Discovery of Early-Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol-Okhotsk Ocean Plate
-
摘要: 安山岩与俯冲构造环境密切相关,对安山岩的研究可以获得俯冲作用发生时代及相关俯冲过程的重要信息.报道了大兴安岭北段、额尔古纳地块之上凤水山地区早-中三叠世安山岩的岩石学特征、锆石U-Pb年龄以及全岩地球化学数据,以揭示该地区蒙古-鄂霍茨克大洋板片南向俯冲作用的初始过程.凤水山地区安山岩的锆石多数呈自形-半自形短柱状、粒状,具有典型的震荡生长环带和高Th/U(0.23~1.34)比值,暗示其为岩浆成因锆石.锆石LA-MC-ICP-MS U-Pb同位素测年结果显示其分别形成于251±2 Ma和243±2 Ma,分属早三叠世和中三叠世,表明凤水山地区存在早中生代安山岩.这些早中生代安山岩的SiO2含量介于53.52%~60.38%,Al2O3含量介于16.17%~17.41%,Fe2O3T含量为5.55%~8.93%,MgO含量介于1.96%~5.97%,TiO2含量介于0.97%~1.67%,全碱(K2O+Na2O)含量为5.60%~8.05%,Na2O/K2O比值为1.23~2.51,铝饱和指数A/CNK介于0.86~0.97,具有较高的Mg#值(47~75),为钙碱性系列岩石.岩石样品富集Rb、Ba、U、K、Pb等大离子亲石元素和轻稀土元素,明显亏损Nb、Ta、Ti、P等高场强元素和重稀土元素,具有微弱的负Eu异常(δEu=0.74~0.99),与俯冲带大陆边缘弧岩浆岩地球化学特征类似.凤水山地区早中生代安山岩岩浆可能起源于幔源玄武质岩浆与壳源硅质熔体的混合作用,而幔源玄武质岩浆起源于俯冲板片沉积物或沉积物熔体改造的富集地幔,可能与前人提出的MASH(melting,assimilation,storage and homogenization)过程一致.因此,研究区三叠纪安山岩形成于蒙古-鄂霍茨克大洋板片南向俯冲相关的安第斯型活动大陆边缘环境.Abstract: The andesite is closely related to the subduction tectonic environment,and the study of andesite can obtain important information about the age of subduction and related subduction processes. In this paper it presents petrographic characteristics,whole-rock geochemical data and zircon U-Pb ages of the Early to Middle Triassic andesites from the Fengshui Mountain area in the Erguna massif in the northern Great Xing'an Range for the purpose of revealing the initial southward subduction of the Mongol-Okhotsk oceanic plate. Most of the zircons from the andesite in the Fengshui Mountain area are euhedral to subhedral in shape,with typical oscillating growth zonation and relatively high Th/U ratios (0.23-1.34),indicative of magmatic zircons. Zircon LA-ICP-MS U-Pb dating yields two ages of 251±2 Ma and 243±2 Ma for andesite in the Fengshui Mountain area,indicative of Early and Middle Triassic ages for the andesites. These Early Mesozoic andesites have typical geochemical characteristics of active continental margin arc magmatite with SiO2,Al2O3,K2O,Na2O,Fe2O3T,MgO,TiO2 and total alkali (K2O+Na2O) contents ranging from 53.52% to 60.38%,16.17% to 17.41%,1.60% to 4.60%,3.83% to 4.65%,5.55% to 8.93%,1.96% to 5.97%,0.97% to 1.67%,and 5.60% to 8.05%,respectively. These andesites are high K calc-alkaline with Na2O/K2O ratios ranging from 1.23 to 2.51,A/CNK values (aluminum saturation index) from 0.86 to 0.97 and Mg# values ranging from 47 to 75. These volcanic rocks are enriched in large ionic lithophile elements such as Rb,Ba,U,K,Pb and light rare earth elements,but depleted in high field strength elements such as Nb,Ta,Ti,P and heavy rare earth elements,with weak negative Eu anomaly (δEu=0.74-0.99). These Early Mesozoic andesitic rocks are geochemically similar to the typical andesites in Andean,thus indicating that they are most likely formed in the Andean-type active continental margin environment related to the southward subduction of the Mongol-Okhotsk oceanic plate.
-
图 1 研究区地质图
图a据纪政等(2018)修改. 1.中元古界兴华渡口岩群;2.新元古界-下寒武统倭勒根岩群;3.寒武纪花岗岩;4.晚二叠世-三叠纪闪长岩-花岗岩;5.早-中三叠世火山岩;6.早侏罗世石英二长闪长岩、斑状黑云母二长花岗岩;7.早白垩世中酸性火山岩;8早白垩世石英正长岩、正长斑岩;9.第四系;10.不整合界线/断层;11.取样位置及年龄
Fig. 1. Geological sketch map of the study area
图 4 凤水山地区安山岩TAS (a)和K2O-SiO2(b)图解
底图据le Maitre(2002);南美安第斯陆弧中带火山岩数据引自Winter(2001)
Fig. 4. TAS diagram (a) and K2O-SiO2 diagram (b) for andesites in the Fengshui Mountain area
图 5 凤水山地区安山岩球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石和原始地幔标准值引自Sun and McDonough(1989);阴影部分数据及平均安第斯陆弧数据引自Winter(2001);平均俯冲沉积物数据引自Plank and Langmuir(1998);平均地壳数据引自Rudnick and Gao(2003)
Fig. 5. Chondrite-normalized REE pattern (a) and primitive mantle-normalized spider diagram (b) for andesites in the Fengshui Mountain area
图 6 凤水山地区安山岩Sr/Y-Y(a)和Th/Yb-Ba/La(b)图解
a. 底图据Defant and Drummond(1990);b. 底图据Woodhead et al.(2001)
Fig. 6. Diagrams of Sr/Y-Y (a) and Th/Yb-Ba/La (b) for andesites in the Fengshui Mountain area
图 7 凤水山地区安山岩Th/Yb-Ta/Yb (a)和La/Yb-Sc/Ni (b) 图解
a. 底图据Pearce(1982);b. 底图据Bailey(1981)
Fig. 7. Diagrams of Th/Yb-Ta/Yb (a) and La/Yb-Sc/Ni (b) for andesites in the Fengshui Mountain area
图 8 凤水山地区安山岩Rb-SiO2 (a)和Rb-Sr(b)图解
a. 底图据Ninkovich and Donn(1976);b. 底图据Condie(1973).图中数据为地壳厚度
Fig. 8. Diagrams of Rb-SiO2 (a) and Rb-Sr (b) for andesites in the Fengshui Mountain area
表 1 凤水山地区安山岩微量元素特征与不同构造环境安山岩对比(参考数据来源于Condie,1989)
Table 1. Trace element characteristics of andesites in the Fengshui Mountain area and comparison to andesites from various tectonic setting (reference values from Condie, 1989)
参数 PAA
(原始弧安山岩)IAA
(岛弧安山岩)CMA
(大陆边缘弧安山岩)AA
(安第斯安山岩)研究区安山岩 Th(10-6) ≤1 1~3 2~5 4~8 7.4~8.9 La(10-6) 2~5 5~15 10~25 20~40 39~61 La/Yb ≤0.8 0.5~3.0 1~4 3~7 17~30 Zr/Y ≤3 3~7 4~12 12~50 10~15 Ti/V ≤30 20~40 20~50 20~70 50~66 Hf/Yb ≤1 1~3 1~3 ≥3 3~5 Ti/Zr > 50 40~50 40~50 ≤40 14~29 -
[1] Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505-539. https://doi.org/10.1093/petrology/egi084 [2] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 [3] Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1-4): 139-154. https://doi.org/10.1016/0009-2541(81)90135-2 [4] Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol-Okhotsk Belt in Mongolia: An Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1-2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024 [5] Cantagrel, J. M., Cendrero, A., Fuster, J. M., et al., 1984. K-Ar Chronology of the Volcanic Eruptions in the Canarian Archipelago: Island of La Gomera. Bulletin Volcanologique, 47(3): 597-609. https://doi.org/10.1007/bf01961229 [6] Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [7] Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2010. Geochronology, Geochemistry and Petrogenesis of the Bamco Andesites from the Northern Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2193-2206 (in Chinese with English abstract). http://www.researchgate.net/publication/279769272_Geochronology_geochemistry_and_petrogenesis_of_the_Bamco_andesites_from_the_northern_Gangdese_Tibet [8] Cheng, Y.H., Yang, J.Q., Liu, Y.S., et al., 2012. Age and Geochemistry of Andesites in the Qagan Obo Area, Da Hinggan Mountains. Geological Survey and Research, 35(2): 118-127 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-survey-research_thesis/0201254044613.html [9] Condie, K. C., 1973. Archean Magmatism and Crustal Thickening. Geological Society of America Bulletin, 84(9): 2981-2992. https://doi.org/10.1130/0016-7606(1973)842981:amact>2.0.co;2 doi: 10.1130/0016-7606(1973)842981:amact>2.0.co;2 [10] Condie, K.C., 1986. Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States. Journal of Geology, 94(6): 845-864. doi: 10.1086/629091 [11] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0 [12] Cullers, R. L., Graf, J. L., 1984. Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks-Ore Petrogenesis. Rare Earth Element Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50013-7 [13] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [14] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA) and Magnesian Andesitic/Dioritic Rocks(MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4): 1112-1118 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252106240.html [15] Derbeko, I. M., Sorokin, A. A., Sal'nikova, E. B., et al., 2008. Age of Felsic Volcanism in the Selitkan Zone of the Khingan-Okhotsk Volcanoplutonic Belt, Russian far East. Doklady Earth Sciences, 418(1): 28-31. https://doi.org/10.1134/s1028334x08010078 [16] Feeley, T. C., Wilson, L. F., Underwood, S. J., 2008. Distribution and Compositions of Magmatic Inclusions in the Mount Helen Dome, Lassen Volcanic Center, California: Insights into Magma Chamber Processes. Lithos, 106(1-2): 173-189. https://doi.org/10.1016/j.lithos.2008.07.010 [17] Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702022.htm [18] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Erguna Block in the Northern Part of the Daxing'anling. Chinese Science Bulletin, 50(12): 1239-1247 (in Chinese). doi: 10.1360/csb2005-50-12-1239 [19] Gill, J., 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin. [20] Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [21] Gou, J., Sun, D. Y., Ren, Y. S., et al., 2013. Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China: Geochronological, Geochemical and Hf Isotopic Evidence. Journal of Asian Earth Sciences, 67-68: 114-137. https://doi.org/10.1016/j.jseaes.2013.02.016 [22] Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research: Solid Earth, 101(B2): 3003-3013. https://doi.org/10.1029/95jb03463 [23] Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing in Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077 [24] Halim, N., Kravchinsky, V., Gilder, S., et al., 1998. A Palaeomagnetic Study from the Mongol-Okhotsk Region: Rotated Early Cretaceous Volcanics and Remagnetized Mesozoic Sediments. Earth and Planetary Science Letters, 159(3-4): 133-145. https://doi.org/10.1016/s0012-821x(98)00072-7 [25] Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. https://doi.org/10.1126/science.276.5312.551 [26] Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365 [27] Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 [28] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [29] Jackson, M. D., Cheadle, M. J., Atherton, M. P., 2003. Quantitative Modeling of Granitic Melt Generation and Segregation in the Continental Crust. Journal of Geophysical Research: Solid Earth, 108(B7): 2332. https://doi.org/10.1029/2001jb001050 [30] Ji, Z., Ge, W.C., Yang, H., et al., 2018. The Late Triassic Andean-Type Andesite from the Central Great Xing'an Range: Products of the Southward Subduction of the Mongol-Okhotsk Oceanic Plate. Acta Petrologica Sinica, 34(10): 2917-2930 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201810007.htm [31] Jia, L.M., Liu, H.Z., Ju, J.X., et al., 2018. Protolith Reconstruction and Geotectonic Environmental Research of Xinghuadukou Rock Group in Lülin Forestry Center, Daxing'anling. Journal of Geomechanics, 24(4): 544-554 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804040.htm [32] Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5 [33] Kushiro, I., 1968. Compositions of Magmas Formed by Partial Zone Melting of the Earth's Upper Mantle. Journal of Geophysical Research Atmospheres, 73(2): 619-634. https://doi.org/10.1029/jb073i002p00619 [34] le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glosssary of Terms: Recommendations of the International Union of Geological Science Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge. [35] Lee, C. T. A., Lee, T. C., Wu, C. T., 2014. Modeling the Compositional Evolution of Recharging, Evacuating, and Fractionating (REFC) Magma Chambers: Implications for Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 143: 8-22. https://doi.org/10.1016/j.gca.2013.08.009 [36] Li, J.Y., Zhang, J., Yang, T.N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm [37] Li, L., Sun, F.Y., Li, B.L., et al., 2018. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area. Earth Science, 43(2): 417-435 (in Chinese with English abstract). http://www.researchgate.net/publication/324644584_Geochemistry_Hf_Isotopes_and_Petrogenesis_of_Biotite_Granodiorites_in_the_Mohe_Area [38] Li, S.C., Zhang, L.Y., Li, P.C., et al., 2017. Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing'an Range. Earth Science, 42(12): 2117-2128 (in Chinese with English abstract). [39] Li, Y., 2018. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Xing'an Massif, NE China: Constraints on the Evolution of the Mongol-Okhotsk Tectonic Regime (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [40] Li, Y., Xu, W. L., Wang, F., et al., 2017a. Triassic Volcanism along the Eastern Margin of the Xing'an Massif, NE China: Constraints on the Spatial-Temporal Extent of the Mongol-Okhotsk Tectonic Regime. Gondwana Research, 48: 205-223. https://doi.org/10.1016/j.gr.2017.05.002 [41] Li, Y. L., Brouwer, F. M., Xiao, W. J., et al., 2017b. Subduction-Related Metasomatic Mantle Source in the Eastern Central Asian Orogenic Belt: Evidence from Amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research, 43: 193-212. https://doi.org/10.1016/j.gr.2015.11.015 [42] Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2014a. Nature and Timing of the Solonker Suture of the Central Asian Orogenic Belt: Insights from Geochronology and Geochemistry of Basic Intrusions in the Xilin Gol Complex, Inner Mongolia, China. International Journal of Earth Sciences, 103(1): 41-60. https://doi.org/10.1007/s00531-013-0931-3 [43] Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2014b. Early Paleozoic to Middle Triassic Bivergent Accretion in the Central Asian Orogenic Belt: Insights from Zircon U-Pb Dating of Ductile Shear Zones in Central Inner Mongolia, China. Lithos, 205: 84-111. https://doi.org/10.1016/j.lithos.2014.06.017 [44] Lin, Q., Ge, W.C., Sun, D.Y., et al., 1998. Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China. Scientia Geologica Sinica, 33(2): 129-139 (in Chinese with English abstract). http://www.researchgate.net/publication/296397418_Tectonic_significance_of_mesozoic_volcanic_rocks_in_Northeastern_China [45] Liu, H. C., Li, Y. L., He, H. Y., et al., 2018. Two-Phase Southward Subduction of the Mongol-Okhotsk Oceanic Plate Constrained by Permian-Jurassic Granitoids in the Erguna and Xing'an Massifs (NE China). Lithos, 304-307: 347-361. https://doi.org/10.1016/j.lithos.2018.01.016 [46] Liu, X.W., Yang, H., Dong, Y., et al., 2015. Zircon U-Pb Ages and Geochemical Characteristics of the Triassic Granites from the Mingshui Area in the Da Hinggan Mountains and Their Tectonic Implications. Acta Petrologica et Mineralogica, 34(2): 143-158 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSKW201502002.htm [47] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [48] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [49] Ma, Y.F., Liu, Y.J., Wen, Q.B., et al., 2017. Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm. at Central Part of Great Xing'an Range. Earth Science, 42(12): 2146-2173 (in Chinese with English abstract). [50] Maury, R. C., Andriambololona, R., Dupuy, C., 1978. Evolution Comparée de Deux Séries Alcalines Du Pacifique Central: Rôle de La Fugacité d'oxygène et de La Pression d'eau. Bulletin Volcanologique, 41(2): 97-118. https://doi.org/10.1007/bf02597024 [51] Mortazavi, M., Sparks, R. S. J., 2004. Origin of Rhyolite and Rhyodacite Lavas and Associated Mafic Inclusions of Cape Akrotiri, Santorini: The Role of Wet Basalt in Generating Calcalkaline Silicic Magmas. Contributions to Mineralogy and Petrology, 146(4): 397-413. https://doi.org/10.1007/s00410-003-0508-4 [52] Ninkovich, D., Donn, W.L., 1976. Explosive Cenozoic Volcanism and Climatic Implications. Science, 194(4268): 899-906. https://doi.org/10.1126/science.194.4268.899 [53] Niu, X.L., Liu, F., Feng, G.Y., et al., 2018. Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block. Earth Science, 43(4): 1350-1366 (in Chinese with English abstract). [54] Parman, S. W., Grove, T. L., 2004. Harzburgite Melting with and without H2O: Experimental Data and Predictive Modeling. Journal of Geophysical Research: Solid Earth, 109(B2): B02201. https://doi.org/10.1029/2003jb002566 [55] Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thoepe, R.S., ed., Andesites. John Willey and Suns, New York. [56] Pearce, J.A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margin. In: Zartman, R.E., ed., Continental Basalts and Mantle Xenoliths. Nantwich Shiva Academic Press, Chester. [57] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [58] Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491 [59] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [60] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 [61] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [62] Reubi, O., Blundy, J., 2009. A Dearth of Intermediate Melts at Subduction Zone Volcanoes and the Petrogenesis of Arc Andesites. Nature, 461(7268): 1269-1273. https://doi.org/10.1038/nature08510 [63] Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 [64] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific Technical, New York, 160-250. [65] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R., ed., The Crust, Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4 [66] She, H.Q., Liang, Y.W., Li, J.W., et al., 2011. The Early-Mesozoic Magmatic Activity at Moerdaoga District in Inner Mongolia and Its Geodynamic Implication. Journal of Jilin University (Earth Science Edition), 41(6): 1831-1864 (in Chinese with English abstract). http://www.researchgate.net/publication/279762295_The_Early-Mesozoic_magmatic_activity_at_Moerdaoga_district_in_Inner_Mongolia_and_its_geodynamic_implication [67] Si, Q.L., Tang, Z., Ma, Y.F., et al., 2017. Chronology Study on Volcanic Rocks of Hadataolegai Formation in Moguqi Area, Central Great Xing'an Mountains. Geological Review, 63(S1): 261-262 (in Chinese with English abstract). [68] Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/bf00283225 [69] Sorokin, A. A., Ponomarchuk, A. V., Buchko, I.V., et al., 2019. 40Ar/39Ar Age of Gold Mineralization of the Albyn Deposit (Eastern Part of the Mongol-Okhotsk Fold Belt). Doklady Earth Sciences, 466: 64-69. https://doi.org/10.1134/s1028334x16010153 [70] Sun, D. Y., Gou, J., Wang, T. H., et al., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China: Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801-1816. https://doi.org/10.1080/00206814.2013.804664 [71] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [72] Tang, G.J., Wang, Q., 2010. High-Mg Andesites and Their Geodynamic Implications. Acta Petrologica Sinica, 26(8): 2495-2512 (in Chinese with English abstract). http://www.researchgate.net/publication/285765484_High-Mg_andesites_and_their_geodynamic_implications [73] Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. LA-ICP-MS Zircon U-Pb Geochronology, Element Geochemistry and Petrogenesis of the Andesites in the Eastern Taerbieke Gold Deposit of the Western Tianshan Region. Acta Petrologica Sinica, 25(6): 1341-1352 (in Chinese with English abstract). http://www.oalib.com/paper/1472533 [74] Tang, J., 2016. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Erguna Massif, NE China: Constraints on the Tectonic Evolution of the Mongol-Okhotsk Suture Zone (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [75] Tang, J., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China: Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1-16. https://doi.org/10.1016/j.lithos.2013.10.024 [76] Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240. https://doi.org/10.1016/j.gr.2014.12.010 [77] Tischendorf, G., Paelchen, W., 1985. Classification of Granitoids. Zeitschrift für Geologische Wissenschaften, 13(5): 615-627. [78] Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392. https://doi.org/10.1016/j.jseaes.2014.10.005 [79] Wang, Y., Yang, X.P., Na, F.C., et al., 2017. Discovery of the Late Cambrian Intermediate-Basic Volcanic Rocks in Tahe, Northern Da Hinggan Mountain and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 47(1): 126-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201701012.htm [80] Wilson, B.M., 1989. Igneous Petrogenesis a Global Tectonic Approach. Springer, Berlin. [81] Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentic Hall, New York. [82] Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [83] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [84] Wu, G., 2006. Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Northern Da Hinggan Moutain (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [85] Wu, Y.B., Zheng, Y.F., 2004. The Genesis of Zircon and the Constraints on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [86] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201407001 [87] Xu, J.L., Zheng, C.Q., Shi, L., et al., 2013. Geochronology and Geochemistry of the Yaergenchu I Type Granites in Northern Da Hinggan Range and Its Geodynamic Implications. Acta Geologica Sinica, 87(9): 1311-1323 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201309009&dbcode=CJFD&year=2013&dflag=pdfdown [88] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). http://www.researchgate.net/publication/337905371_Basement_nature_and_tectonic_evolution_of_the_Xing'an-Mongolian_Orogenic_Belt_in_Chinese/download [89] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201302001.aspx [90] Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In Situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190. https://doi.org/10.1007/s00410-006-0139-7 [91] Zhang, J.F., Zhu, Q., Shao, J., et al., 2003. U-Pb Age of Monomineral Zircon of Badaoka Quartz-dioite in Inner Mongolia and Its Significance. Journal of Changchun University of Science and Technology, 33(4): 430-433 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200304007.htm [92] Zhang, K. J., 2014. Genesis of the Late Mesozoic Great Xing'an Range Large Igneous Province in Eastern Central Asia: A Mongol-Okhotsk Slab Window Model. International Geology Review, 56(13): 1557-1583. https://doi.org/10.1080/00206814.2014.946541 [93] Zhang, K. J., Yan, L. L., Ji, C., 2019a. Switch of NE Asia from Extension to Contraction at the Mid-Cretaceous: A Tale of the Okhotsk Oceanic Plateau from Initiation by the Perm Anomaly to Extrusion in the Mongol-Okhotsk Ocean? Earth-Science Reviews, 198: 102941. https://doi.org/10.1016/j.earscirev.2019.102941 [94] Zhang, X. R., Chung, S. L., Lai, Y. M., et al., 2019b. A 6 000-km-Long Neo-Tethyan Arc System with Coherent Magmatic Flare-Ups and Lulls in South Asia. Geology, 47(6): 573-576. https://doi.org/10.1130/g46172.1 [95] Zorin, Y. A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. https://doi.org/10.1016/s0040-1951(99)00042-6 [96] 陈越, 朱弟成, 赵志丹, 等, 2010. 西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因. 岩石学报, 26(7): 2193-2206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007021.htm [97] 程银行, 杨俊泉, 刘永顺, 等, 2012. 大兴安岭敖包查干地区安山岩年代学、地球化学研究. 地质调查与研究, 35(2): 118-127. doi: 10.3969/j.issn.1672-4135.2012.02.005 [98] 邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 [99] 葛文春, 隋振民, 吴福元, 等, 2007. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm [100] 葛文春, 吴福元, 周长勇, 等, 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约. 科学通报, 50(12): 1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015 [101] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [102] 纪政, 葛文春, 杨浩, 等, 2018. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲作用的产物. 岩石学报, 34(10): 2917-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810007.htm [103] 贾立民, 刘洪章, 鞠佳星, 等, 2018. 大兴安岭绿林林场一带兴华渡口岩群原岩恢复及大地构造环境探讨. 地质力学学报, 24(4): 544-554. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201804040.htm [104] 李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm [105] 李良, 孙丰月, 李碧乐, 等, 2018. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因. 地球科学, 43(2): 417-435. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802006.htm [106] 李世超, 张凌宇, 李鹏川, 等, 2017. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义. 地球科学, 42(12): 2117-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712002.htm [107] 李宇, 2018. 兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约(博士学位论文). 长春: 吉林大学. [108] 林强, 葛文春, 孙德有, 等, 1998. 中国东北地区中生代火山岩的大地构造意义. 地质科学, 33(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm [109] 刘希雯, 杨浩, 董玉, 等, 2015. 大兴安岭明水地区三叠纪花岗岩的锆石U-Pb年龄、地球化学特征及构造意义. 岩石矿物学杂志, 34(2): 143-158. doi: 10.3969/j.issn.1000-6524.2015.02.002 [110] 马永非, 刘永江, 温泉波, 等, 2017. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景. 地球科学, 42(12): 2146-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201712005.htm [111] 牛晓露, 刘飞, 冯光英, 等, 2018. 中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义. 地球科学, 43(4): 1350-1366. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804027.htm [112] 佘宏全, 梁玉伟, 李进文, 等, 2011. 内蒙古莫尔道嘎地区早中生代岩浆作用及其地球动力学意义. 吉林大学学报(地球科学版), 41(6): 1831-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106016.htm [113] 司秋亮, 唐振, 马永非, 等, 2017. 大兴安岭中段蘑菇气地区哈达陶勒盖组火山岩年代学研究. 地质论评, 63(增刊1): 261-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1126.htm [114] 唐功建, 王强, 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495-2512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008022.htm [115] 唐功建, 王强, 赵振华, 等, 2009. 西天山东塔尔别克金矿区安山岩LA-ICP-MS锆石U-Pb年代学、元素地球化学与岩石成因. 岩石学报, 25(6): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906006.htm [116] 唐杰, 2016. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约(博士学位论文). 长春: 吉林大学. [117] 汪岩, 杨晓平, 那福超, 等, 2017. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义. 吉林大学学报(地球科学版), 47(1): 126-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701012.htm [118] 武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用(博士学位论文). 长春: 吉林大学. [119] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [120] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [121] 徐久磊, 郑常青, 施璐, 等, 2013. 大兴安岭北段雅尔根楚Ⅰ型花岗岩年代学、岩石地球化学及其地球动力学意义. 地质学报, 87(9): 1311-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309009.htm [122] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm [123] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [124] 张炯飞, 朱群, 邵军, 等, 2003. 内蒙古八道卡石英闪长岩单颗粒锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 33(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304007.htm -
dqkxzx-46-8-2768-附表.docx