Crystal Mush Storage, Incremental Pluton Assemblyand Granitic Petrogenesis
-
摘要: 花岗质岩浆在地壳内的储存、迁移和分异,是导致大陆地壳生长演化的基本过程.有关地壳岩浆冷储存的新发现,挑战了数十年来深部存在以熔融体为主要组成的大岩浆房的观点.对活火山区的地球物理探测、岩石矿物学研究以及热历史模拟都一致证明,岩浆储库中的物质以晶粥为主,它们长时间处于固相线下的温度条件,属于冷储存状态.今天出露地表的大型侵入岩体,是古岩浆储库的代表,它们大都是在数百万年甚至更长的时间跨度内,多幕式的岩浆输运、累积侵位和多次添加组装而成的.侵入体的累积组装,可以通过岩石单元间接触关系的观察、岩石和矿物成分的不均一性研究以及侵入体内大的结晶时间跨度来证明.地壳浅部大型侵入体的形成,大体积的火山喷发,都要求存在穿地壳的岩浆通道系统,该系统中岩浆主要以岩墙形式将不同深度的岩浆储库串联起来,并通过无数岩床的堆垛而形成巨大的岩株或岩基等侵入体.高分异花岗岩和高硅流纹岩的存在,尤其是火山的超级喷发现象,要求岩浆储库的晶粥体发生活化和分异,而晶粥的解体往往是由于从下部侵入的新岩浆注入了额外的热和流体.保留在岩石中的晶体种群蕴含了侵入体累积组装、晶粥活化和岩浆分异的线索.尤其是再循环晶可以提供岩浆通道系统结构和演变的新信息.未来,在花岗岩成因研究中,重点要从晶粥活化与岩浆分异演化过程、岩浆上升和组装机制、火山岩与侵入岩的成因联系等方面入手,开展岩浆通道系统的跨学科研究,构建花岗岩岩浆过程研究的新范式,深入认识大陆地壳的生长和演化机理.Abstract: Storage,migration and differentiation of granitic magma in the crust are the basic processes leading to the growth and evolution of continental crust. Studies of magma storage and assembly in the crust over the past decade have challenged traditionally-held views of magma chambers as large,molten melt bodies. Geophysical exploration,petrological and mineralogical studies,and thermal history simulations in active volcanic areas have consistently demonstrated that the material in magma reservoirs is mainly crystal mush residing under sub-solidus temperature conditions for a long time and remaining in relatively cold storage. The large plutons outcropping on the surface today represent fossil magma reservoirs. Most of them were formed by multiple additions and incremental assembly of magma over a span of millions of years or even longer. The incremental assembly of plutons can be proved by observation of contact relationships between intrusive units,heterogeneity of rock and mineral compositions,and large timescales of pluton emplacement. The intrusion of large plutons in a shallow crust and large-volume volcanic eruptions require the existence of transcrustal magma plumbing systems in which magma is connected by a series of dykes to magma reservoirs at different depths,and huge stocks and batholiths are assembled by stacking of numerous sills.The existence of highly-fractionated granites and high-silica rhyolites,and especially the phenomena of super-eruptions require the reactivation and differentiation of crystal mush in magma reservoirs. The disaggregation of crystal mush is often due to a fresh magma intrusion from below injecting additional heat and fluid. The crystal cargo can provide clues to the pluton assembly,crystal mush rejuvenation and magma differentiation. In particular,antecrysts can provide new insights into the evolution of magma plumbing systems. In future,the study of granitic petrogenesis will focus on crystal mush rejuvenation and magma differentiation,the mechanisms of magma rise and assembly,the genetic relationships between volcanic rocks and intrusive rocks,and interdisciplinary research on magma plumbing systems,in order to construct a new paradigm for the study of granitic magma processes,and in-depth understanding of the growth and evolution mechanisms of continental crust.
-
Key words:
- crystal mush /
- magma reservoirs /
- magmatic plumbing system /
- cold storage /
- incremental assembly /
- granitoids
-
图 2 岩浆通道系统模型图(据Cashman et al., 2017修改)
Fig. 2. Model of a magma plumbing system (modified from Cashman et al., 2017)
图 3 周口店岩体主体花岗闪长岩中环带斜长石An变化图(据Zhang et al., 2014修改)
Fig. 3. Compositional zoning in plagioclase from the main granodiorite unit of Zhoukoudian pluton, western Beijing (modified from Zhang et al., 2014)
-
[1] Ackerson, M.R., Mysen, B.O., Tailby, N.D., et al., 2018.Low-Temperature Crystallization of Granites and the Implications for Crustal Magmatism.Nature, 559:94-97. https://doi.org/10.1038/s41586-018-0264-2 [2] Andersen, N.L., Jicha, B.R., Singer, B.S., et al., 2017.Incremental Heating of Bishop Tuff Sanidine Reveals Preeruptive Radiogenic Ar and Rapid Remobilization from Cold Storage.Proceedings of the National Academy of Sciences, 114(47):12407-12412. https://doi.org/10.1073/pnas.1709581114 [3] Annen, C., 2009.From Plutons to Magma Chambers:Thermal Constraints on the Accumulation of Eruptible Silicic Magma in the Upper Crust.Earth and Planetary Science Letters, 284(3-4):409-416. https://doi.org/10.1016/j.epsl.2009.05.006 [4] Annen, C., 2011.Implications of Incremental Emplacement of Magma Bodies for Magma Differentiation, Thermal Aureole Dimensions and Plutonism-Volcanism Relationships.Tectonophysics, 500(1-4):3-10. https://doi.org/10.1016/j.tecto.2009.04.010 [5] Bachmann, O., Bergantz, G.W., 2004.On the Origin of Crystal-Poor Rhyolites:Extracted from Batholithic Crystal Mushes.Journal of Petrology, 45(8):1565-1582. https://doi.org/10.1093/petrology/egh019 [6] Bachmann, O., Bergantz, G.W., 2006.Gas Percolation in Upper-Crustal Silicic Crystal Mushes as a Mechanism for Upward Heat Advection and Rejuvenation of Near-Solidus Magma Bodies.Journal of Volcanology and Geothermal Research, 149(1-2):85-102. https://doi.org/10.1016/j.jvolgeores.2005.06.002 [7] Beard, J.S., 2008.Crystal-Melt Separation and the Development of Isotopic Heterogeneities in Hybrid Magmas.Journal of Petrology, 49(5):1027-1041. https://doi.org/10.1093/petrology/egn015 [8] de Saint Blanquat, M., Horsman, E., Habert, G., et al., 2011.Multiscale Magmatic Cyclicity, Duration of Pluton Construction, and the Paradoxical Relationship between Tectonism and Plutonism in Continental Arcs.Tectonophysics, 500(1-4):20-33. https://doi.org/10.1016/j.tecto.2009.12.009 [9] Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review.Lithos, 78(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042 [10] Brown, M., 2007.Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens:Mechanisms and Consequences.Journal of the Geological Society, 164(4):709-730. https://doi.org/10.1144/0016-76492006-171 [11] Burchardt, S., 2018.Volcanic and Igneous Plumbing Systems.Uppsala University, Uppsala, Sweden.https://doi.org/10.1016/c2015-0-06837-x [12] Burgisser, A., Bergantz, G.W., 2011.A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies.Nature, 471:212-215. https://doi.org/10.1038/nature09799 [13] Caracciolo, A., Bali, E., Guðfinnsson, G.H., et al., 2020.Temporal Evolution of Magma and Crystal Mush Storage Conditions in the Bárðarbunga-Veiðivötn Volcanic System, Iceland.Lithos, 352-353:105234. https://doi.org/10.1016/j.lithos.2019.105234 [14] Caricchi, L., Burlini, L., Ulmer, P., et al., 2007.Non-Newtonian Rheology of Crystal-Bearing Magmas and Implications for Magma Ascent Dynamics.Earth and Planetary Science Letters, 264(3-4):402-419. https://doi.org/10.1016/j.epsl.2007.09.032 [15] Cashman, K.V., Sparks, R.S.J., Blundy, J.D., 2017.Vertically Extensive and Unstable Magmatic Systems:A Unified View of Igneous Processes.Science, 355(6331):eaag3055. https://doi.org/10.1126/science.aag3055 [16] Chambers, M., Memeti, V., Eddy, M.P., et al., 2020.Half a Million Years of Magmatic History Recorded in a K-Feldspar Megacryst of the Tuolumne Intrusive Complex, California, USA.Geology, 48(4):400-404. https://doi.org/10.1130/g46873.1 [17] Chang, W.L., Smith, R.B., Wicks, C., et al., 2007.Accelerated Uplift and Magmatic Intrusion of the Yellowstone Caldera, 2004 to 2006.Science, 318(5852):952-956. https://doi.org/10.1126/science.1146842 [18] Chen, L., Zheng, Y.F., Zhao, Z.F., 2018.Geochemical Insights from Clinopyroxene Phenocrysts into the Effect of Magmatic Processes on Petrogenesis of Intermediate Volcanics.Lithos, 316-317:137-153. https://doi.org/10.1016/j.lithos.2018.07.014 [19] Clemens, J.D., Stevens, G., 2012.What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135:317-329. https://doi.org/10.1016/j.lithos.2012.01.001 [20] Clemens, J.D., Stevens, G., Farina, F., 2011.The Enigmatic Sources of I-Type Granites:The Peritectic Connexion.Lithos, 126(3-4):174-181. https://doi.org/10.1016/j.lithos.2011.07.004 [21] Clemens, J.D., Birch, W.D., 2012.Assembly of a Zoned Volcanic Magma Chamber from Multiple Magma Batches:The Cerberean Cauldron, Marysville Igneous Complex, Australia.Lithos, 155:272-288. https://doi.org/10.1016/j.lithos.2012.09.007 [22] Coleman, D.S., Gray, W., Glazner, A.F., 2004.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite, California.Geology, 32(5):433-436. https://doi.org/10.1130/g20220.1 [23] Cooper, K.M., Kent, A.J.R., 2014.Rapid Remobilization of Magmatic Crystals Kept in Cold Storage.Nature, 506:480-483. https://doi.org/10.1038/nature12991 [24] Couch, S., Sparks, R.S.J., Carroll, M.R., 2001.Mineral Disequilibrium in Lavas Explained by Convective Self-Mixing in Open Magma Chambers.Nature, 411:1037-1039. https://doi.org/10.1038/35082540 [25] Daly, R.A., 1933.Igneous rocks and Depths of the Earth.McGraw-Hill, New York, 316. [26] Deering, C.D., Keller, B., Schoene, B., et al., 2016.Zircon Record of the Plutonic-Volcanic Connection and Protracted Rhyolite Melt Evolution.Geology, 44(4):267-270. https://doi.org/10.1130/g37539.1 [27] Díaz-Alvarado, J., Castro, A., Fernández, C., et al., 2011.Assessing Bulk Assimilation in Cordierite-Bearing Granitoids from the Central System Batholith, Spain; Experimental, Geochemical and Geochronological Constraints.Journal of Petrology, 52(2):223-256. https://doi.org/10.1093/petrology/egq078 [28] Dorais, M.J., Tubrett, M., 2012.Detecting Peritectic Garnet in the Peraluminous Cardigan Pluton, New Hampshire.Journal of Petrology, 53(2):299-324. https://doi.org/10.1093/petrology/egr063 [29] Druitt, T.H., Costa, F., Deloule, E., et al., 2012.Decadal to Monthly Timescales of Magma Transfer and Reservoir Growth at a Caldera Volcano.Nature, 482:77-80. https://doi.org/10.1038/nature10706 [30] Erdmann, S., Jamieson, R.A., MacDonald, M.A., 2009.Evaluating the Origin of Garnet, Cordierite, and Biotite in Granitic Rocks:A Case Study from the South Mountain Batholith, Nova Scotia.Journal of Petrology, 50(8):1477-1503. https://doi.org/10.1093/petrology/egp038 [31] Farina, F., Stevens, G., Villaros, A., 2012.Multi-Batch, Incremental Assembly of a Dynamic Magma Chamber:The Case of the Peninsula Pluton Granite (Cape Granite Suite, South Africa).Mineralogy and Petrology, 106(3-4):193-216. https://doi.org/10.1007/s00710-012-0224-8 [32] Feng, W.Y., Zhu, Y.F., 2018.Decoding Magma Storage and Pre-Eruptive Processes in the Plumbing System beneath Early Carboniferous Arc Volcanoes of Southwestern Tianshan, Northwest China.Lithos, 322:362-375. https://doi.org/10.1016/j.lithos.2018.09.030 [33] Frazer, R.E., Coleman, D.S., Mills, R.D., 2014.Zircon U-Pb Geochronology of the Mount Givens Granodiorite:Implications for the Genesis of Large Volumes of Eruptible Magma.Journal of Geophysical Research:Solid Earth, 119(4):2907-2924. https://doi.org/10.1002/2013jb010716 [34] Gao, P., Zheng, Y.F., Zhao, Z.F., 2016.Experimental Melts from Crustal Rocks:A Lithochemical Constraint on Granite Petrogenesis.Lithos, 266-267:133-157. https://doi.org/10.1016/j.lithos.2016.10.005 [35] Gilbert, G.K., 1877.Report on the Geology of the Henry Mountains.Government Printing Office, Washington, D.C.. [36] Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2004.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers.GSA Today, 14(4):4-11. doi: 10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2 [37] Glazner, A.F., Coleman, D.S., Bartley, J.M., 2008.The Tenuous Connection between High-Silica Rhyolites and Granodiorite Plutons.Geology, 36(2):183-186. https://doi.org/10.1130/g24496a.1 [38] Glazner, A.F., Coleman, D.S., Mills, R.D., 2015.The Volcanic-Plutonic Connection.In: Breitkreuz, C., Rocchi, S., eds., Physical Geology of Shallow Magmatic Systems.Advances in Volcanology, Springer, Cham, 61-82.https://doi.org/10.1007/11157_2015_11 [39] Grande, M.M., Alasino, P.H., Rocher, S., et al., 2015.Asymmetric Textural and Structural Patterns of a Granitic Body Emplaced at Shallow Levels:The La Chinchilla Pluton, Northwestern Argentina.Journal of South American Earth Sciences, 64:58-68. https://doi.org/10.1016/j.jsames.2015.09.011 [40] Gudmundsson, A., 2012.Magma Chambers:Formation, Local Stresses, Excess Pressures, and Compartments.Journal of Volcanology and Geothermal Research, 237-238:19-41. https://doi.org/10.1016/j.jvolgeores.2012.05.015 [41] Gudmundsson, A., 2020.Volcanotectonics:Understanding the Structure, Deformation and Dynamics of Volcanoes.Cambridge University Press, Cambridge. [42] Hammond, W.C., Humphreys, E.D., 2000.Upper Mantle Seismic Wave Velocity:Effects of Realistic Partial Melt Geometries.Journal of Geophysical Research:Solid Earth, 105(B5):10975-10986. https://doi.org/10.1029/2000jb900041 [43] Heinonen, A., Mänttäri, I., Rämö, O.T., et al., 2016.A Priori Evidence for Zircon Antecryst Entrainment in Megacrystic Proterozoic Granites.Geology, 44(3):227-230. https://doi.org/10.1130/g37696.1 [44] Hill, G.J., Caldwell, T.G., Heise, W., et al., 2009.Distribution of Melt beneath Mount St Helens and Mount Adams Inferred from Magnetotelluric Data.Nature Geoscience, 2:785-789. https://doi.org/10.1038/ngeo661 [45] Holt, S.J., Holford, S.P., Foden, J., 2014.New Insights into the Magmatic Plumbing System of the South Australian Quaternary Basalt Province from 3D Seismic and Geochemical Data.Australian Journal of Earth Sciences, 60(8):797-817. https://doi.org/10.1080/08120099.2013.865143 [46] Horsman, E., Morgan, S., de Saint-Blanquat, M., et al., 2009.Emplacement and Assembly of Shallow Intrusions from Multiple Magma Pulses, Henry Mountains, Utah.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2):117-132. https://doi.org/10.1017/s1755691009016089 [47] Huang, H.H., Lin, F.C., Schmandt, B., et al., 2015.The Yellowstone Magmatic System from the Mantle Plume to the Upper Crust.Science, 348(6236):773-776. https://doi.org/10.1126/science.aaa5648 [48] Huber, C., Bachmann, O., Dufek, J., 2011.Thermo-Mechanical Reactivation of Locked Crystal Mushes:Melting-Induced Internal Fracturing and Assimilation Processes in Magmas.Earth and Planetary Science Letters, 304(3-4):443-454. https://doi.org/10.1016/j.epsl.2011.02.022 [49] Huber, C., Townsend, M., Degruyter, W., et al., 2019.Optimal Depth of Subvolcanic Magma Chamber Growth Controlled by Volatiles and Crust Rheology.Nature Geoscience, 12:762-768. https://doi.org/10.1038/s41561-019-0415-6 [50] Huppert, H.E., Sparks, R.S.J., 1988.The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust.Journal of Petrology, 29(3):599-624. https://doi.org/10.1093/petrology/29.3.599 [51] Hutton, D.H.W., 1988.Granite Emplacement Mechanisms and Tectonic Controls:Inferences from Deformation Studies.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3):245-255. https://doi.org/10.1017/s0263593300014255 [52] Iddon, F., Jackson, C., Hutchison, W., et al., 2019.Mixing and Crystal Scavenging in the Main Ethiopian Rift Revealed by Trace Element Systematics in Feldspars and Glasses.Geochemistry, Geophysics, Geosystems, 20(1):230-259. https://doi.org/10.1029/2018gc007836 [53] Jackson, M.D., Blundy, J., Sparks, R.S.J., 2018.Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earth's Crust.Nature, 564:405-409. https://doi.org/10.1038/s41586-018-0746-2 [54] Jackson, M.D., Cheadle, M.J., Atherton, M.P., 2003.Quantitative Modeling of Granitic Melt Generation and Segregation in the Continental Crust.Journal of Geophysical Research:Solid Earth, 108(B7). https://doi.org/10.1029/2001jb001050 [55] Jaeger, J.C., 1957.The Temperature in the Neighborhood of a Cooling Intrusive Sheet.American Journal of Science, 255(4):306-318. https://doi.org/10.2475/ajs.255.4.306 [56] Jerram, D.A., Martin, V., 2008.Understanding Crystal Populations and Their Significance Through the Magma Plumbing System.Geological Society, London, Special Publications, 304(1):133-148. http://dx.doi.org/10.1144/sp304.7 [57] Jorgensen, M., Zhdanov, M.S., 2019.Imaging Yellowstone Magmatic System by the Joint Gramian Inversion of Gravity and Magnetotelluric Data.Physics of the Earth and Planetary Interiors, 292:12-20. https://doi.org/10.1016/j.pepi.2019.05.003 [58] Kahl, M., Chakraborty, S., Costa, F., et al., 2011.Dynamic Plumbing System beneath Volcanoes Revealed by Kinetic Modeling, and the Connection to Monitoring Data:An Example from Mt.Etna.Earth and Planetary Science Letters, 308(1-2):11-22. https://doi.org/10.1016/j.epsl.2011.05.008 [59] Karlstrom, L., Rudolph, M.L., Manga, M., 2012.Caldera Size Modulated by the Yield Stress within a Crystal-Rich Magma Reservoir.Nature Geoscience, 5(6):402-405. https://doi.org/10.1038/ngeo1453 [60] Keller, C.B., Schoene, B., Barboni, M., et al., 2015.Volcanic-Plutonic Parity and the Differentiation of the Continental Crust.Nature, 523:301-307. https://doi.org/10.1038/nature14584 [61] Kent, A.J.R., Darr, C., Koleszar, A.M., et al., 2010.Preferential Eruption of Andesitic Magmas through Recharge Filtering.Nature Geoscience, 3(9):631-636. https://doi.org/10.1038/ngeo924 [62] Khatiwada, M., Keller, G.R., 2017.A Crustal-Scale Integrated Geophysical and Tectonic Study of the Snake River Plain Region, Northwestern U.S.A..International Geology Review, 59(15):1929-1943. https://doi.org/10.1080/00206814.2017.1303647 [63] Larrea, P., França, Z., Lago, M., et al., 2013.Magmatic Processes and the Role of Antecrysts in the Genesis of Corvo Island (Azores Archipelago, Portugal).Journal of Petrology, 54(4):769-793. https://doi.org/10.1093/petrology/egs084 [64] Latypov, R.M., 2003.The Origin of Basic-Ultrabasic Sills with S-, D-, and I- Shaped Compositional Profiles by in Situ Crystallization of a Single Input of Phenocryst-Poor Parental Magma.Journal of Petrology, 44(9):1619-1656. https://doi.org/10.1093/petrology/egg051 [65] Lee, C.T.A., Morton, D.M., 2015.High Silica Granites:Terminal Porosity and Crystal Settling in Shallow Magma Chambers.Earth and Planetary Science Letters, 409:23-31. https://doi.org/10.1016/j.epsl.2014.10.040 [66] Li, S.R., Santosh, M., Zhang, H.F., et al., 2014.Metallogeny in Response to Lithospheric Thinning and Craton Destruction:Geochemistry and U-Pb Zircon Chronology of the Yixingzhai Gold Deposit, Central North China Craton.Ore Geology Reviews, 56:457-471. https://doi.org/10.1016/j.oregeorev.2012.10.008 [67] Li, X.C., Niu, M.L., Yakymchuk, C., et al., 2018.Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction:A Case Study from the North Wulan Gneiss Complex.Gondwana Research, 61:128-149. https://doi.org/10.1016/j.gr.2018.04.016 [68] Lipman, P.W., 2007.Incremental Assembly and Prolonged Consolidation of Cordilleran Magma Chambers:Evidence from the Southern Rocky Mountain Volcanic Field.Geosphere, 3(1):42-70. https://doi.org/10.1130/ges00061.1 [69] Lipman, P., Dungan, M., Bachmann, O., 1997.Comagmatic Granophyric Granite in the Fish Canyon Tuff, Colorado:Implications for Magma-Chamber Processes during a Large Ash-Flow Eruption.Geology, 25(10):915-918. doi: 10.1130/0091-7613(1997)025<0915:CGGITF>2.3.CO;2 [70] Liu, H.M., Shen, J.F., Santosh, M., et al., 2019.Polymetallic Droplets within Trapped Globules in a Quartz Diorite Porphyry from Gangcha-Kemo Gold Deposit, West Qinling Orogen, China:Implications for Petrogenesis and Prospecting.Lithos, 326-327:446-459. https://doi.org/10.1016/j.lithos.2018.12.038 [71] Luo, B.J., Zhang, H.F., Xu, W.C., et al., 2018.The Magmatic Plumbing System for Mesozoic High-Mg Andesites, Garnet-Bearing Dacites and Porphyries, Rhyolites and Leucogranites from West Qinling, Central China.Journal of Petrology, 59(3):447-482. https://doi.org/10.1093/petrology/egy035 [72] Luo, Z.H., Yang, Z.F., Dai, G., et al., 2013.Crystal Populations of Igneous Rocks and Their Implications in Genetic Mineralogy.Geology in China, 40(1):176-181(in Chinese with English abstract). http://www.researchgate.net/publication/281495532_Crystal_populations_of_igneous_rocks_and_their_implications_in_genetic_mineralogy [73] Ma, C.Q., 1988. Magmatic-Dynamic Mechanism of Emplacement and Compositional Zonation of the Zhoukoudian Stock, Beijing. Acta Geologica Sinica, (4): 329-341(in Chinese with English abstract). [74] Ma, C.Q., 1989.The Magma-Dynamic Mechaism of Emplacement and Compositional Zonation of the Zhoukoudian Stock, Beijing.Acta Geologica Sinica (English Edition), 2(2):159-174. http://www.cqvip.com/QK/86253X/198902/3001439874.html [75] Ma, C.Q., Li, Y.Q., 2017.Incremental Growth of Granitoid Plutons and Highly Crystalline Magmatic Differentiation.Acta Petrologica Sinica, 33(5) :1479-1488(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705007.htm [76] Ma, C.Q., Li, Z.C., Ehlers, C., et al., 1998.A Post-Collisional Magmatic Plumbing System:Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China.Lithos, 45(1-4):431-456. https://doi.org/10.1016/s0024-4937(98)00043-7 [77] Ma, C.Q., Wang, R.J., 1990.The Characteristic Features and Origin of K-Feldspar Megacrysts in the Zhoukoudian Pluton, Beijing.Acta Mineralogica Sinica, 10(4):323-331(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199004004.htm [78] Ma, C.Q., Wang, R.J., Qiu, J.X., 1992.Enclaves as Indicators of the Origin of Granitoid Magma and Repeater Magma Mingling:An Example from the Zhoukoudian Intrusion, Beijing.Geological Review, 38(2):109-119(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP199202001&dbcode=CJFD&year=1992&dflag=pdfdown [79] Ma, C.Q., Yang, K.G., Tang, Z.H., et al., 1994.Magma-Dynamics of Granitoids:Theory, Method and a Case Study of the Eastern Hubei Granitoids.China University of Geosciences Press, Wuhan(in Chinese). [80] Magee, C., Stevenson, C.T.E., Ebmeier, S.K., et al., 2018.Magma Plumbing Systems:A Geophysical Perspective.Journal of Petrology, 59(6):1217-1251. https://doi.org/10.1093/petrology/egy064 [81] Mason, B.G., Pyle, D.M., Oppenheimer, C., 2004.The Size and Frequency of the Largest Explosive Eruptions on Earth.Bulletin of Volcanology, 66(8):735-748. https://doi.org/10.1007/s00445-004-0355-9 [82] Matzel, J.E.P., Bowring, S.A., Miller, R.B., 2006.Time Scales of Pluton Construction at Differing Crustal Levels:Examples from the Mount Stuart and Tenpeak Intrusions, North Cascades, Washington.Geological Society of America Bulletin, 118(11-12):1412-1430. https://doi.org/10.1130/b25923.1 [83] Mavko, G.M., 1980.Velocity and Attenuation in Partially Molten Rocks.Journal of Geophysical Research:Solid Earth, 85(B10):5173-5189. https://doi.org/10.1029/jb085iB10p05173 [84] McNulty, B.A., Tong, W.X., Tobisch, O.T., 1996.Assembly of a Dike-Fed Magma Chamber:The Jackass Lakes Pluton, Central Sierra Nevada, California.Geological Society of America Bulletin, 108(8):926-940. doi: 10.1130/0016-7606(1996)108<0926:AOADFM>2.3.CO;2 [85] Meng, F.C., Tian, G.K., Duan, X.P., et al., 2018.Evidence from Garnet for Genesis of Garnet-Cordierite-Granite in the Jinshuikou Area, Eastern Segment of the East Kunlun Mountains.Bulletin of Mineralogy, Petrology and Geochemistry, 37(2):192-204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201802005.htm [86] Michel, J., Baumgartner, L., Putlitz, B., et al., 2008.Incremental Growth of the Patagonian Torres Del Paine Laccolith over 90 k.y.Geology, 36(6):459-462. https://doi.org/10.1130/g24546a.1 [87] Miles, A.J., Graham, C.M., Hawkesworth, C.J., et al., 2013.Evidence for Distinct Stages of Magma History Recorded by the Compositions of Accessory Apatite and Zircon.Contributions to Mineralogy and Petrology, 166(1):1-19. https://doi.org/10.1007/s00410-013-0862-9 [88] Miller, J.S., Matzel, J.E.P., Miller, C.F., et al., 2007.Zircon Growth and Recycling during the Assembly of Large, Composite Arc Plutons.Journal of Volcanology and Geothermal Research, 167(1-4):282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019 [89] Mitchell, M.A., White, R.S., Roecker, S., et al., 2013.Tomographic Image of Melt Storage beneath Askja Volcano, Iceland Using Local Microseismicity.Geophysical Research Letters, 40(19):5040-5046. https://doi.org/10.1002/grl.50899 [90] Mollo, S., Putirka, K., Misiti, V., et al., 2013.A New Test for Equilibrium Based on Clinopyroxene-Melt Pairs:Clues on the Solidification Temperatures of Etnean Alkaline Melts at Post-Eruptive Conditions.Chemical Geology, 352:92-100. https://doi.org/10.1016/j.chemgeo.2013.05.026 [91] Moore, J.G., Sisson, T.W., 2008.Igneous Phe-Nocrystic Origin of K-Feldspar Megacrysts in Granitic Rocks from the Sierra Nevada Batholith.Geosphere, 4(2):387-400. https://doi.org/10.1130/ges00146.1 [92] Morley, C.K., 2018.3-D Seismic Imaging of the Plumbing System of the Kora Volcano, Taranaki Basin, New Zealand:The Influence of Syn-Rift Structure on Shallow Igneous Intrusion Architecture.Geosphere, 14(6):2533-2584. https://doi.org/10.1130/ges01645.1 [93] Murase, T., McBirney, A.R., 1973.Properties of some Common Igneous Rocks and Their Melts at High Temperatures.Geological Society of America Bulletin, 84(11):3563-3592. doi: 10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2 [94] Pamukcu, A.S., Gualda, G.A.R., Bégué, F., et al., 2015.Melt Inclusion Shapes:Timekeepers of Short-Lived Giant Magma Bodies.Geology, 43(11):947-950. https://doi.org/10.1130/g37021.1 [95] Pappalardo, L., Mastrolorenzo, G., 2012.Rapid Differentiation in a Sill-Like Magma Reservoir:A Case Study from the Campi Flegrei Caldera.Scientific Reports , 712. https://doi.org/10.1038/srep00712 [96] Parmigiani, A., Huber, C., Bachmann, O., 2014.Mush Microphysics and the Reactivation of Crystal-Rich Magma Reservoirs.Journal of Geophysical Research:Solid Earth, 119(8):6308-6322. https://doi.org/10.1002/2014jb011124 [97] Paterson, S.R., Vernon, R.H., 1995.Bursting the Bubble of Ballooning Plutons:A Return to Nested Diapirs Emplaced by Multiple Processes.Geological Society of America Bulletin, 107(11):1356-1380. doi: 10.1130/0016-7606(1995)107<1356:BTBOBP>2.3.CO;2 [98] Paulatto, M., Annen, C., Henstock, T.J., et al., 2012.Magma Chamber Properties from Integrated Seismic Tomography and Thermal Modeling at Montserrat.Geochemistry, Geophysics, Geosystems, 13(1):Q01014. https://doi.org/10.1029/2011gc003892 [99] Petford, N., Cruden, A.R., McCaffrey, K.J.W., et al., 2000.Granite Magma Formation, Transport and Emplacement in the Earth's Crust.Nature, 408:669-673. https://doi.org/10.1038/35047000 [100] Philpotts, A.R., Philpotts, D.E., 2005.Crystal-Mush Compaction in the Cohassett Flood-Basalt Flow, Hanford, Washington.Journal of Volcanology and Geothermal Research, 145(3-4):192-206. https://doi.org/10.1016/j.jvolgeores.2005.01.008 [101] Pistone, M., Arzilli, F., Dobson, K.J., et al., 2015.Gas-Driven Filter Pressing in Magmas:Insights into In-Situ Melt Segregation from Crystal Mushes.Geology, 43(8):699-702. https://doi.org/10.1130/G36766.1 [102] Pitcher, W.S., 1993.The Nature and Origin of Granite.Blackie Academic and Professional, London. [103] Ratschbacher, B.C., 2017.Depth-Dependent Physical, Chemical and Temporal Evolution of Crustal Differentiation in Magmatic Arcs (Dissertation).University of Southern California, Los Angeles. [104] Reid, M.R., 2003.Timescales of Magma Transfer and Storage in the Crust.Treatise on geochemistry, Amsterdam, 3:167-193. https://doi.org/10.1016/b0-08-043751-6/03022-x [105] Rubin, A.E., Cooper, K.M., Till, C.B., et al., 2017.Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals.Science, 356(6343):1154-1156. doi: 10.1126/science.aam8720 [106] Sato, H., Sacks, I.S., Murase, T., et al., 1988.Thermal Structure of the Low Velocity Zone Derived from Laboratory and Seismic Investigations.Geophysical Research Letters, 15(11):1227-1230. https://doi.org/10.1029/gl015i011p01227 [107] Schaen, A.J., Cottle, J.M., Singer, B.S., et al., 2017.Complementary Crystal Accumulation and Rhyolite Melt Segregation in a Late Miocene Andean Pluton.Geology, 45(9):835-838. https://doi.org/10.1130/g39167.1 [108] Scott, W.E., Gardner, C.A., Sherrod, D.R., et al.1997.Geologic History of Mount Hood Volcano, Oregon: A Field Trip Guidebook.USGS Open File Report 97-263, U.S.Geological Survey. https://doi.org/10.3133/ofr97263 [109] Sisson, T.W., Bacon, C.R., 1999.Gas-Driven Filter Pressing in Magmas.Geology, 27(7):613-616. doi: 10.1130/0091-7613(1999)027<0613:GDFPIM>2.3.CO;2 [110] Stevens, G., Villaros, A., Moyen, J.F., 2007.Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-Type Granites.Geology, 35(1):9-12. https://doi.org/10.1130/g22959a.1 [111] Stevenson, C., 2009.The Relationship between Forceful and Passive Emplacement:The Interplay between Tectonic Strain and Magma Supply in the Rosses Granitic Complex, NW Ireland.Journal of Structural Geology, 31(3):270-287. https://doi.org/10.1016/j.jsg.2008.11.009 [112] Stimac, J.A., Goff, F., Wohletz, K., 2001.Thermal Modeling of the Clear Lake Magmatic-Hydrothermal System, California, USA.Geothermics, 30(2-3):349-390. https://doi.org/10.1016/s0375-6505(00)00062-6 [113] Sun, J.F., Yang, J.H., Wu, F.Y., et al., 2010.Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton:In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence.Lithos, 120(3-4):421-438. https://doi.org/10.1016/j.lithos.2010.09.002 [114] Sun, J.F., Yang, J.H., Wu, F.Y., et al., 2012.In Situ U-Pb Dating of Titanite by LA-ICPMS.Chinese Science Bulletin, 57(20):2506-2516. https://doi.org/10.1007/s11434-012-5177-0 [115] Szymanowski, D., Wotzlaw, J.F., Ellis, B.S., et al., 2017.Protracted Near-Solidus Storage and Pre-Eruptive Rejuvenation of Large Magma Reservoirs.Nature Geoscience, 10(10):777-782. https://doi.org/10.1038/ngeo3020 [116] Tapster, S., Condon, D.J., Naden, J., et al., 2016.Rapid Thermal Rejuvenation of High-Crystallinity Magma Linked to Porphyry Copper Deposit Formation; Evidence from the Koloula Porphyry Prospect, Solomon Islands.Earth and Planetary Science Letters, 442:206-217. https://doi.org/10.1016/j.epsl.2016.02.046 [117] Tibaldi, A., 2015.Structure of Volcano Plumbing Systems:A Review of Multi-Parametric Effects.Journal of Volcanology and Geothermal Research, 298:85-135. https://doi.org/10.1016/j.jvolgeores.2015.03.023 [118] Tuttle, O.F., Bowen, N.L., 1958.Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O.Geological Society of America Memoir, 74:153. https://doi.org/10.1130/mem74 [119] Vernon, R.H., 1984.Microgranitoid Enclaves in Granites:Globules of Hybrid Magma Quenched in a Plutonic Environment.Nature, 309:438-439. https://doi.org/10.1038/309438a0 [120] Vernon, R.H., Collins, W.J., 2011.Structural Criteria for Identifying Granitic Cumulates.The Journal of Geology, 119(2):127-142. https://doi.org/10.1086/658198 [121] Vigneresse, J.L., 2007.The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation.Ore Geology Reviews, 30(3-4):181-216. https://doi.org/10.1016/j.oregeorev.2006.03.001 [122] Waite, G.P., Moran, S.C., 2009.VP Structure of Mount St.Helens, Washington, USA, Imaged with Local Earthquake Tomography.Journal of Volcanology and Geothermal Research, 182(1-2):113-122. https://doi.org/10.1016/j.jvolgeores.2009.02.009 [123] Wang, S.W., Zhou, T.F., Yuan, F., et al., 2016.Geochemical Characteristics of the Shujiadian Cu Deposit Related Intrusion in Tongling:Petrogenesis and Implications for the Formation of Porphyry Cu Systems in the Middle-Lower Yangtze River Valley Metallogenic Belt, Eastern China.Lithos, 252-253:185-199. https://doi.org/10.1016/j.lithos.2016.02.013 [124] Wang, T., Tong, Y., Guo, L., et al., 2020.Geological Survey and Mapping Methods of Intrusive Rocks.Geological Publishing House, Beijing(in Chinese). [125] Wang, T., Wang, X.X., Li, W.P., 2000.Evaluation of Multiple Emplacement Mechanisms:The Huichizi Granite Pluton, Qinling Orogenic Belt, Central China.Journal of Structural Geology, 22(4):505-518. https://doi.org/10.1016/s0191-8141(99)00169-8 [126] Ward, K.M., Zandt, G., Beck, S.L., et al., 2014.Seismic Imaging of the Magmatic Underpinnings beneath the Altiplano-Puna Volcanic Complex from the Joint Inversion of Surface Wave Dispersion and Receiver Functions.Earth and Planetary Science Letters, 404:43-53. https://doi.org/10.1016/j.epsl.2014.07.022 [127] Wei, X., Xu, Y.G., Luo, Z.Y., et al., 2015.Composition of the Tarim Mantle Plume:Constraints from Clinopyroxene Antecrysts in the Early Permian Xiaohaizi Dykes, NW China.Lithos, 230:69-81. https://doi.org/10.1016/j.lithos.2015.05.010 [128] West, M., Menke, W., Tolstoy, M., et al., 2001.Magma Storage beneath Axial Volcano on the Juan de Fuca Mid-Ocean Ridge.Nature, 413:833-836. https://doi.org/10.1038/35101581 [129] Wotzlaw, J.F., Schaltegger, U., Frick, D.A., et al., 2013.Tracking the Evolution of Large-Volume Silicic Magma Reservoirs from Assembly to Supereruption.Geology, 41(8):867-870. https://doi.org/10.1130/g34366.1 [130] Wotzlaw, J.F., Bindeman, I.N., Watts, K.E., et al., 2014.Linking Rapid Magma Reservoir Assembly and Eruption Trigger Mechanisms at Evolved Yellowstone-Type Supervolcanoes.Geology, 42(9):807-810. https://doi.org/10.1130/g35979.1 [131] Wu, C.L., Gao, Y.H., Lei, M., et al., 2014.Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China.Acta Petrologica Sinica, 30(8):2297-2323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201408014.htm [132] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Scientia Sinica (Terrae), 47(7):745-765(in Chinese with English abstract). doi: 10.1360/N072016-00139 [133] Xia, Q.X., Wang, H.Z., Zhou, L.G., et al., 2016.Growth of Metamorphic and Peritectic Garnets in Ultrahigh-Pressure Metagranite during Continental Subduction and Exhumation in the Dabie Orogen.Lithos, 266-267:158-181. https://doi.org/10.1016/j.lithos.2016.08.043 [134] Xu, L.J., He, Y.S., Wang, S.J., et al., 2017.Iron Isotope Fractionation during Crustal Anatexis:Constraints from Migmatites from the Dabie Orogen, Central China.Lithos, 284-285:171-179. https://doi.org/10.1016/j.lithos.2017.04.005 [135] Xu, X.W., Jiang, N., Yang, K., et al., 2009.Accumulated Phenocrysts and Origin of Feldspar Porphyry in the Chanho Area, Western Yunnan, China.Lithos, 113(3-4):595-611. https://doi.org/10.1016/j.lithos.2009.06.034 [136] Yin, S., Ma, C.Q., Xu, J.N., 2020.Recycling of K-Feldspar Antecrysts in the Baishiya Porphyritic Granodiorite, East Kunlun Orogenic Belt, Northern Tibet Plateau: Implications for Magma Differentiation in a Crystal Mush Reservoir.Lithos.https://doi.org/10.1016/j.lithos.2020.105622 [137] Žák, J., Paterson, S.R., Memeti, V., 2007.Four Magmatic Fabrics in the Tuolumne Batholith, Central Sierra Nevada, California (USA):Implications for Interpreting Fabric Patterns in Plutons and Evolution of Magma Chambers in the Upper Crust.Geological Society of America Bulletin, 119(1-2):184-201. https://doi.org/10.1130/b25773.1 [138] Žák, J., Verner, K., Johnson, K., et al., 2012.Magma Emplacement Process Zone Preserved in the Roof of a Large Cordilleran Batholith, Wallowa Mountains, Northeastern Oregon.Journal of Volcanology and Geothermal Research, 227-228:61-75. https://doi.org/10.1016/j.jvolgeores.2012.03.001 [139] Zhai, M.G., 2017.Granites:Leading Study Issue for Continental Evolution.Acta Petrologica Sinica, 33(5) :1369-1380(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252012935.html [140] Zhang, J., Davidson, J.P., Humphreys, M.C.S., et al., 2015.Magmatic Enclaves and Andesitic Lavas from Mt.Lamington, Papua New Guinea:Implications for Recycling of Earlier-Fractionated Minerals through Magma Recharge.Journal of Petrology, 56(11):2223-2256. https://doi.org/10.1093/petrology/egv071 [141] Zhang, J.H., Yang, J.H., Chen, J.Y., et al., 2018.Genesis of Late Early Cretaceous High-Silica Rhyolites in Eastern Zhejiang Province, Southeast China:A Crystal Mush Origin with Mantle Input.Lithos, 296-299:482-495. https://doi.org/10.1016/j.lithos.2017.11.026 [142] Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013.Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution.Earth Science, 38(1):68-86(in Chinese with English abstract). http://www.researchgate.net/publication/286334207_Mineralogical_geochronological_and_geochemical_characteristics_of_Zhoukoudian_intrusion_and_their_magmatic_source_and_evolution [143] Zhang, J.Y., Ma, C.Q., Zhang, C., et al., 2014.Fractional Crystallization and Magma Mixing:Evidence from Porphyritic Diorite-Granodiorite Dykes and Mafic Microgranular Enclaves within the Zhoukoudian Pluton, Beijing.Mineralogy and Petrology, 108(6):777-800. https://doi.org/10.1007/s00710-014-0336-4 [144] Zhang, Q., 2012.Could Granitic Magmas Experience Fractionation and Evolution? Acta Petrologica et Mineralogica, 31(2):252-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201202014.htm [145] Zhao, K., Xu, X.S., Erdmann, S., 2018.Thermodynamic Modeling for an Incrementally Fractionated Granite Magma System:Implications for the Origin of Igneous Charnockite.Earth and Planetary Science Letters, 499:230-242. https://doi.org/10.1016/j.epsl.2018.07.039 [146] Zhu, J.J., Hu, R.Z., Richards, J.P., et al., 2017.No Genetic Link between Late Cretaceous Felsic Dikes and Carlin-Type Au Deposits in the Youjiang Basin, Southwest China.Ore Geology Reviews, 84:328-337. https://doi.org/10.1016/j.oregeorev.2017.01.014 [147] Zhu, Y.X., Wang, L.X., Ma, C.Q., et al., 2018.A Flower-Like Glomerophyric Diorite Porphyry from Central China:Constraints on the Unusual Texture.Lithos, 318-319:1-13. https://doi.org/10.1016/j.lithos.2018.07.031 [148] Zou, B.W., Ma, C.Q., 2020.Crystal Mush Rejuvenation Induced by Heat and Water Transfer:Evidence from Amphibole Analyses in the Jialuhe Composite Pluton, East Kunlun Orogen, Northern Tibet Plateau.Lithos, 376-377:105722. https://doi.org/10.1016/j.lithos.2020.105722 [149] 罗照华, 杨宗锋, 代耕, 等, 2013.火成岩的晶体群与成因矿物学展望.中国地质, 40(1):176-181. doi: 10.3969/j.issn.1000-3657.2013.01.012 [150] 马昌前, 1988.北京周口店岩株侵位和成分分带的岩浆动力学机理.地质学报, (4):329-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198804004.htm [151] 马昌前, 李艳青, 2017.花岗岩体的累积生长与高结晶度岩浆的分异.岩石学报, 33(5):1479-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705007.htm [152] 马昌前, 王人镜, 1990.北京周口店岩体中钾长石巨晶的特征及成因.矿物学报, 10(4):323-331. doi: 10.3321/j.issn:1000-4734.1990.04.005 [153] 马昌前, 王人镜, 邱家骧, 1992.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例.地质论评, 38(2):109-119. doi: 10.3321/j.issn:0371-5736.1992.02.002 [154] 马昌前, 杨坤光, 唐仲华, 等, 1994.花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社. [155] 孟繁聪, 田广阔, 段雪鹏, 等, 2018.东昆仑东段金水口石榴堇青石花岗岩成因:石榴子石证据.矿物岩石地球化学通报, 37(2):192-204. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802005.htm [156] 王涛, 童英, 郭磊, 等, 2020.侵入岩地质调查与填图方法.北京:地质出版社. [157] 吴才来, 郜源红, 雷敏, 等, 2014.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因.岩石学报, 30(8):2297-2323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408014.htm [158] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7):745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm [159] 翟明国, 2017.花岗岩:大陆地质研究的突破口以及若干关键科学问题——"岩石学报"花岗岩专辑代序.岩石学报, 33(5):1369-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705001.htm [160] 张金阳, 马昌前, 王人镜, 等, 2013.周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化.地球科学, 38(1):68-86. doi: 10.3799/dqkx.2013.007 [161] 张旗, 2012.花岗质岩浆能够结晶分离和演化吗?岩石矿物学杂志, 31(2):252-260. doi: 10.3969/j.issn.1000-6524.2012.02.013