• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南盘江坳陷东兰地区下石炭统鹿寨组页岩气成藏条件及有利区预测

    王劲铸 李小刚 徐正建 辛云路 李昭 李仪汶

    王劲铸, 李小刚, 徐正建, 辛云路, 李昭, 李仪汶, 2021. 南盘江坳陷东兰地区下石炭统鹿寨组页岩气成藏条件及有利区预测. 地球科学, 46(5): 1814-1828. doi: 10.3799/dqkx.2020.310
    引用本文: 王劲铸, 李小刚, 徐正建, 辛云路, 李昭, 李仪汶, 2021. 南盘江坳陷东兰地区下石炭统鹿寨组页岩气成藏条件及有利区预测. 地球科学, 46(5): 1814-1828. doi: 10.3799/dqkx.2020.310
    Wang Jinzhu, Li Xiaogang, Xu Zhengjian, Xin Yunlu, Li Zhao, Li Yiwen, 2021. Shale Gas Accumulation Conditions and Favorable-Zone Prediction in Lower Carboniferous Luzhai Formation in Donglan Area of Nanpanjiang Depression, China. Earth Science, 46(5): 1814-1828. doi: 10.3799/dqkx.2020.310
    Citation: Wang Jinzhu, Li Xiaogang, Xu Zhengjian, Xin Yunlu, Li Zhao, Li Yiwen, 2021. Shale Gas Accumulation Conditions and Favorable-Zone Prediction in Lower Carboniferous Luzhai Formation in Donglan Area of Nanpanjiang Depression, China. Earth Science, 46(5): 1814-1828. doi: 10.3799/dqkx.2020.310

    南盘江坳陷东兰地区下石炭统鹿寨组页岩气成藏条件及有利区预测

    doi: 10.3799/dqkx.2020.310
    基金项目: 

    中国地质调查局项目 DD20160182

    油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金资助项目 PLC2020020

    重庆市自然科学基金面上项目 cstc2020jcyj-msxmX0487

    国家自然科学基金青年项目 42002167

    详细信息
      作者简介:

      王劲铸(1988-),男,工程师,从事页岩气勘探开发研究工作,如南方页岩气勘探开发、页岩气新区新层系发现等.ORCID: 0000-0002-7665-7565. E-mail: 179707507@qq.com

      通讯作者:

      徐正建, ORCID: 0000-0002-6785-2692.E-mail: xumou08@sina.com

    • 中图分类号: P618

    Shale Gas Accumulation Conditions and Favorable-Zone Prediction in Lower Carboniferous Luzhai Formation in Donglan Area of Nanpanjiang Depression, China

    • 摘要: 南盘江坳陷是四川盆地外围海相页岩气勘探战略突破区,具有巨大的勘探潜力,但其页岩气勘探起步晚、勘探方向不明确,严重制约了该区页岩气勘探开发.本次研究以南盘江坳陷东北缘东兰地区野外考察为基础,结合有机地球化学、全岩X衍射、扫描电镜等分析手段,分析了下石炭统鹿寨组泥页岩分布特征、源岩地球化学、储层物性特征、页岩气保存等成藏条件.研究表明:南盘江坳陷东北缘下石炭统鹿寨组泥页岩沉积厚度主要为250~350 m,埋深主要介于1 000~3 000 m;页岩有机碳含量多数大于2.0%,有机质主要为Ⅱ1~Ⅱ2型干酪根,处于高成熟-过成熟阶段,具备良好的供烃能力;页岩储层中脆性矿物含量高,孔隙空间发育良好,吸附性好,页岩气储集能力良好;页岩粘土矿物相对较高,成岩期压实、胶结作用较强,使页岩层自封闭性增强,保存条件较好;多期构造运动对后期页岩气保存与否具有决定性作用.对比国内外典型页岩气田成藏条件特征,认为南盘江坳陷东北缘下石炭统鹿寨组具备有利的页岩气成藏条件,提出南盘江坳陷东兰地区东北部为页岩气有利勘探区.

       

    • 图  1  南盘江坳陷构造位置与研究区实测剖面位置

      D1l.下泥盆统莲花山组;D1y.下泥盆统益兰组;D1-2t.下‒中泥盆统塘丁组;D2l.中泥盆统罗富组;D3l-w.上泥盆统榴江组;D3w.上泥盆统五指山组;C1-2lz.下石炭统鹿寨组;C1yt.下石炭统英塘组;C1-2b.下‒上石炭统巴平组;C1-2d.上‒中石炭统大埔组;C2d-h.上石炭统大埔组‒黄龙组;C2h.上石炭统黄龙组;C2P1m.上石炭统‒下二叠统马平组;C2P1n.上石炭统‒下二叠统南丹组;P1q.下二叠统栖霞组;P1m.下二叠统茅口组;P2s.中二叠统四大寨组;P3h.上二叠统合山组;P3lh.上二叠统领好组;Pbls.二叠纪礁灰岩;T1l.下三叠统逻楼组;T1s.下三叠统石炮组;T2bf1.中三叠统百逢组一段;T2bf2.中三叠统百逢组二段;T2b.中三叠统板纳组;K2γπ.上白垩统花岗斑岩;K2γδπ.上白垩统花闪长斑岩

      Fig.  1.  Tectonic location of Nanpanjiang depression and locations of measuring sections in study area

      图  2  南盘江坳陷东北缘东兰地区地层综合柱状图

      Fig.  2.  Comprehensive stratigraphic column of Donglan area in northeastern Nanpanjiang depression, China

      图  3  南盘江坳陷东北缘东兰地区下石炭统鹿寨组野外露头

      a.鹿寨组第一段下部硅质岩夹泥岩,龙谷剖面;b.鹿寨组底部第二段含碳泥岩,拉盘剖面;c.鹿寨组第三段含碳泥岩夹硅质岩,拉盘剖面;d.鹿寨组第三段含碳泥岩夹硅质岩,龙谷剖面

      Fig.  3.  Outcrops of the Lower Carboniferous Luzhai Formation in Donglan area of the northeastern Nanpanjiang depression, China

      图  4  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩厚度分布

      Fig.  4.  Contour map of shale in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  5  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩埋深等值线图

      Fig.  5.  Contour map of burial depth of the Luzhai shale in Donglan area of the northeastern Nanpanjiang depression, China

      图  6  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩TOC分布直方图

      Fig.  6.  Histogram of shale TOC in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  7  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩TOC等值线图

      Fig.  7.  Contour map of shale TOC in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  8  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩有机质显微组分镜下特征

      a.腐泥组无定形(D0504-1);b.腐泥组无定形(D0504-5);样品编号D0504采自龙谷剖面

      Fig.  8.  Microscopic characteristics of organic matter macerals in the Lower Carboniferous Luzhai Formation shale of Donglan area in northeastern Nanpanjiang depression, China

      图  9  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩Ro分布直方图

      Fig.  9.  Histogram of shale Ro in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  10  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩Ro等值线图

      Fig.  10.  Contour map of shale Ro in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  11  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩矿物组分分布图

      a.泥页岩矿物组分分布图,b.泥页岩粘土矿物组分分布图;样品编号D1627采自拉盘剖面,15YZ采自班老剖面,D1207、D0505、D0504采自龙谷剖面

      Fig.  11.  Mineral compositions of shale in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  12  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩扫描电镜分析

      a.粒内溶孔(D1627-2);b.粒内溶孔(D1627-8);c.有机质孔(D1627-10);d.有机质孔(D1627-11);e.晶内溶孔(D0504-4);f.晶内溶蚀后重结晶(D0505-1);g.晶内溶孔(D0504-4);h.铸模溶孔(D0505-1);样品编号D1627采自拉盘剖面,D0505、D0504采自龙谷剖面

      Fig.  12.  Scanning electron microscopy analyses of shale in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  13  南盘江坳陷东北缘东兰地区下石炭统鹿寨组埋藏史分析

      徐云俊等(2001)修改

      Fig.  13.  Burial depth analysis of the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      图  14  南盘江坳陷东北缘东兰地区下石炭统鹿寨组页岩气有利区预测

      Fig.  14.  Prediction map of favorable exploration zone for shale gas in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      表  1  南盘江坳陷东北缘东兰地区下石炭统鹿寨组泥页岩有机质显微组分统计

      Table  1.   Relative contents of shale organic matter macerals in the Lower Carboniferous Luzhai Formation of Donglan area in northeastern Nanpanjiang depression, China

      序号 采样编号 腐泥组(%) 壳质组(%) 腐殖无定形(%) 镜质组(%) 惰质组(%) 腐泥组颜色 类型指数 类型
      无定形 藻质体 合计 树脂体 非树脂体 合计
      1 D0504-1 95 / 95 / / / / 4 1 黑褐 91.00
      2 D0504-5 50 / 50 / 1 1 / 40 9 黑褐 11.50 2
      3 D0504-8 45 / 45 / 1 1 / 42 12 黑褐 2.00 1
      4 D0505-1 3 / 3 / 1 1 / 75 21 黑褐 73.75
      5 D1627-2 78 / 78 / / / / / 22 黑褐 56.00 1
      6 D1627-5 80 / 80 / / / / / 20 黑褐 60.00 1
      7 D1627-8 79 / 79 / / / / / 21 黑褐 58.00 1
      8 D1627-10 83 / 83 / / / / / 17 黑褐 66.00 1
      注:样品编号D0504、D0505采自龙谷剖面,D1627采自拉盘剖面.
      下载: 导出CSV

      表  2  南盘江坳陷东北缘鹿寨组页岩气与国内外典型页岩气成藏条件对比分析

      Table  2.   Comparison of accumulation conditions between the Luzhai shale gas in the northeastern Nanpanjiang depression and the typical shale gas in domestic and foreign areas

      地区 盆地/区域 地层 页岩厚度(m) 埋深(m) TOC(%) Ro(%) 有机质类型 孔隙度(%) 渗透率(mD) 脆性矿物(%) 含气量(m3/t)
      美国 Fort Worth 石炭系Barnett 30~180 1 980~2 590 4.0~5.0 0.80~1.40 Ⅱ型 4.0~5.0 0.1~0.5 30~60 8.5~9.9
      墨西哥湾沿岸盆地 白垩系
      Eagle Ford
      30~120 1 220~4 270 2.76 1.20 Ⅱ型 9.0 0.5~1.0 45~65 2.8~5.7
      Anadarko 泥盆系Woodford 20~80 1 829~3 353 5 034 1.50 Ⅰ-Ⅱ1 5.0 0.1~0.5 50~75 5.6~8.5
      中国 四川盆地长宁 五峰组‒龙马溪组 30~60 1 300~3 700 2.70 2.70 Ⅰ-Ⅱ1 5.3 0.1~0.5 66.4 2.4~5.5
      四川盆地威远 五峰组‒龙马溪组 45~80 2 000~4 500 3.45 2.95 Ⅰ-Ⅱ1 5.4 0.5~3.0 69.5 1.9~4.8
      四川盆地威远 筇竹寺组 30~60 1 500~3 500 2.00~5.90 1.90~3.00 Ⅰ-Ⅱ1 3.9~5.2 0.005~0.9 30~75 1.10~3.51
      重庆涪陵 五峰组‒龙马溪组 40~80 2 000~4 000 2.00~8.00 2.65 Ⅰ-Ⅱ1 1.2~8.1 0.001~5.7 50~80 4.7~7.2
      湘西北常德 牛蹄塘组 100~150 1 120~1 250 2.1~17.6 2.20~3.13 Ⅰ-Ⅱ1 1.2~1.9 0.4~0.5 26~78 0.06~2.10
      滇黔北昭通 牛蹄塘组 40~80 1 700~2 540 1.9~5.18 3.75~4.44 Ⅰ-Ⅱ1 0.75~3.84 0.002~1.4 15~71 0.15~0.62
      南盘江坳陷东北缘 鹿寨组 250~350 1 000~3 000 0.5~4.0 2.0~4.0 1-Ⅱ2 4.7~14.63 0.003~0.022 45.2~85.0 0.2~2.8
      注:国内外典型页岩气成藏条件参数数据来源于Amijaya et al. (2006); Jarvie et al.(2007); Loucks et al. (2009)张雪芬等(2010)Chalmersg et al. (2012)EIA (2013)Hu et al. (2015)邹才能等(2015, 2016);董大忠等(2016)Zeng et al. (2016)陈粤等(2017)周雯等(2019).
      下载: 导出CSV

      表  3  中国南方非典型海相页岩气有利选区的地质参考标准

      Table  3.   Geological reference standards for favorable areas of a non-typical marine shale gas in South China

      评价参数 有利区条件
      发育条件 分布面积 ≥50 km2,或可能在其中发现目标区的最小面积有一定的勘探开发纵深
      厚度 单层厚度≥3 m,页岩层系连续厚度≥10 m且页岩厚度/地层厚度≥60%
      埋深 ≥1 000 m
      源岩地化指标 有机质丰度 TOC≥1.0%
      有机质成熟度 0.4% < Ro < 4.0%
      有机质类型 Ⅰ-Ⅱ型
      储层条件 矿物组成 脆性矿物 > 45%
      含气量 > 0.5 m3/t
      保存条件 断裂分布 内部可有多期次构造运动和一定的断裂发育
      褶皱作用 相对宽缓的向斜
      剥蚀作用 剥蚀作用较弱
      注:据王社教等(2012)王世谦等(2013)周雯等(2019)修改.
      下载: 导出CSV
    • [1] Amijaya, H., Schwarzbauer, J., Littke, R., 2006. Organic Geochemistry of the Lower Suban Coal Seam, South Sumatra Basin, Indonesia: Palaeoecological and Thermal Metamorphism Implications. Organic Geochemistry, 37(3): 261-279. doi: 10.1016/j.orggeochem.2005.10.012
      [2] Bao, H.Y., Zhang, B.Q., Zeng, L.B., et al., 2019. Marine Shale Gas Differential Enrichment Structure Models in South China. Earth Science, 44(3): 993-1000 (in Chinese with English abstract).
      [3] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. doi: 10.1306/10171111052
      [4] Chen, Y., Huang, W.F., Liang, Y.P., et al., 2017. Analysis on Black Shale Feature and Depositional Environment of the First Member of Luzhai Formation, Luzhai Area of Guangxi. Mineral Resources and Geology, 31(3): 605-612 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201703027.htm
      [5] Dong, D.Z., Wang, Y.M., Huang, X.N., et al., 2016. Discussion about Geological Characteristics, Resource Evaluation Methods and Its Key Parameters of Shale Gas in China. Natural Gas Geoscience, 27(9): 1583-1601 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2016.09.1583
      [6] Dong, M., Zhang, L.Y., Wang, Z.X., et al., 2019. Accumulation Characteristics and Preservation Conditions of Niutitang Formation of Lower Cambrian Series Shale Gas in West Hubei: A Case Study of Well XD1. Earth Science, 44(11): 3616-3627 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911003.htm
      [7] Dou, W.C., Liu, L.F., Wu, K.J., et al., 2017. Diagenesis of Tight Oil Sand Reservoirs: Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Geological Journal, 53: 707-724. doi: 10.1002/gj.2922
      [8] Dou, W.C., Liu, L.F., Wu, K.J., et al., 2018. Diagenetic Heterogeneity, Pore Throats Characteristics and Their Effects on Reservoir Quality of the Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Marine and Petroleum Geology, 98: 243-257. doi: 10.1016/j.marpetgeo.2018.08.019
      [9] EIA, 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States. Energy Information Administration, Washington, D. C. .
      [10] Guo, H., 2010. Study on the Late Paleozoic Sedimentary Characteristics in Hunan and Guangxi (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract).
      [11] Guo, T. L., 2013. Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin. Journal of Earth Science, 24(6): 863-873. https://doi.org/10.1007/s12583-013-0384-4
      [12] Hu, H., Zhang, T., Wiggins-Camacho, J.D., et al., 2015. Experimental Investigation of Changes in Methane Adsorption of Bitumen-Free Woodford Shale with Thermal Maturation Induced by Hydrous Pyrolysis. Marine and Petroleum Geology, 59: 114-128. doi: 10.1016/j.marpetgeo.2014.07.029
      [13] Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. American Association of Petroleum Geologists Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
      [14] Jiang, L., Deng, B., Liu, S.G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2): 524-538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902015.htm
      [15] Jiang, S., Tang, X.L., Osborne, S., et al., 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in U.S., Argentina and China. Earth Science, 42(7): 1083-1091 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707004.htm
      [16] Li, M., Jin, A.M., Lou, Z.H., et al., 2011. Hydrocarbon Preservation Conditions and Preferential Exploration Targets in Marine Sequences of Nanpanjiang Depression. Journal of China University of Mining & Technology, 40(4): 566-575 (in Chinese with English abstract). doi: 10.1007/s12583-011-0162-0
      [17] Liu, L., 2010. Study of Hydrocarbon Preservation Conditions in Nanpanjiang Depression (Dissertation). China University of Petroleum (East China), Qingdao (in Chinese with English abstract).
      [18] Lou, Z.H., Ma, Y.S., Guo, T.L., et al., 2006. Evaluation of Oil and Gas Preservation Conditions in Marine Strata in Southern China. Natural Gas Industry, 26(8): 8-11, 157 (in Chinese with English abstract).
      [19] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. doi: 10.2110/jsr.2009.092
      [20] Lu, S.F., Luo, X.J., Du, S.J., et al., 2019. Discovery and Analysis of Shale Gas in a Carboniferous Reservoir and Its Enrichment Characteristics in the Northern Nanpanjiang Depression, Guizhou Province, China. Acta Geologica Sinica, 93(3): 561-572. doi: 10.1111/1755-6724.13858
      [21] Pan, R.F., Tang, X.L., Meng, J.H., et al., 2014. Shale Gas Preservation Conditions for the Upper Paleozoic in Guizhong Depression. Oil &Gas Geology, 35(4): 534-541 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYYT201404013.htm
      [22] Peters, K.E., Cassa, M.R., 1994. Applied Source Rock Geochemistry. In: Magoon, L.B., Dow, W.G., eds., The Petroleum System—From Source to Trap. AAPG Memoir, 60: 93-120.
      [23] Qin, J.H., Wu, Y.L., Yan, Y.J., et al., 1996. Hercynian-Indosinian Sedimento-Tectonic Evolution of the Nanpanjiang Basin. Acta Geologica Sinica, 9(4): 331-340.
      [24] Ren, L.K., 2002. The Research of Structural Characteristics in Eastern Nanpanjiang Depression and Its Adjacent Area (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [25] Tian, W., Peng, Z.Q., Bai, Y.S., et al., 2019. Reservoir Characteristics and Exploration Potential of Lower Carboniferous Shale Gas in Lianyuan Sag, Central Hunan. Earth Science, 44(3): 939-952 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903021.htm
      [26] Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence (Second Editon). Springer-Verlag, Berlin.
      [27] Wang, B.Z., Ou, W.J., Wang, C.S., et al., 2018. Geochemical Characteristics of the Early Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807003.htm
      [28] Wang, P.F., Jiang, Z.X., Han, B., et al., 2018. Reservoir Geological Parameters for Efficient Exploration and Development of Lower Cambrian Niutitang Formation Shale Gas in South China. Acta Petrolei Sinica, 39(2): 152-162 (in Chinese with English abstract).
      [29] Wang, S.J., Yang, T., Zhang, G.S., et al., 2012. Shale Gas Enrichment Factors and the Selection and Evaluation of the Core Area. Strategic Study of CAE, 14(6): 94-100. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=GCKX201206012&dbcode=CJFD&year=2012&dflag=pdfdown
      [30] Wang, S.Q., Wang, S.Y., Man, L., et al., 2013. Appraisal Method and Key Parameters for Screening Shale Gas Play. Journal of Chengdu University of Technology (Science &Technology Edition), 40(6): 609-620. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201306001
      [31] Wu, S. Q., Guo, J. H., Li, Z. Y., et al., 2020. Identification and Optimization of Shale Gas "Sweet Spots" in Marine Niutitang Formation, South China. Oil & Gas Geology, 41(5): 1048-1059 (in Chinese with English abstract).
      [32] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Science, 42(7): 1045-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707001.htm
      [33] Xu, Y.J., Zhao, Z. J., Yu, G., 2001. Oil and Gas System Analysis in Nanpanjiang Depression. Marine Origin Petroleum Geology, 6(2): 13-20.
      [34] Xu, Z.J., Liu, L.F., Liu, B.J.M., et al., 2019. Geochemical Characteristics of the Triassic Chang 7 Lacustrine Source Rocks, Ordos Basin, China: Implications for Paleoenvironment, Petroleum Potential and Tight Oil Occurrence. Journal of Asian Earth Sciences, 178: 112-138. doi: 10.1016/j.jseaes.2018.03.005
      [35] Yang, H.Y., Chen, S.Y., Hao, X.L., et al., 2010. Sedimentary Characteristics and Evolutionary Stages of Late Paleozoic Longlin Isolated Platform in Nanpanjiang Depression. Geology in China, 37(6): 1638-1646 (in Chinese with English abstract).
      [36] Yang, R., 2013. Shale Gas Accumulation Characters of Upper Paleozoic Group in Guangxi (Dissertation). Yangtze University, Wuhan (in Chinese with English abstract).
      [37] Zeng, L., Lyu, W., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. doi: 10.1016/j.jngse.2015.11.048
      [38] Zeng, Y.H., Fu, X.G., Zeng, S.Q., et al., 2013. Upper Triassic Potential Source Rocks in the Qiangtang Basin, Tibet: Organic Geochemical Characteristics. Journal of Petroleum Geology, 36: 237-255. doi: 10.1111/jpg.12554
      [39] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057-1068 (in Chinese with English abstract).
      [40] Zhang, L., Xiong, Y.Q., Chen, Y., et al., 2017. Mechanisms of Shale Gas Generation from Typically Organic-Rich Marine Shales. Earth Science, 42(7): 1092-1106 (in Chinese with English abstract).
      [41] Zhou, W., Jiang, Z.X., Qiu, H.Y., et al., 2019. Shale Gas Accumulation Conditions and Prediction of Favorable Areas for the Lower Carboniferous Luzhai Formation in Guizhong Depression. Acta Petrolei Sinica, 40(7): 798-812 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854019300440
      [42] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm
      [43] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract).
      [44] Zou, C.N., Pan, S.Q., Jing., Z.H., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12 (in Chinese with English abstract). doi: 10.1038/s41401-019-0299-4
      [45] 包汉勇, 张柏桥, 曾联波, 等, 2019. 华南地区海相页岩气差异富集构造模式. 地球科学, 44(3): 993-1000. doi: 10.3799/dqkx.2018.943
      [46] 陈粵, 黄文芳, 梁裕平, 等, 2017. 广西鹿寨地区鹿寨组一段黑色页岩特征及沉积环境分析. 矿产与地质, 31(3): 605-612. doi: 10.3969/j.issn.1001-5663.2017.03.027
      [47] 董大忠, 王玉满, 黄旭楠, 等, 2016. 中国页岩气地质特征、资源评价方法及关键参数. 天然气地球科学, 27(9): 1583-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201609005.htm
      [48] 董敏, 张林炎, 王宗秀, 等, 2019. 鄂西地区下寒武统牛蹄塘组页岩气成藏及保存条件分析: 以XD1井为例. 地球科学, 44(11): 3616-3627. doi: 10.3799/dqkx.2019.127
      [49] 郭桦, 2010. 湘桂地区晚古生代沉积特征研究(博士学位论文). 青岛: 中国石油大学.
      [50] 郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
      [51] 姜磊, 邓宾, 刘树根, 等, 2019. 焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响. 地球科学, 44(2): 524-538. doi: 10.3799/dqkx.2018.515
      [52] 蒋恕, 唐相路, Osborne, S., 等, 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例. 地球科学, 42(7): 1083-1091. doi: 10.3799/dqkx.2017.087
      [53] 李梅, 金爱民, 楼章华, 等, 2011. 南盘江坳陷海相油气保存条件与目标勘探区块优选. 中国矿业大学学报(自然科学版), 40(4): 566-575. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201104011.htm
      [54] 刘磊, 2010. 南盘江坳陷油气保存条件研究(博士学位论文). 青岛: 中国石油大学(华东).
      [55] 楼章华, 马永生, 郭彤楼, 等, 2006. 中国南方海相地层油气保存条件评价. 天然气工业, 26(8): 8-11, 157. doi: 10.3321/j.issn:1000-0976.2006.08.003
      [56] 潘仁芳, 唐小玲, 孟江辉, 等, 2014. 桂中坳陷上古生界页岩气保存条件. 石油与天然气地质, 35(4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201404013.htm
      [57] 任立奎, 2002. 南盘江坳陷东部及邻区构造特征研究(博士学位论文). 武汉: 中国地质大学.
      [58] 田巍, 彭中勤, 白云山, 等, 2019. 湘中涟源凹陷石炭系测水组页岩气成藏特征及勘探潜力. 地球科学, 44(3): 939-952. doi: 10.3799/dqkx.2018.291
      [59] 王保忠, 欧文佳, 王传尚, 等, 2018. 桂中坳陷早石炭世泥页岩地球化学特征及近源气成藏模式. 地球科学, 43(7): 2222-2233. doi: 10.3799/dqkx.2018.226
      [60] 王朋飞, 姜振学, 韩波, 等, 2018. 中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数. 石油学报, 39(2): 152-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802003.htm
      [61] 王社教, 杨涛, 张国生, 等, 2012. 页岩气主要富集因素与核心区选择及评价. 中国工程科学, 14(6): 94-100. doi: 10.3969/j.issn.1009-1742.2012.06.013
      [62] 王世谦, 王书彦, 满玲, 等, 2013. 页岩气选区评价方法与关键参数. 成都理工大学学报(自然科学版), 40(6): 609-620. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201306001.htm
      [63] 吴诗情, 郭建华, 李智宇, 等, 2020. 中国南方海相地层牛蹄塘组页岩气"甜点段"识别和优选. 石油与天然气地质, 41(5): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005016.htm
      [64] 解习农, 郝芳, 陆永潮, 等, 2017. 南方复杂地区页岩气差异富集机理及其关键技术. 地球科学, 42(7): 1045-1056. doi: 10.3799/dqkx.2017.084
      [65] 徐云俊, 赵宗举, 俞广, 2001. 南盘江坳陷油气系统分析. 海相油气地质, 6(2): 13-20. doi: 10.3969/j.issn.1672-9854.2001.02.003
      [66] 杨怀宇, 陈世悦, 郝晓良, 等, 2010. 南盘江坳陷晚古生代隆林孤立台地沉积特征与演化阶段. 中国地质, 37(6): 1638-1646. doi: 10.3969/j.issn.1000-3657.2010.06.010
      [67] 杨锐, 2013. 广西页岩气成藏特征分析(博士学位论文). 武汉: 长江大学.
      [68] 翟刚毅, 王玉芳, 包书景, 等, 2017. 我国南方海相页岩气富集高产主控因素及前景预测. 地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085
      [69] 张莉, 熊永强, 陈媛, 等, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
      [70] 张雪芬, 陆现彩, 张林晔, 等, 2010. 页岩气的赋存形式研究及其石油地质意义. 地球科学进展, 25(6): 597-604. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201006005.htm
      [71] 周雯, 姜振学, 仇恒远, 等, 2019. 桂中坳陷下石炭统鹿寨组页岩气成藏条件和有利区预测. 石油学报, 40(7): 798-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907005.htm
      [72] 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01
      [73] 邹才能, 董大忠, 王玉满, 等, 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2): 166-178. doi: 10.11698/PED.2016.02.02
      [74] 邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12. doi: 10.3969/j.issn.1001-8719.2020.01.001
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  878
    • HTML全文浏览量:  264
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-06
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回