Identification of Indosinian Tectonic Mélange Belt in West Dabie Orogenic Belt and Its Geological Significance
-
摘要: 在西大别造山带的区调工作中,新识别出一系列中元古代末-新元古代的岩石-构造单元,它们沿着吕王-高桥-永佳河一线展布,并构成一条NNW-SEE向展布的构造混杂岩带.该混杂岩带主要由超镁铁质-镁铁质岩、硅泥质岩、石英质岩、大理岩、含碳陆源碎屑岩、双峰式火山岩以及卷入其中的榴辉岩等多种变质岩块(片)共同组成,并赋存于一套遭受了强烈剪切变形的泥质片岩之中.混杂岩带内各岩块(片)的原岩年龄跨度较大(>4亿年),分别集中在1 200~1 100 Ma和800~700 Ma之间.锆石记录的变质年龄和云母的冷却年龄则主要集中在240~200 Ma之间.结合接触关系、岩性组合、年代学及地球化学数据的综合研究认为,混杂岩带的物质来源既包括中元古代末-新元古代早期的弧-弧后盆地系统的沉积岩-火山岩-侵入岩;也包括叠置其上的新元古代中-晚期大陆裂解期的沉积岩-火成岩.这些不同时代、不同性质岩石在三叠纪不同程度地卷入了华南陆块北缘向华北陆块之下的俯冲,而后快速折返,最终沿着区域上折返断裂(桃花-七角山断裂)就位于西大别造山带之中,形成一条包含高压-超高压变质岩的三叠纪构造混杂岩带.混杂岩带内新厘定的中元古代末弧-弧后岩浆-沉积事件,可与大洪山-黄陵庙湾同时期的地质事件对比,它们共同揭示扬子北缘曾经存在一条中元古代末-新元古代早期的俯冲岩浆带.
-
关键词:
- 锆石U-Pb-Hf同位素 /
- 印支期构造混杂岩带 /
- 中元古代末岩块 /
- 扬子克拉通北缘 /
- 构造地质学
Abstract: Recently, a series of the Late Mesoproterozoic to Neoproterozoic tectonic blocks in the southern part of the West Dabie orogenic belt were identified by geological field mapping. These tectonic blocks are distributed along NNW-SSE trending fault, from the Lüwang in the west, to the Gaoqiao and Yongjiahe in the east, forming a tectonic mélange belt within the West Dabie orogenic belt. This tectonic mélange belt is composed of various metamorphic blocks, including ultramafic to mafic rock, silica-pelitic rock, quartzose rock, marble, carbonaceous clastic rock, bimodal volcanic rock, and eclogites. The matrix mainly consists of mica schist with strong deformation. Their protolith ages have a wide range that cluster as two age populations including 1 200-1 000 Ma and 800-700 Ma. Moreover, the 240-200 Ma ages are also recorded by the metamorphic zircons. On the basis of contact relationship and lithological assemblages, as well as their geochronologic and geochemical data, it is proposed that the tectonic blocks in the Lüwang-Gaoqiao-Yongjiahe tectonic mélange have two different geotectonic affinities, including the Late Mesoproterozoic to Early Neoproterozoic arc to back-arc basin system, and Middle to Late Neoproterozoic continental rift system. These blocks may have been brought into a deep depth by the subduction of the South China block beneath North China block during the Triassic, followed by subsequent exhumation to the surface and emplacement along the Taohua-Qijiaoshan fault. Furthermore, considering the close temporal and spatial relationships, it is inferred that the Late Mesoproterozoic to Early Neoproterozoic arc to back arc basin system in this study extended westward to the 970-820 Ma Dahongshan arc to back arc basin and 1 100-1 000 Ma Miaowan ophiolite. -
图 1 西大别造山带的大地构造位置(a)及其构造单元划分简图(b)
F1.龟山-梅山断裂;F2.军师岭断裂;F3.七角山-桃花断裂;F4.襄樊-广济断裂. 据Wu and Zheng (2013)和Liu et al. (2015)修改
Fig. 1. Tectonic location and subdivisions of the West Dabie orogenic belt, Central China
图 2 吕王-高桥-永佳河构造混杂岩带地质简图
标记*的年龄来自湖北省地质调查院(2018);标记#的年龄来自Zhou et al. (2015);没有标记的年龄为本文数据.F5.河口-卡房断裂;F6.庙咀-八里湾断裂. 据湖北省地质调查院(2018)和本文数据修改
Fig. 2. Geological sketch map of the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt in West Dabie orogenic belt
图 3 吕王-高桥-永佳河构造混杂岩带构造剖面
AB.新屋基剖面;CD.新寨剖面;EF.康家湾剖面.剖面位置见图 2,岩块(片)代号见表 1. 剖面AB据湖北省地质调查院(2018)修改
Fig. 3. Cross sections of the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt in West Dabie orogenic belt
图 4 吕王-高桥-永佳河构造混杂岩带野外照片和显微照片
a~d.变超基性岩岩块;e~f.斜长角闪片岩中夹的褶皱变形的条带状石英岩(硅质岩);g.旋转的基性岩块;h.基性岩块中剪切变形;i.云母片岩夹条带状石英岩(硅质岩);j~l.大理岩及其侵入其中的基性岩;m.厚层状半石墨片岩;n.弱变形的辉长岩旋转岩块;o~p.康家湾榴辉岩(DW101);q~r.操家岗榴闪岩(TK-9-4);s.泥质基质;t.岩块间剪切破碎形成的细粒组分基质.矿物缩写:omp.绿辉石;Grt.石榴石;Hbl.角闪石;Ab.钠长石;Phe.多硅白云母
Fig. 4. Representative photographs and photomicrographs for the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt
图 5 吕王-高桥-永佳河构造混杂岩带代表性锆石阴极发光图像及锆石稀土元素分布模式
黄色圆圈和数值分别代表定年分析点位置及其207Pb/206Pb(> 1 000 Ma)或206Pb/238U(< 1 000 Ma) 年龄值(Ma);绿色圆圈和数值分别为Hf同位素分析点位置及其εHf(t)值. 球粒陨石标准化数据引自Sun and McDonough (1989). 矿物缩写:Grt.石榴石
Fig. 5. Chondrite-normalized REE patterns for all dated zircons and cathodoluminescence images for representative zircon grains
图 6 吕王-高桥-永佳河构造混杂岩带内岩石锆石U-Pb年龄谐和图
蓝色和灰色数据点分别为岩浆锆石微区上获得的谐和、不谐和年龄点;绿色的粗细和细线数据点分别为变质锆石微区上获得的谐和、不谐和年龄点.样品PM208-30和PM208-52年龄数据引自湖北省地质调查院(2018);其他数据为本文数据
Fig. 6. Zircon U-Pb concordia diagrams for the rocks from the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt
图 7 球粒陨石标准化稀土元素配分模式和原始地幔标准化微量元素蛛网图
Fig. 7. Chondrite-normalized REE patterns and primitive mantle-normalized spider diagrams for the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt
图 8 康家湾榴辉岩和新寨变基性岩的La/Nb vs. La图解(李曙光, 1993) (a),Nb/Th vs. La/Nb图解(Fan et al., 2004) (b);(Nb/La)PM vs. (La/Sm)N图解(Sun and McDonough, 1989) (c);(Hf/Sm)N vs. (Nb/La)N图解(Laflèche et al., 1998) (d)
Fig. 8. Plots of (a) La/Nb vs. La (Li, 1993); (b)Nb/Th vs. La/Nb(Fan et al., 2004); (c)(Nb/La)PM vs. (La/Sm)N (Sun and McDonough, 1989); (d)(Hf/Sm)N vs. (Nb/La)N (Laflèche et al., 1998)
图 9 康家湾榴辉岩和新寨变基性岩稳定元素构造判别图解
a.V/Ti vs. Zr图解, 据Woodhead et al.(1993);b.(Tb/Ta)N vs. (Th/Ta)N图解, 据Fekkak et al.(2001);c.Th/Yb vs. Nb/Yb图解, 据Dilek and Furnes(2011);d. Ce/Nb vs. Th/Nb图解, 据Taylor and Martinez(2003).图b中缩写:N-MORB.正常洋中脊玄武岩; E-MORB.富集洋中脊玄武岩岩; BAB.弧后盆地玄武岩; CFB.大陆溢流玄武岩;OIA.马里亚纳型洋内弧;IAB.弧间玄武岩;OIB.洋岛玄武岩;CWPAB.大陆板内碱性玄武岩;CAMB.主动陆缘玄武岩
Fig. 9. Diagrams showing the tectonic setting of the metamafic rocks from the Xinzhai and Kangjiawan areas
图 10 吕王-高桥-永佳河构造混杂岩带从原岩形成(a~b)、到大陆俯冲(c)和碰撞后折返(d)演化
a.中元古代末-新元古代早期扬子北缘的弧-弧后盆地;b.新元古代中-晚期大陆裂谷盆地沉积了红安岩群;c.早三叠世,扬子北缘不同时代性质的岩石卷入华南向华北的俯冲,遭受了不同程度的变质;d.中-晚三叠世俯冲的板片折返、与未卷入深俯冲的低级变质岩进一步混合,最终在地表形成包含榴辉岩包体的构造混杂岩带.图c和图d据Wu and Zheng(2013)修改
Fig. 10. Sketched diagrams showing the formation of the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt through protolith emplacement and tectonic transition from continental subduction to the final exhumation in the post-collisional stage
表 1 西大别吕王-高桥-永佳河构造混杂岩带岩石-构造单元划分
Table 1. The partition scheme of different types of block and matrix in the Lüwang-Gaoqiao-Yongjiahe tectonic mélange belt
构造相 岩块(片)和基质 岩性类型(组合) 锆石U-Pb年龄 岩浆锆石年龄 变质锆石年龄 / 基质 泥质变质岩为主 强烈剪切变形的(石墨)白云母片岩、石墨片岩、榴云片岩 / / 高压-超高压相 岩块(片) 高压-超高压变质岩(ec) 榴辉岩及其退变榴闪岩 1 200~1 100 Ma;1 188 Ma#;765 Ma@ 295 Ma和220 Ma;245~221 Ma#;232 Ma@ 陆内裂谷相 变基性岩脉(βνRF) 弱变形的辉长(绿)岩脉 746±6 Ma;630±4 Ma & 200~230 Ma & 变双峰式火山岩(bvRF) 浅色的钠长浅粒岩-白云钠长片麻岩夹深色(含榴)斜长角闪片岩 780 Ma & ;750 Ma & ;720 Ma & 210~220 Ma & 变陆源碎屑岩(smRF) 半石墨片岩、(石墨)白云母片岩、(含石墨)白云石英片岩、榴云片岩、夹变粒岩 2 339~690 Ma之间,峰值区间:1 776~ 1 433 Ma、814~690 Ma / 弧-弧后盆地相 大理岩(caABA) 方解石大理岩 / / 石英质变质岩(qzABA) 白云石英片岩、厚层状石英岩、夹浅粒岩 3 528~1 139 Ma,峰值区间:2.6~ 2.45 Ga、2.1~1.82 Ga和1.2~1.1 Ga / 硅泥质变质岩(siABA) 白云母片岩、榴云片岩夹条带状的石英岩薄层 3 335~1 994 Ma*;峰值位于2.54 Ga和2.0 Ga / 变基性岩(βABA) (含榴)斜长角闪片岩、斜长角闪片岩、绿泥绿帘钠长片岩、绿泥阳起片岩,绿帘透闪片岩 1 102±2 Ma 1 132±12 Ma* 1 105±13 Ma* / 变超基性岩(ΣABA) 变橄榄岩、变辉石岩、蛇纹石片岩、含榴斜长角闪岩、含榴黝帘阳起石片岩等 1 107±10 Ma*(?) / 注:年龄值中,标*年龄值来自湖北省地质调查院(2018);标#年龄来自 Zhou et al. (2015) ;标@年龄来自Cheng et al. (2010) ;标 & 年龄为作者未发表数据;没有任何标记的年龄为本文数据. -
[1] Bader, T., Ratschbacher, L., Franz, L., et al., 2013. The Heart of China Revisited, I. Proterozoic Tectonics of the Qin Mountains in the Core of Supercontinent Rodinia. Tectonics, 32(3): 661-687. https://doi.org/10.1002/tect.20024 [2] Cheng, H., Du Frane, S.A., Vervoort, J.D., et al., 2010. The Triassic Age for Oceanic Eclogites in the Dabie Orogen: Entrainment of Oceanic Fragments in the Continental Subduction. Lithos, 117(1-4): 82-98. https://doi.org/10.1016/j.lithos.2010.02.007 [3] Chen, W.T., Sun, W.H., Zhao, J.H., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242: 138-153. https://doi.org/10.1016/j.precamres.2013.12.019 [4] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411. https://doi.org/10.1130/b30446.1 [5] Dong, Y.P., Liu, X.M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196-197: 247-274. https://doi.org/10.1016/j.precamres.2011.12.007 [6] Dong, Y.P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr. 2015.06.009 doi: 10.1016/j.gr.2015.06.009 [7] Fan, W.M., Guo, F., Wang, Y.J., et al., 2004. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1-2): 27-48. https://doi.org/10.1016/j.chemgeo.2004.04.020 [8] Fekkak, A., Pouclet, A., Ouguir, H., et al., 2001. Geochemistry and Geotectonic Significance of Early Cryogenian Volcanics of Saghro (Eastern Anti-Atlas, Morocco). Geodinamica Acta, 14(6): 373-385. https://doi.org/10.1080/09853111.2001.10510730 [9] Hubei Geological Survey, 2013. 1∶250 000 Geological Map of Macheng City, People's Republic of China. Hubei Geological Survey, Wuhan (in Chinese). [10] Hubei Geological Survey, 2018. 1∶50 000 Geological and Mineral Map of Xiaohe Town, People's Republic of China. Hubei Geological Survey, Wuhan (in Chinese). [11] Laflèche, M.R., Camire, G., Jenner, G.A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalenislands, Quebec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3 [12] Liou, J.G., Ernst, W.G., Song, S.G., et al., 2009. Tectonics and HP-UHP Metamorphism of Northern Tibet—Preface. Journal of Asian Earth Sciences, 35(3-4): 191-198. https://doi.org/10.1016/j.jseaes.2009.03.001 [13] Li, S.G., 1993. Ba-Nb-Th-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2): 146-157 (in Chinese with English abstract). [14] Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004 [15] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021. [16] Ling, W.L., Gao, S., Zhang, B.R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 122(1): 111-140. https://doi.org/10.1016/s0301-9268(02)00222-x [17] Liu, X.C., Jahn, B.M., Liu, D., et al., 2004a. SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong'an Block), China, and Its Tectonic Implications. Tectonophysics, 394(3-4): 171-192. https://doi.org/10.1016/j.tecto.2004.08.004 [18] Liu, X., Wei, C., Li, S., et al., 2004b. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361-379. https://doi.org/10.1111/j.1525-1314.2004.00519.x [19] Liu, X.C., Li, S.Z., Jahn, B.M., 2015. Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China from Oceanic Subduction/Accretion to Continent-Continent Collision. Science China: Earth Sciences, 58(9): 1477-1496. https://doi.org/10.1007/s11430-015-5145-z [20] Marsaglia, K.M., Ingersoll, R.V., Packer, B.M., 1992. Tectonic Evolution of the Japanese Islands as Reflected in Modal Compositions of Cenozoic Forearc and Backarc Sand and Sandstone. Tectonics, 11(5): 1028-1044. https://doi.org/10.1029/91tc03183 [21] Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010 [22] Peng, Y.M., Pan, G.T., Luo, J.N., 1999. The Volcanic-Sedimentary Characteristics of Back-Arc Basins. Sedimentary Facies and Palaeogeography, 19(5): 65-72 (in Chinese with English abstract). [23] Polat, A., Hofmann, A.W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/s0301-9268(03)00095-0 [24] Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3): 109-119. https://doi.org/10.1016/j.precamres.2011.09.011 [25] Rivers, T., 1997. Lithotectonic Elements of the Grenville Province: Review and Tectonic Implications. Precambrian Research, 86(3): 117-154. https://doi.org/10.1016/s0301-9268(97)00038-7 [26] Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 [27] Shu, L.S., Deng, P., Yu, J.H., et al., 2008. The Age and Tectonic Environment of the Rhyolitic Rocks on the Western Side of Wuyi Mountain, South China. Science in China (Series D), 51(8): 1053-1063. https://doi.org/10.1007/s11430-008-0078-4 [28] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [29] Sun, W.H., Zhou, M.F., Yan, D.P., et al., 2008. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1-2): 213-236. https://doi.org/10.1016/j.precamres.2008.08.001 [30] Taylor, B., Karner, G.D., 1983. On the Evolution of Marginal Basins. Reviews of Geophysics, 21(8): 1727-1741. https://doi.org/10.1029/rg021i008p01727 [31] Taylor, B., Martinez, F., 2003. Back-Arc Basin Basalt Systematics. Earth and Planetary Science Letters, 210(3): 481-497. https://doi.org/10.1016/s0012-821x(03)00167-5 [32] Wang, X.C., Li, X.H., Li, W.X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11): 1478-1492. https://doi.org/10.1130/b26310.1 [33] Wang, Y.J., Zhou, T.Z., Cai, Y.F., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283: 106-124. https://doi.org/10.1016/j.precamres.2016.07.017 [34] Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491-504. https://doi.org/10.1016/0012-821x(93)90078-n [35] Wu, P., Zhang, S.B., Zheng, Y.F., et al., 2019. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block. Precambrian Research, 321: 221-243. https://doi.org/10.1016/j.precamres.2018.12.015 [36] Wu, Y.B., Zheng, Y.F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007 [37] Xu, S.T., Liu, Y.C., Chen, G.B., et al., 2005. Classification of Microdiamonds from Eclogites of the Dabie Mountains and Sulu Area, East-Central China, and Their Tectonic Implications. Geological Bulletin of China, 24(12): 1081-1088 (in Chinese with English abstract). [38] Xu, Y., 2017. Neoproterozoic (900-780 Ma) Magmatism during the Evolution of the Suiying Terrane in the Northern Margin of the Yangtze Block(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [39] Xu, Y., Polat, A., Deng, X., et al., 2020. The ~1.97 Ga Dioritic Block in the Hong'an Terrane, Central China: Syncollisional Alkaline Magmatism at the Northern Margin of the Yangtze Block. Precambrian Research, 342(15): 105-713. https://doi.org/10.1016/j.precamres.2020.105713 [40] Xue, H.M., Ma, F., Song, Y.Q., 2011. Geochemistry and SHRIMP Zircon U-Pb Data of Neoproterozoic Meta-Magmatic Rocks in the Suizhou-Zaoyang Area, Northern Margin of the Yangtze Craton, Central China. Acta Petrologica Sinica, 27(4): 1116-1130 (in Chinese with English abstract). [41] Yang, J.S., Xu, Z.Q., Zhang, J.X., et al., 2009. Tectonic Setting of Main High- and Ultrahigh-Pressure Metamorphic Belts in China and Adjacent Region and Discussion on Their Subduction and Exhumation Mechanism. Acta Petrologica Sinica, 25(7): 1529-1560 (in Chinese with English abstract). [42] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 56(11): 1804-1828. https://doi.org/10. 1007/s11430-013-4679-1 doi: 10.1007/s11430-013-4679-1 [43] Zhang, Y.Z., Wang, Y.J., 2016. Early Neoproterozoic (~840 Ma) Arc Magmatism: Geochronological and Geochemical Constraints on the Metabasites in the Central Jiangnan Orogen. Precambrian Research, 275: 1-17. https://doi.org/10.1016/j.precamres.2015.11.006 [44] Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [45] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/g31701.1 [46] Zheng, Y.F., Chen, Y.X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science. 44(12): 3961-3983 (in Chinese with English abstract). [47] Zheng, Y.F., Zhang, L.F., McClelland, W.C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139: 1-9. https://doi.org/10.1016/j.lithos.2011.11.020 [48] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2015. Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleotethyan Ocean: Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogen. Gondwana Research, 28(1): 348-370. https://doi.org/10.1016/j.gr.2014.03.009 [49] Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300. https://doi.org/10.1016/j.epsl.2006.05.032 [50] Zhou, X.M., Zou, H.B., Yang, J.D., et al., 1989. Sm-Nd Isochron Age and Its Geological Significance for Pophiolites from Fuchuan of the She County of Anhui Provence. Chinese Science Bulletin, 34(16): 1243-1245 (in Chinese). doi: 10.1360/csb1989-34-16-1243 [51] Zhu, W.G., Zhong, H., Li, Z.X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China: Origin and Tectonic Significance. Precambrian Research, 273: 67-89. https://doi.org/10.1016/j.precamres.2015.12.011 [52] 湖北省地质调查院, 2013. 中华人民共和国1∶250 000麻城市幅地质图. 武汉: 湖北省地质调查院. [53] 湖北省地质调查院, 2018. 中华人民共和国1∶50 000小河镇幅矿产图. 武汉: 湖北省地质调查院. [54] 李曙光, 1993. 蛇绿岩生成构造环境的Ba-Nb-Th-La判别图. 岩石学报, 9(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199302004.htm [55] 彭勇民, 潘桂棠, 罗建宁, 1999. 弧后盆地火山-沉积特征. 岩相古地理, 19(5): 65-72. doi: 10.3969/j.issn.1009-3850.1999.05.009 [56] 徐树桐, 刘贻灿, 陈冠宝, 等, 2005. 大别山及苏鲁地区微粒金刚石分类及其大地构造意义. 地质通报, 24(12): 1081-1088. doi: 10.3969/j.issn.1671-2552.2005.12.001 [57] 徐扬, 2017. 扬子北缘随应地块及邻区新元古代900-780 Ma岩浆事件及其构造意义(博士学位论文). 武汉: 中国地质大学. [58] 薛怀民, 马芳, 宋永勤, 2011. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究. 岩石学报, 27(4): 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm [59] 杨经绥, 许志琴, 张建新, 等, 2009. 中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨. 岩石学报, 25(7): 1529-1560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907001.htm [60] 郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982 [61] 周新民, 邹海波, 杨杰东, 等, 1989. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义. 科学通报, 34(16): 1243-1245. doi: 10.3321/j.issn:0023-074X.1989.16.003 -
dqkxzx-46-4-1173-附表1.doc dqkxzx-46-4-1173-附件1~2.doc dqkxzx-46-4-1173-附表2.doc dqkxzx-46-4-1173-附表3.doc