX26.10 726 0.035 6 0.001 0 0.282 221 0.000 027 0.282 207 -4.0 1 456 1 887 -0.97
      11YX26.11 726 0.041 6 0.001 1 0.282 196 0.000 024 0.282 181 -4.9 1 495 1 945 -0.97
      11YX26.12 726 0.064 5 0.001 7 0.282 205 0.000 026 0.282 182 -4.9 1 505 1 942 -0.95
      11YX26.13 726 0.080 8 0.002 0 0.282 231 0.000 024 0.282 204 -4.1 1 481 1 895 -0.94
      11YX26.14 726 0.035 0 0.001 0 0.282 213 0.000 030 0.282 199 -4.2 1 466 1 904 -0.97
      11YX26.15 726 0.064 3 0.001 8 0.282 257 0.000 025 0.282 232 -3.1 1 435 1 831 -0.95
      11YX26.16 726 0.065 7 0.001 8 0.282 242 0.000 025 0.282 217 -3.6 1 457 1 865 -0.95
      11YX26.17 726 0.070 5 0.001 8 0.282 104 0.000 028 0.282 079 -8.5 1 653 2 170 -0.95
      11YX26.18 726 0.046 9 0.001 3 0.282 162 0.000 029 0.282 145 -6.2 1 548 2 025 -0.96
      11YX26.19 726 0.066 5 0.001 8 0.282 200 0.000 028 0.282 174 -5.1 1 519 1 959 -0.94
      11YX26.20 726 0.065 0 0.001 5 0.282 241 0.000 023 0.282 220 -3.5 1 448 1 859 -0.95
      11YX32.1 1 321 0.037 9 0.001 1 0.282 181 0.000 029 0.282 153 7.4 1 515 1 630 -0.97
      11YX32.2 737 0.064 1 0.001 8 0.282 141 0.000 033 0.282 116 -7.0 1 601 2 081 -0.95
      11YX32.3 770 0.053 1 0.001 5 0.282 241 0.000 026 0.282 219 -2.6 1 447 1 833 -0.95
      11YX32.4 959 0.049 7 0.001 4 0.282 217 0.000 023 0.282 192 0.7 1 476 1 773 -0.96
      11YX32.6 737 0.062 7 0.001 7 0.282 183 0.000 032 0.282 159 -5.4 1 538 1 987 -0.95
      11YX32.7 737 0.046 4 0.001 3 0.282 232 0.000 022 0.282 214 -3.5 1 453 1 866 -0.96
      11YX32.8 737 0.058 7 0.001 8 0.282 219 0.000 030 0.282 194 -4.2 1 489 1 909 -0.95
      11YX32.9 737 0.067 2 0.002 1 0.282 090 0.000 034 0.282 061 -8.9 1 686 2 204 -0.94
      11YX32.10 737 0.034 7 0.001 1 0.282 191 0.000 030 0.282 176 -4.9 1 502 1 950 -0.97
      11YX32.11 787 0.060 0 0.001 8 0.282 227 0.000 028 0.282 200 -2.9 1 479 1 864 -0.94
      11YX32.12 737 0.094 5 0.002 7 0.282 205 0.000 040 0.282 167 -5.1 1 547 1 968 -0.92
      11YX32.13 819 0.073 2 0.002 6 0.282 102 0.000 041 0.282 062 -7.0 1 692 2 149 -0.92
      11YX32.14 737 0.105 3 0.002 9 0.282 077 0.000 033 0.282 036 -9.8 1 745 2 258 -0.91
      11YX32.15 737 0.064 2 0.001 9 0.282 221 0.000 032 0.282 195 -4.2 1 490 1 907 -0.94
      11YX32.16 781 0.052 1 0.001 5 0.282 243 0.000 027 0.282 221 -2.3 1 445 1 822 -0.95
      11YX32.17 737 0.086 4 0.003 1 0.282 226 0.000 039 0.282 183 -4.6 1 534 1 934 -0.91
      11YX32.18 737 0.055 2 0.001 6 0.282 337 0.000 040 0.282 314 0.1 1 316 1 642 -0.95
      11YX32.20 844 0.051 0 0.001 5 0.282 263 0.000 029 0.282 240 -0.2 1 413 1 739 -0.96
      11YX32.21 737 0.132 8 0.003 6 0.282 369 0.000 043 0.282 319 0.2 1 341 1 632 -0.89
      11YX32.22 737 0.058 9 0.001 9 0.282 254 0.000 034 0.282 227 -3.0 1 444 1 835 -0.94
      11YX32.23 787 0.047 5 0.001 6 0.282 254 0.000 039 0.282 230 -1.8 1 431 1 797 -0.95
      11YX32.24 737 0.045 7 0.001 4 0.282 232 0.000 031 0.282 213 -3.5 1 455 1 867 -0.96
      下载: 导出CSV

      表  3  定远组火山岩主量(%)、微量和稀土元素含量(10-6

      Table  3.   Contents of major element (%), trace and REE(10-6)elements of the Dingyuan Formation volcanic rocks

      样号 11YX26 11YX27 11YX28 11YX29 11YX30 11YX31 12YX26 12YX27
      变质流纹岩 变质流纹质熔结凝灰岩 变质玄武岩
      SiO2 77.91 78.58 73.21 73.89 44.55 49.76 45.11 45.22
      TiO2 0.12 0.22 0.48 0.51 3.29 1.19 3.02 3.03
      Al2O3 12.20 11.94 10.98 10.36 12.56 14.04 13.90 13.52
      Fe2O3 0.54 0.82 2.43 2.10 5.77 3.31 8.80 8.47
      FeO 0.40 0.16 0.82 1.06 9.98 7.77 6.40 7.05
      MnO 0.01 0.01 0.07 0.08 0.26 0.18 0.23 0.25
      MgO 0.11 0.19 1.76 1.94 8.42 9.10 4.95 5.07
      CaO 0.08 0.14 5.13 5.37 10.39 9.43 9.30 8.82
      Na2O 1.34 1.91 1.80 2.45 1.17 1.84 1.50 1.88
      K2O 6.83 5.44 2.32 1.26 0.70 1.18 0.43 1.44
      P2O5 0.03 0.03 0.13 0.13 0.46 0.03 0.33 0.33
      LOI 0.36 0.54 0.88 0.64 2.22 1.90 5.40 4.23
      Total 99.93 99.99 100.00 99.79 99.77 99.72 99.37 99.31
      Mg# 21 31 55 58 54 64 42 42
      Ba 1 387 1 854 599 486 167 207 185 414
      Be 1 1 2 1 2 1 1 1
      Co 2 1 8 9 55 50 46 42
      Cr 14 8 59 66 460 497 51 47
      Cs 1.70 1.57 1.58 0.71 1.27 1.43 0.42 0.56
      Cu 17 26 8 6 78 15 - -
      Ga 8.71 9.41 14.16 14.58 23.21 16.35 23.80 23.00
      Hf 5.89 7.05 6.32 6.54 10.43 2.01 3.93 4.27
      Nb 20 18 9 11 77 2 13 14
      Ta 1.49 1.02 0.66 0.83 3.81 0.23 0.58 0.60
      Ni 4 3 22 21 197 181 64 59
      Pb 14 9 14 17 10 8 17 11
      Rb 172 139 95 41 39 70 10 31
      Sc 3.40 3.84 9.19 9.25 33.78 32.09 44.00 42.90
      Sr 120 122 209 240 425 261 800 578
      Th 14.72 10.32 10.72 10.77 8.50 0.40 1.00 0.88
      U 1.94 1.15 2.26 2.34 1.59 0.07 0.17 0.17
      V 21 15 62 75 396 208 490 468
      Zn 15 14 40. 42 163 109 140 140
      Zr 159 215 195 190 259 39 141 157
      Y 17 14 21 22 30 12 37 37
      La 56.14 33.28 28.89 30.22 61.08 2.97 14.50 15.20
      Ce 110.60 78.16 55.01 56.25 116.70 7.15 33.20 34.20
      Pr 12.13 9.34 7.03 7.16 13.63 1.16 5.03 5.20
      Nd 41.73 34.22 26.24 26.45 52.06 6.21 24.60 24.70
      Sm 6.46 5.41 4.96 5.00 9.25 1.92 6.31 6.36
      Eu 0.77 0.88 1.03 1.07 2.98 1.06 2.31 2.36
      Gd 4.82 4.28 4.36 4.45 8.14 2.15 7.01 7.10
      Tb 0.71 0.61 0.75 0.76 1.27 0.43 1.14 1.16
      Dy 3.43 2.99 4.18 4.24 6.76 2.61 7.18 7.30
      Ho 0.62 0.53 0.80 0.81 1.19 0.49 1.44 1.48
      Er 2.01 1.56 2.32 2.37 3.24 1.35 3.92 3.99
      Tm 0.34 0.25 0.36 0.38 0.47 0.22 0.57 0.58
      Yb 2.19 1.56 2.34 2.45 3.00 1.33 4.00 4.00
      Lu 0.35 0.26 0.36 0.39 0.41 0.21 1.00 1.00
      下载: 导出CSV

      表  4  定远组、OIB、岛弧、N-MORB及大陆裂谷玄武岩化学库的不相容元素比值

      Table  4.   Incompatible element ratios of basalts of Dingyuan Formation, OIB, island arc, N-MORB and continental rift type

      比值 低钛11YX31 高钛11YX30 高钛12YX26-27 大陆裂谷 OIB EMOIB EMOIB N-MORB 岛弧
      Zr/Nb 16.31 3.37 11.03 5.83 5.83 3.50~13.10 4.40~7.80 30.00 17.22
      La/Nb 1.24 0.80 1.10 0.93 0.77 0.78~1.32 0.79~1.19 1.07 2.35
      Ba/Nb 86.27 2.17 21.95 13.85 7.29 9.10~23.40 6.40~13.40 1.70~8.00 51.47
      Ba/Th 515.20 19.61 327.73 120.68 87.50 80.00~204.00 57.00~105.00 60.00 138.67
      Rb/Nb 29.37 0.51 1.49 0.74 0.65 0.69~1.23 0.58~0.87 0.36 4.07
      K/Nb 91.62 49.33 203.10 358.02 250.00 207.00~523.00 203.00~378.00 210.00~350.00 1 450.08
      Th/Nb 0.17 0.11 0.07 0.11 0.88 0.09~0.13 0.10~0.17 0.03~0.07 0.37
      Th/La 0.14 0.14 0.06 0.12 0.11 0.09~0.15 0.11~0.18 0.07 0.16
      Ba/La 69.59 2.73 20.00 14.83 9.46 11.30~19.10 7.30~13.50 4.00 21.89
      Th/Ta 1.72 2.23 1.60 1.65 1.13 1.25 8.24
      注:OIB、N-MORB数据据Sun and McDonough (1989);EMOIB和EMOIB据Weaver(1991)Hart et al.(1992);大陆裂谷据王金荣等(2016);岛弧据杨婧等(2016).
      下载: 导出CSV
    • [1] Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/bf00402114
      [2] Callegaro, S., Marzoli, A., Bertrand, H., et al., 2013. Upper and Lower Crust Recycling in the Source of CAMP Basaltic Dykes from Southeastern North America. Earth and Planetary Science Letters, 376: 186-199. https://doi.org/10.1016/j.epsl.2013.06.023
      [3] Chen, J.F., Dong, S.W., Deng, Y.Y., et al., 1993. Interpretation of K-Ar Ages of the Dabie Orogen-A Differential Uplifted Block. Geological Review, 39(1): 17-22 (in Chinese with English abstract). http://www.researchgate.net/publication/311733290_Interpretation_of_K-Ar_ages_of_the_Dabie_orogen_-_A_differential_uplifted_block
      [4] Chen, L., Ma, C.Q., She, Z.B., et al., 2006. Liulin Gabbro in the Beihuaiyang Tectonic Belt of the Dabie Orogen: A Witness of the Late Neoproterozoic Rifting Event. Earth Science, 31(4): 578-584 (in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event
      [5] Chen, T.L., Wu, B., Weng, M.Z., 2013. Material Association of Tiantaishan Formation of Hong'an Group and Zircon U-Pb Dating. Resources Environment & Engineering, 27(3): 231-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK201303000.htm
      [6] Christiansen, R. L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Jr. Boyd, F.R., ed., Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington, DC.
      [7] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821x(86)90186-x
      [8] Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007
      [9] Garland, F., Hawkesworth, C. J., Mantovani, M. S. M., 1995. Description and Petrogenesis of the Parana Rzhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193-1227. https://doi.org/10.1093/petrology/36.5.1193
      [10] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm
      [11] Hart, S. R., Hauri, E. H., Oschmann, L. A., et al., 1992. Mantle Plumes and Entrainment: Isotopic Evidence. Science, 256(5056): 517-520. https://doi.org/10.1126/science.256.5056.517
      [12] He, Q., Zheng, Y.F., 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912030.htm
      [13] Hochstaedter, A. G., Gill, J. B., Kusakabe, M., et al., 1990. Volcanism in the Sumisu Rift: I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 100(1-3): 179-194. https://doi.org/10.1016/0012-821x(90)90184-y
      [14] Jiang, L. L., Wolfgang, S., Chen, F. K., et al., 2005. U-Pb Zircon Ages for the Luzhenguan Complex in Northern Part of the Eastern Dabie Orogen. Scientia Sinica Terrae, 35(5): 411-419 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200509003.htm
      [15] Li, H.K., Lu, S.N., Chen, Z.H., et al., 2003. Zircon U-Pb Geochronology of Rift-Type Volcanic Rocks of the Yaolinghe Group in the South Qinling Orogen. Geological Bulletin of China, 22(10): 775-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200310004.htm
      [16] Li, S. G., Huang, F., Nie, Y. H., et al., 2001. Geochemical and Geochronological Constraints on the Suture Location between the North and South China Blocks in the Dabie Orogen, Central China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 655-672. https://doi.org/10.1016/s1464-1895(01)00117-x
      [17] Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the~850 Ma Gangbian Alkaline Complex in South China: Evidence from In Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1-2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      [18] Liu, Y. C., Li, S. G., Gu, X. F., et al., 2006. Zircon SHRIMP U-Pb Dating for Olivine Gabbro at Wangmuguan in the Beihuaiyang Zone and Its Geological Significance. Chinese Science Bulletin, 51(18): 2175-2180 (in Chinese). doi: 10.1360/csb2006-51-18-2175
      [19] Liu, Y. C., Liu, L. X., Gu, X. F., et al., 2010. Occurrence of Neoproterozoic Low-Grade Metagranite in the Western Beihuaiyang Zone, the Dabie Orogen. Chinese Science Bulletin, 55(24): 2391-2399 (in Chinese). doi: 10.1360/csb2010-55-24-2391
      [20] Liu, Y. C., Liu, L. X., Li, Y., et al., 2017. Zircon U-Pb Geochronology and Petrogenesis of Metabasites from the Western Beihuaiyang Zone in the Hong'an Orogen, Central China: Implications for Detachment within Subducting Continental Crust at Shallow Depths. Journal of Asian Earth Sciences, 145: 74-90. https://doi.org/10.1016/j.jseaes.2016.12.021
      [21] Liu, Y.C., Yang, Y., Jiang, W.J., et al., 2019. Diverse Partial Melting during Continental Rifting, Subduction-Exhumation and Mountain-Root Collapse in the Dabie Orogen, Central China. Earth Science, 44(12): 4195-4202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912031.htm
      [22] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [23] MacDonald, R., Rogers, N. W., Fitton, J. G., et al., 2001. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877-900. https://doi.org/10.1093/petrology/42.5.877
      [24] Pin, C., Paquette, J. L., 1997. A Mantle-Derived Bimodal Suite in the Hercynian Belt: Nd Isotope and Trace Element Evidence for a Subduction-Related Rift Origin of the Late Devonian Brévenne Metavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology, 129(2-3): 222-238. https://doi.org/10.1007/s004100050334
      [25] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [26] Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873-886. https://doi.org/10.1046/j.1525-1314.2002.00418.x
      [27] Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
      [28] Wang, J.R., Pan, Z.J., Zhang, Q., et al., 2016. Intra-Continental Basalt Data Mining: The Diversity of Their Constituents and the Performance in Basalt Discrimination Diagrams. Acta Petrologica Sinica, 32(7): 1919-1933 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201607001.htm
      [29] Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      [30] Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821x(91)90217-6
      [31] Wu, X.Y., Liu, X.Y., Zhou, Z.M., et al., 2020. Overview on Geological, Geochemical Features and Genesis of the Granitic Pegmatites in Gatumba Area, Rwanda. Geological Survey and Research, 43(1): 42-54 (in Chinese with English abstract).
      [32] Wu, Y. B., Zheng, Y. F., Tang, J., et al., 2007. Zircon U-Pb Dating of Water-Rock Interaction during Neoproterozoic Rift Magmatism in South China. Chemical Geology, 246(1-2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      [33] Xia, L.Q., Xia, Z.C., Li, X.M., et al., 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group Volcanic Rocks and Basic Dyke Swarms from Eastern Part of the South Qinling Mountains. Northwestern Geology, 41(3): 1-29 (in Chinese with English abstract). http://www.researchgate.net/publication/279762845_Petrogenesis_of_the_Yaolinghe_Group_Yunxi_Group_Wudangshan_Group_volcanic_rocks_and_basic_dyke_swarms_from_eastern_part_of_the_South_Qinling_Mountains
      [34] Xue, H.M., Ma, F., Song, Y.Q., 2011. Geochemistry and SHRIMP Zircon U-Pb Data of Neoproterozoic Meta-Magmatic Rocks in the Suizhou-Zaoyang Area, Northern Margin of the Yangtze Craton, Central China. Acta Petrologica Sinica, 27(4): 1116-1130 (in Chinese with English abstract). http://www.researchgate.net/publication/285943391_Geochemistry_and_SHRIMP_zircon_U-Pb_data_of_Neoproterozoic_meta-magmatic_rocks_in_the_Suizhou-Zaoyang_area_northern_margin_of_the_Yangtze_Craton_Central_China
      [35] Yang, J., Wang, J.R., Zhang, Q., et al., 2016. Global IAB Data Excavation: The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12): 1937-1949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201612001.htm
      [36] Zhang, J., Zhang, H. F., Li, L., 2018. Neoproterozoic Tectonic Transition in the South Qinling Belt: New Constraints from Geochemistry and Zircon U-Pb-Hf Isotopes of Diorites from the Douling Complex. Precambrian Research, 306: 112-128. https://doi.org/10.1016/j.precamres.2017.12.043
      [37] Zhang, Y.Q., 2012. Study on the Laser-Raman Spectroscopy Analysis and CL Images: Implications for Metamictized Zircons and U-Pb Ages. Geological Survey and Research, 35(3): 224-228, 235 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201203013.htm
      [38] Zheng, Y. F., Gong, B., Zhao, Z. F., et al., 2008. Zircon U-Pb Age and O Isotope Evidence for Neoproterozoic Low-18O Magmatism during Supercontinental Rifting in South China: Implications for the Snowball Earth Event. American Journal of Science, 308(4): 484-516. https://doi.org/10.2475/04.2008.04
      [39] Zhu, J., Peng, S.G., Peng, L.H., et al., 2019. Geochronology of Bimodal Volcanic Rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for Extension during Breakup of Rodinia. Earth Science, 44(2): 355-365 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902001.htm
      [40] Zhu, X. Y., Chen, F. K., Nie, H., et al., 2014. Neoproterozoic Tectonic Evolution of South Qinling, China: Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks. Precambrian Research, 245: 115-130. https://doi.org/10.1016/j.precamres.2014.02.005
      [41] 陈江峰, 董树文, 邓衍尧, 等, 1993. 大别造山带钾氩年龄的解释——差异上升的地块. 地质论评, 39(1): 17-22. doi: 10.3321/j.issn:0371-5736.1993.01.003
      [42] 陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解事件的记录. 地球科学, 31(4): 578-584. doi: 10.3321/j.issn:1000-2383.2006.04.018
      [43] 陈铁龙, 吴波, 翁茂芝, 2013. 湖北红安群天台山组物质组合及锆石U-Pb定年. 资源环境与工程, 27(3): 231-237. doi: 10.3969/j.issn.1671-1211.2013.03.001
      [44] 耿建珍, 李怀坤, 张健, 等, 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
      [45] 贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912030.htm
      [46] 江来利, Wolfgang, S., 陈福坤, 等, 2005. 大别造山带北部卢镇关杂岩的U-Pb锆石年龄. 中国科学: 地球科学, 35(5): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200505003.htm
      [47] 李怀坤, 陆松年, 陈志宏, 等, 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005
      [48] 刘贻灿, 李曙光, 古晓锋, 等, 2006. 北淮阳王母观橄榄辉长岩锆石SHRIMP U-Pb年龄及其地质意义. 科学通报, 51(18): 2175-2180. doi: 10.3321/j.issn:0023-074X.2006.18.014
      [49] 刘贻灿, 刘理湘, 古晓锋, 等, 2010. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 55(24): 2391-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201024006.htm
      [50] 刘贻灿, 杨阳, 姜为佳, 等, 2019. 大别造山带在大陆裂解、地壳的俯冲-折返及山根垮塌期间的多期部分熔融作用. 地球科学, 44(12): 4195-4202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912031.htm
      [51] 王金荣, 潘振杰, 张旗, 等, 2016. 大陆板内玄武岩数据挖掘: 成分多样性及在判别图中的表现. 岩石学报, 32(7): 1919-1933. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607001.htm
      [52] 吴兴源, 刘晓阳, 周佐民, 等, 2020. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述. 地质调查与研究, 43(1): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005
      [53] 夏林圻, 夏祖春, 李向民, 等, 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001
      [54] 薛怀民, 马芳, 宋永勤, 2011. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 27(4): 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm
      [55] 杨婧, 王金荣, 张旗, 等, 2016. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释. 地质通报, 35(12): 1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001
      [56] 张永清, 2012. 激光拉曼、阴极荧光研究对蜕晶化锆石及其U-Pb年龄解释的指示意义. 地质调查与研究, 35(3): 224-228, 235. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201203013.htm
      [57] 朱江, 彭三国, 彭练红, 等, 2019. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义. 地球科学, 44(2): 355-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902001.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  635
    • HTML全文浏览量:  386
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-21
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回