• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    桂中都安-马山煌斑岩成因及其构造意义

    唐远兰 时毓 王永强 孙艺容 刘希军

    唐远兰, 时毓, 王永强, 孙艺容, 刘希军, 2021. 桂中都安-马山煌斑岩成因及其构造意义. 地球科学, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306
    引用本文: 唐远兰, 时毓, 王永强, 孙艺容, 刘希军, 2021. 桂中都安-马山煌斑岩成因及其构造意义. 地球科学, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306
    Tang Yuanlan, Shi Yu, Wang Yongqiang, Sun Yirong, Liu Xijun, 2021. Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi. Earth Science, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306
    Citation: Tang Yuanlan, Shi Yu, Wang Yongqiang, Sun Yirong, Liu Xijun, 2021. Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi. Earth Science, 46(6): 2083-2116. doi: 10.3799/dqkx.2020.306

    桂中都安-马山煌斑岩成因及其构造意义

    doi: 10.3799/dqkx.2020.306
    基金项目: 

    国家自然科学基金项目 41862003

    国家自然科学基金项目 41562005

    广西杰出自然科学基金项目 2019GXNSFFA245005

    广西杰出自然科学基金项目 2018GXNSFFA281009

    详细信息
      作者简介:

      唐远兰(1995-), 女, 硕士, 现主要从事岩石学研究.ORCID: 0000-0003-0496-7756.E-mail: 1132726253@qq.com

      通讯作者:

      时毓, E-mail: shiyu_61@163.com

    • 中图分类号: P581;P597.3

    Genesis and Tectonic Significance of Lamprophyre in Du'an-Mashan, Central Guangxi

    • 摘要: 为精确厘定桂中地区都安-马山带煌斑岩的形成时代并探讨其源区属性、构造环境及其动力学背景,对其进行了LA-ICP-MS锆石U-Pb定年、40Ar-39Ar金云母定年、Hf同位素分析测试和全岩地球化学研究.结果表明,锆石U-Pb定年未能成功限定煌斑岩的成岩年龄,但煌斑岩中发育大量2 578~1 650 Ma的捕获锆石,指示其存在太古宙-古元古代变质基底.金云母40Ar-39Ar定年结果限定了煌斑岩的侵位年龄为100.4±0.99 Ma.Hf同位素研究表明,εHft)有正有负,且正值多于负值,表明岩浆源区主要以新生地壳为主,存在部分古老地壳的再循环.全岩地球化学分析显示,煌斑岩具有较低的SiO2含量(47.66%~50.93%)及高的K2O含量(4.98%~6.77%)、富集LILE和LREE而亏损HFSE(如Nb、Ta和Ti),表现出富集地幔和俯冲流体交代作用的特征.桂中煌斑岩形成过程中,地壳混染作用十分有限,主要形成过程为:流体交代的富集地幔,在燕山晚期岩石圈的拉张-伸展背景下,部分熔融形成煌斑岩岩浆,同时NNW向的南丹-昆仑关大断裂为岩浆的侵位提供了通道.研究区煌斑岩形成于太平洋和印度板块向欧亚板块俯冲碰撞的动力学背景下.

       

    • 图  1  华南构造格局简图

      ①澜沧江缝合带; ②昌宁-孟连缝合带; ③金沙江缝合带; ④哀牢山缝合带; ⑤八布缝合带; ⑥SongMa缝合带; ⑦勉略缝合带; ⑧商丹缝合带; 据Yang et al.(2012)

      Fig.  1.  Simplified tectonic framework of South China

      图  2  桂中地区地质简图及采样位置

      图a中,1.二级构造单元; 2.三级构造单元; 3.四级构造单元; 4.区域断裂; 5.研究区; 6.煌斑岩分布区; Ⅰ.都阳山褶皱; Ⅱ.灵马褶皱; Ⅲ.来宾褶皱; Ⅳ.西大明山凸起; V.十万大山断陷; VI.大瑶山隆起; a.改自广西壮族自治区地质矿产局(1992);b.改自Yang et al.(2012)

      Fig.  2.  Simplified geological map of Central Guangxi and the sampling locations

      图  3  河池都安煌斑岩(17DA-01)的野外和手标本照片及镜下特征

      Bt.黑云母;Phl.金云母;Pl.斜长石

      Fig.  3.  Photographs of field, hand specimen and microscope features of the lamprophyre from Du'an in Hechi (17DA-01)

      图  4  河池都安煌斑岩(17DA-02)的野外和手标本照片及镜下特征

      Bt.黑云母;Phl.金云母

      Fig.  4.  Photographs of field, hand specimen and microscope features of the lamprophyre from Du'an in Hechi (17DA-02)

      图  5  河池都安煌斑岩(15DA-02)的野外和手标本照片及镜下特征

      Bt.黑云母;Pl.斜长石;Px.普通辉石

      Fig.  5.  Photographs of field, hand specimen and microscope features of the lamprophyre from Du'an in Hechi (15DA-02)

      图  6  马山百龙滩煌斑岩(GX1506)的野外和手标本照片及镜下特征

      Bt.黑云母;Phl.金云母;Ol.橄榄石;Pl.斜长石

      Fig.  6.  Photographs of field, hand specimen and microscope features of the lamprophyre from Bailongtan in Mashan (GX1506)

      图  7  桂中煌斑岩TAS分类图(a)和K/Al-K/(K+Na)图(b)

      a据Le Maitre et al.(1989)Rock(1987);b据路凤香等(1991);CAL.钙碱性煌斑岩;AL.碱性煌斑岩;UML.超基性煌斑岩;LL.钾镁煌斑岩;Pc.苦橄玄武岩;B.玄武岩;O1.玄武安山岩;O2.安山岩;S1.粗面玄武岩;S2.玄武质粗面安山岩;S3.粗面安山岩;U1.碱玄岩、碧玄岩;U2.响岩质碱玄岩;U3.碱玄质响岩;L1.钠质煌斑岩;L2.弱钾质煌斑岩;L3.钾质煌斑岩;L4.超钾质煌斑岩;L5.过铝质煌斑岩;L6.钾镁煌斑岩

      Fig.  7.  TAS classification diagram (a) and K/Al vs. K/(K+Na) diagram (b) of the lamprophyre from Central Guangxi

      图  8  桂中煌斑岩REE球粒陨石标准化分布图(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石和原始地幔标准化数据引自Sun and McDonough(1989)

      Fig.  8.  Spider diagrams for trace elements (a) and REE patterns (b) of the lamprophyre from Central Guangxi

      图  9  桂中煌斑岩锆石阴极发光(CL)照片

      Fig.  9.  Cathode luminescence (CL) images for zircons of the lamprophyres from Central Guangxi

      图  10  桂中煌斑岩锆石U-Pb年龄谐和图

      Fig.  10.  U-Pb concordia diagrams for zircons of the lamprophyres from Central Guangxi

      图  11  广西都安和马山煌斑岩中锆石的(176Hf/177Hf)i-U-Pb年龄(a)和εHf(t)-U-Pb年龄图(b)

      DM.亏损地幔;NC.新生地壳;CHUR.球粒陨石均一源

      Fig.  11.  Plots of (176Hf/177Hf)i vs. U-Pb ages (a) and εHf(t) vs. U-Pb ages (b) for zircon grains of the lamprophyres from Du'an and Mashan in Guangxi

      图  12  桂中马山煌斑岩金云母40Ar/39Ar坪年龄(a)和等时线年龄(b)

      Fig.  12.  Phlogopite 40Ar/39Ar plateau ages (a) and normal isochron ages (b) of the lamprophyre in Mashan, Central Guangxi

      图  13  桂中煌斑岩中锆石U-Pb年龄直方图

      Fig.  13.  U-Pb age histogram of zircons from lamprophyres in central Guangxi

      图  14  都安-马山煌斑岩Zr与U (a)、Th (b)、Rb (c)、Ti (d)、Ba (e)、Y (f)、ΣREE (g)、Nb (h)和LOI (i)相关性图解

      Fig.  14.  The correlations of Zr vs. U (a), Th (b), Rb (c), Ti (d), Ba (e), Y (f), ΣREE (g), Nb (h) and LOI (i) for the Du'an-Mashan lamprophyres

      图  15  Zr/Nb-Y/Nb (a)、Ta/Yb-Th/Yb (b)、La/Yb-Nb/Ta (c)、MgO-Th (d)、MgO-Al2O3 (e)、MgO-Cr (f)、MgO-Sr (g)、La-La/Yb (h)和La-La/Sm (i)图解

      a,b.底图据Hofmann(1988);h,i.底图据Imaoka et al.(2014)

      Fig.  15.  Zr/Nb-Y/Nb (a), Ta/Yb-Th/Yb (b), La/Yb-Nb/Ta (c), MgO-Th (d), MgO-Al2O3 (e), MgO-Cr (f), MgO-Sr (g), La-La/Yb (h) and La-La/Sm (i) diagrams

      图  16  Th/Zr-Nb/Zr图解(a)和(Ta/La)N-(Hf/Sm)N图解(b)

      DM.亏损地幔;MORB.洋中脊玄武岩;N-MORB.大洋拉斑玄武岩;OIB.洋岛玄武岩;a据Jia et al., 2004;b据Gutscher et al.(2000)

      Fig.  16.  Th/Zr-Nb/Zr diagram (a) and (Ta/La)N-(Hf/Sm)N illustration (b)

      图  17  Ba/Rb-Rb/Sr图解(底图据Furman and Graham, 1999)

      Fig.  17.  Ba/Rb-Rb/Sr diagram (modified after Furman and Graham, 1999)

      图  18  La-La/Yb图解(a)和Nb-Yb图解(b)

      a据Sun et al.(2015)修改;b底图据Hardarson and Fitton(1991)

      Fig.  18.  La-La/Yb diagram (a) and Nb-Yb diagram (b)

      图  19  桂中煌斑岩的Zr-Zr/Y(a)图解与Ta/Hf-Th/Hf图解(b)

      a底图据Meschede(1986);b底图据汪云亮等(2001);IAB.洋岛玄武岩;MORB.洋中脊玄武岩;WPB.板内玄武岩

      Fig.  19.  Zr-Zr/Y (a) diagram and Ta/Hf-Th/Hf illustration (b) from lamprophyres in Central Guangxi

      表  1  桂中煌斑岩主量(%)和微量(10-6)分析结果

      Table  1.   Major (%) and trace element (10-6) compositions of the lamprophyres from central Guangxi

      样品 15GX6 15GX9 LCH-01 LCH-04 LCH-05 LCH-06 LCH-07 LCH-08 LCH-09 17DA-01 17DA-02 15DA-02 GX1506
      云斜煌岩 辉石闪长玢岩 超钾质煌斑岩 煌斑岩
      主量元素(%)
      SiO2 53.92 58.49 53.01 50.65 54.6 52.92 54.53 51.16 52.65 40.45 40.78 48.42 57.23
      TiO2 0.95 0.97 0.97 0.9 0.92 0.91 0.92 0.88 0.94 1.01 1.02 1.85 1.04
      Al2O3 12.66 16.25 13.36 12.55 13.11 12.6 12.79 12.25 12.9 11.21 11.09 12.91 13.76
      Fe2O3 4.85 5.75 4.53 4.49 4.9 4.41 4.71 4.23 4.21 4.76 4.76 10.69 4.47
      MnO 0.1 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.24 0.22 0.17 0.07
      MgO 6.18 4.12 4.5 4.44 5.69 4.88 5.9 4.61 4.62 3.88 3.84 8.21 4.22
      CaO 6.6 5.62 7.19 9.42 5.62 7.51 5.63 9.33 7.12 16.26 15.50 8.07 4.27
      Na2O 2.18 3.41 2.05 1.76 1.93 1.58 1.81 1.65 1.84 1.35 1.32 3.39 2.83
      K2O 5.46 2.74 6.08 5.65 5.74 6.01 6.03 5.94 6.26 7.28 7.22 2.21 6.63
      P2O5 0.91 0.28 1.00 0.93 0.94 0.95 0.94 0.93 1.00 1.45 1.43 0.58 0.65
      LOI 5.86 1.59 6.7 8.51 5.93 6.17 5.16 8.02 6.12 11.16 11.90 2.97 4.42
      TOTAL 99.67 99.31 99.47 99.38 99.46 98.02 98.49 99.07 97.94 99.05 99.07 99.47 99.59
      Na2O/K2O 0.40 1.24 0.34 0.31 0.34 0.26 0.30 0.28 0.29 0.19 0.18 1.54 0.43
      Na2O+K2O 7.64 6.15 8.13 7.41 7.67 7.59 7.84 7.59 8.10 8.63 8.54 5.60 9.46
      微量元素(10-6)
      Sc 18 18.5 17.7 16.3 18.7 16 16.5 16.1 16.8 26.03 29.70 15.20 27.44
      Ti 6 050 5 909 6 234 5 900 5 864 5 821 5 819 5 739 6 010 6 210 6 509 6 550 10 831
      V 110 137 117 111 127 104 107 104 109 0.00 0.00 110 214
      Cr 351 154 396 365 414 345 351 349 381 189 201 419 367
      Ni 234 82 242 206 349 256 326 213 247 152 146 222 172
      Zn 71.2 63.3 81.4 91.8 82.1 80.6 79.7 71.7 81.4 82.47 109 108 100
      Ga 25.5 23.2 17 19.7 16.8 17.3 16.7 17.6 17 15.06 14.45 18.93 16.58
      Rb 239 117 237 272 259 263 255 263 237 491 546 281 57.81
      Sr 499 402 434 488 428 441 440 484 434 514 536 387 714
      Y 41.9 36.6 39.1 43.5 38.3 38.6 38.9 40.1 39.1 33.33 37.28 27.86 26.77
      Zr 478 269 433 500 475 493 471 502 433 468 488 532 351
      Nb 22.2 20.7 21.8 25.4 22.3 22.8 21.9 23.3 21.8 50.13 51.20 23.55 26.88
      Cs 9.56 4.27 12.7 12.8 11.4 11 12.1 8.2 12.7 15.03 14.28 10.57 427
      Ba 2 467 935 2 387 2 638 2 559 2 570 2 579 2 761 2 387 4 444 4 617 2 835 2 164
      La 69 58 67 72.19 66.57 66.32 67.84 78.48 67 74.47 77.32 52.11 65.57
      Ce 162 104 155 165 158 157 163 181 155 176 181 119 132
      Pr 21.3 12.6 20.65 22.12 20.25 19.94 20.55 22.67 20.65 18.66 19.40 14.98 15.80
      Nd 97.5 49.6 87.7 93.53 87.3 86.16 89.32 97.72 87.7 69.91 74.99 66.10 64.25
      Sm 21 8.31 20.77 22.38 20.57 20.72 21.25 22.9 20.77 14.46 15.35 15.30 11.66
      Eu 4.08 1.89 3.99 4.53 4.10 4.11 4.19 4.54 3.99 2.84 3.01 3.17 2.90
      Gd 16.7 7.56 16.22 17.58 15.53 14.82 15.35 16.61 16.22 11.58 12.31 11.62 8.87
      Tb 2.00 1.12 1.85 2.04 1.88 1.88 1.92 1.99 1.85 1.46 1.54 1.47 1.16
      Dy 8.46 6.12 7.94 8.69 8.28 8.36 8.45 8.59 7.94 6.91 7.35 6.84 6.02
      Ho 1.36 1.23 1.29 1.43 1.31 1.34 1.35 1.36 1.29 1.19 1.25 1.12 1.13
      Er 3.46 3.58 3.11 3.41 3.06 3.03 3.05 3.21 3.11 3.12 3.31 2.69 3.00
      Tm 0.43 0.51 0.42 0.47 0.41 0.42 0.41 0.41 0.42 0.40 0.42 0.35 0.42
      Yb 2.54 3.12 2.39 2.67 2.53 2.53 2.58 2.57 2.39 2.58 2.74 2.25 2.72
      Lu 0.36 0.47 0.33 0.38 0.33 0.31 0.29 0.33 0.33 0.38 0.41 0.33 0.42
      Hf 11.7 6.31 11.27 13.05 11.56 12.02 11.32 12.31 11.27 13.34 13.80 14.35 8.42
      微量元素(10-6)
      Ta 1.54 1.19 1.56 1.88 1.71 1.75 1.66 1.73 1.56 2.40 2.48 1.60 1.05
      Pb 73.3 29 71.11 92.44 70.35 86.91 73.41 77.47 71.11 103 103 73.80 31.42
      Th 69.2 23.2 64.87 75.75 68.29 70.15 66.85 70.3 64.87 60.99 68.46 76.31 23.71
      U 13.7 3.4 12.3 14.77 11.48 12.93 11.93 11.68 12.3 11.00 10.47 13.23 2.91
      ΣREE 410 258 388 417 390 387 400 442 388 384 401 297 316
      LREE 375 234 355 380 357 354 367 407 355 356 371 270 293
      HREE 35.31 23.71 33.55 36.67 33.32 32.69 33.4 35.07 33.55 27.61 29.34 26.67 23.73
      LREE/HREE 10.62 9.89 10.58 10.36 10.71 10.85 10.98 11.61 10.58 12.92 12.67 10.16 12.35
      LaN/YbN 19.49 13.33 22.81 20.11 19.40 18.87 18.80 18.86 21.90 20.72 20.25 16.62 17.31
      δEu 0.67 0.73 0.67 0.66 0.70 0.70 0.72 0.71 0.71 0.65 0.65 0.70 0.84
      δCe 1.04 0.94 1.00 1.02 1.01 1.06 1.06 1.07 1.05 1.13 1.12 1.03 0.98
        注:样品15GX6和15GX9数据来源高秦等(2019), 来源地区分别为马山和都安;LCH-01, LCH-04~LCH-09数据来源Li et al.(2014),来源地区为马山;17DA-01,17DA-02,15DA-02和GX1506数据来源本文,其中GX1506来源地区为马山,其他为都安.
      下载: 导出CSV

      表  2  桂中煌斑岩LA-ICP-MS锆石U-Pb定年分析结果

      Table  2.   LA-ICP-MS U-Pb dating results for zircons of lamprophyres from Central Guangxi

      分析点号 同位素比值 定年结果(Ma) 谐和度(%) Th (10-6) U (10-6) Th/U
      207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      17DA-01(煌斑岩)
      1 0.054 3 0.001 5 0.518 7 0.014 3 0.069 5 0.000 7 387 66 424 10 433 4 97 196 1 159 0.17
      2 0.063 9 0.001 1 1.149 2 0.022 3 0.130 7 0.001 2 737 38 777 11 792 7 98 232 1 841 0.13
      3 0.053 5 0.001 3 0.509 4 0.012 7 0.069 1 0.000 7 350 84 418 9 431 4 96 296 1 409 0.21
      4 0.075 2 0.001 1 0.852 8 0.016 5 0.082 1 0.000 9 1 072 30 626 9 509 6 79 1 801 4 080 0.44
      5 0.142 9 0.004 9 2.881 7 0.111 7 0.144 5 0.001 4 2 263 59 1 377 29 870 8 54 586 824 0.71
      6 0.064 0 0.001 2 1.076 6 0.025 6 0.121 1 0.001 5 743 44 742 13 737 8 99 326 1 263 0.26
      7 0.064 7 0.001 1 1.150 8 0.024 0 0.128 7 0.001 5 765 234 778 11 781 9 99 686 1 796 0.38
      8 0.053 1 0.001 1 0.490 9 0.011 4 0.067 1 0.000 7 332 53 406 8 419 4 96 263 1 878 0.14
      9 0.064 9 0.001 6 1.210 5 0.029 9 0.135 8 0.001 4 770 51 805 14 821 8 98 364 653 0.56
      10 0.056 7 0.001 7 0.546 6 0.016 4 0.070 3 0.000 8 480 65 443 11 438 5 98 393 941 0.42
      11 0.089 6 0.002 9 0.885 8 0.031 0 0.071 4 0.000 8 1 417 63 644 17 445 5 63 289 702 0.41
      12 0.068 1 0.002 6 1.212 3 0.073 8 0.125 7 0.001 4 872 78 806 34 763 8 94 247 1 524 0.16
      13 0.060 7 0.001 8 0.902 9 0.035 2 0.107 7 0.002 3 628 69 653 19 660 13 99 480 778 0.62
      14 0.200 0 0.018 3 3.053 9 0.407 6 0.075 2 0.003 5 2 828 150 1 421 102 467 21 33 360 466 0.77
      15 0.058 5 0.001 1 0.601 9 0.014 6 0.074 1 0.000 9 546 41 478 9 461 5 96 1 533 4 185 0.37
      16 0.065 2 0.001 6 1.124 6 0.028 2 0.125 5 0.001 3 781 52 765 14 762 7 99 229 644 0.36
      17 0.138 9 0.002 4 7.744 5 0.153 2 0.404 4 0.004 2 2 213 30 2 202 18 2 189 19 99 206 365 0.56
      18 0.067 2 0.001 3 1.185 2 0.025 4 0.127 7 0.001 2 843 40 794 12 775 7 97 243 1 151 0.21
      19 0.117 8 0.002 3 2.326 3 0.050 2 0.142 9 0.001 2 1 924 35 1 220 15 861 7 65 254 2 035 0.13
      20 0.146 7 0.005 6 1.705 3 0.073 7 0.083 6 0.000 9 2 309 66 1 011 28 518 5 35 419 1 586 0.26
      21 0.057 8 0.001 4 0.558 7 0.013 8 0.070 2 0.000 6 524 47 451 9 437 4 96 377 1 434 0.26
      22 0.068 4 0.001 2 1.316 4 0.027 0 0.139 4 0.001 4 883 39 853 12 841 8 98 494 1 421 0.35
      23 0.062 5 0.001 7 0.579 5 0.016 2 0.067 5 0.000 7 700 59 464 10 421 4 90 1 221 1 183 1.03
      24 0.064 8 0.001 9 0.643 8 0.018 4 0.072 6 0.000 8 769 61 505 11 452 5 88 325 855 0.38
      25 0.063 5 0.002 4 0.635 7 0.024 6 0.072 7 0.000 9 726 80 500 15 452 5 90 353 408 0.87
      26 0.070 3 0.001 5 1.320 9 0.029 8 0.136 2 0.001 2 939 47 855 13 823 7 96 533 1 066 0.50
      27 0.067 5 0.001 2 1.248 1 0.025 9 0.133 8 0.001 3 854 35 823 12 809 7 98 481 1 711 0.28
      28 0.169 3 0.003 8 2.485 6 0.061 6 0.108 3 0.002 0 2 551 38 1 268 18 663 12 37 553 1 037 0.53
      29 0.231 1 0.006 3 2.757 7 0.094 4 0.085 1 0.001 1 3 061 43 1 344 26 526 6 12 505 636 0.79
      30 0.056 6 0.001 3 0.554 4 0.014 0 0.071 0 0.000 7 476 45 448 9 442 4 98 1 269 1 712 0.74
      31 0.116 2 0.006 6 1.277 0 0.087 1 0.074 5 0.001 1 1 898 101 836 39 463 6 42 866 1 160 0.75
      32 0.078 5 0.001 9 1.565 6 0.038 4 0.144 5 0.001 3 1 161 42 957 15 870 7 90 195 832 0.23
      33 0.068 9 0.001 5 1.372 8 0.031 8 0.144 6 0.001 3 894 45 877 14 870 7 99 184 1 150 0.16
      34 0.069 2 0.001 3 1.238 6 0.027 1 0.129 6 0.001 4 906 39 818 12 786 8 95 531 1 152 0.46
      35 0.113 5 0.002 2 2.115 1 0.044 9 0.135 0 0.001 2 1 855 40 1 154 15 816 7 65 283 1 506 0.19
      36 0.066 7 0.001 2 1.217 1 0.024 2 0.132 1 0.001 2 828 37 808 11 800 7 98 937 1 519 0.62
      37 0.065 3 0.001 1 1.162 7 0.022 4 0.129 0 0.001 2 783 36 783 11 782 7 99 333 1 790 0.19
      38 0.078 3 0.002 4 0.725 9 0.023 8 0.067 0 0.000 6 1 154 59 554 14 418 4 71 277 2 292 0.12
      39 0.067 0 0.001 3 1.180 7 0.024 7 0.127 9 0.001 2 837 41 792 11 776 7 97 1 337 1 635 0.82
      40 0.089 9 0.001 9 1.643 7 0.037 4 0.132 6 0.001 3 1 433 41 987 14 803 7 79 295 911 0.32
      17DA-02(煌斑岩)
      1 0.056 9 0.001 4 0.557 9 0.014 8 0.071 1 0.000 7 487 56 450 10 443 4 98 708 1 757 0.40
      2 0.062 6 0.001 6 0.860 4 0.023 4 0.099 9 0.001 1 694 56 630 13 614 6 97 120 766 0.16
      3 0.051 7 0.001 7 0.478 5 0.015 7 0.067 4 0.000 7 272 74 397 11 420 4 94 177 729 0.24
      4 0.062 1 0.001 1 0.793 8 0.016 6 0.092 6 0.001 1 676 42 593 9 571 6 96 855 2 108 0.41
      5 0.054 8 0.001 2 0.514 2 0.012 0 0.068 0 0.000 6 467 48 421 8 424 4 99 1 799 2 386 0.75
      6 0.066 7 0.001 2 1.274 3 0.027 4 0.138 2 0.001 3 828 44 834 12 835 7 99 425 1 304 0.33
      7 0.055 8 0.001 4 0.525 4 0.014 2 0.068 4 0.000 8 443 56 429 9 427 5 99 1 175 1 242 0.95
      8 0.054 1 0.001 8 0.495 5 0.016 6 0.066 8 0.000 8 376 74 409 11 417 5 98 450 656 0.69
      9 0.063 4 0.001 3 0.773 7 0.019 7 0.088 5 0.001 3 722 44 582 11 547 7 93 489 1 311 0.37
      10 0.055 9 0.001 4 0.373 2 0.012 6 0.048 7 0.001 2 456 54 322 9 306 8 95 67 1 724 0.04
      11 0.064 7 0.001 4 0.947 7 0.026 9 0.105 6 0.001 8 765 44 677 14 647 10 95 301 1 069 0.28
      12 0.054 8 0.000 9 0.588 0 0.011 4 0.077 7 0.000 9 406 37 470 7 483 5 97 1 924 4 045 0.48
      13 0.063 1 0.001 2 0.602 0 0.011 9 0.069 3 0.000 7 722 41 478 8 432 4 89 2 298 3 486 0.66
      14 0.077 8 0.001 5 1.336 3 0.032 6 0.124 0 0.001 5 1 143 44 862 14 754 9 86 231 1 090 0.21
      15 0.056 8 0.001 9 0.531 9 0.018 0 0.068 3 0.000 8 483 81 433 12 426 5 98 319 624 0.51
      16 0.073 6 0.001 4 1.548 1 0.030 9 0.152 4 0.001 4 1 031 69 950 12 914 8 96 125 1 807 0.07
      17 0.060 4 0.001 3 0.733 1 0.017 6 0.088 0 0.000 9 617 47 558 10 544 5 97 224 1 260 0.18
      18 0.052 5 0.001 5 0.460 5 0.014 2 0.063 5 0.000 7 306 65 385 10 397 4 96 398 1 013 0.39
      19 0.055 9 0.001 1 0.521 4 0.010 8 0.067 6 0.000 6 456 47 426 7 422 4 99 1 600 2 467 0.65
      20 0.064 6 0.002 3 1.205 8 0.045 2 0.135 8 0.001 6 761 75 803 21 821 9 97 202 268 0.75
      21 0.086 9 0.002 5 1.572 4 0.089 4 0.119 1 0.0044 1 359 56 959 35 725 25 72 860 1 619 0.53
      22 0.067 8 0.001 6 1.218 1 0.033 2 0.130 4 0.001 8 861 49 809 15 790 10 97 162 562 0.29
      23 0.065 9 0.001 8 0.629 4 0.017 2 0.069 6 0.000 7 806 57 496 11 434 4 86 364 990 0.37
      24 0.070 3 0.001 5 1.271 9 0.029 5 0.131 4 0.001 3 939 44 833 13 796 8 95 222 797 0.28
      25 0.113 8 0.002 4 2.927 2 0.083 5 0.184 5 0.002 9 1 861 33 1 389 22 1 091 16 76 272 591 0.46
      26 0.080 3 0.002 6 0.772 5 0.025 2 0.070 1 0.000 8 1 206 69 581 14 437 5 71 664 990 0.67
      27 0.117 9 0.005 5 1.132 2 0.061 7 0.066 7 0.000 8 1 924 83 769 29 416 5 40 2 005 1 845 1.09
      28 0.057 3 0.001 2 0.499 1 0.011 4 0.0631 0.000 6 506 46 411 8 395 4 95 1 057 2 112 0.50
      29 0.061 8 0.001 2 0.587 5 0.012 1 0.069 1 0.000 7 666 37 469 8 431 4 91 1 337 2 775 0.48
      30 0.057 5 0.001 2 0.503 2 0.011 4 0.063 5 0.000 6 522 51 414 8 397 3 95 991 1 909 0.52
      31 0.082 3 0.001 5 1.443 2 0.038 8 0.126 7 0.002 4 1 254 35 907 16 769 14 83 206 958 0.21
      32 0.064 3 0.002 0 0.913 4 0.030 4 0.103 3 0.001 5 754 65 659 16 634 9 96 176 496 0.36
      33 0.067 7 0.001 1 1.272 6 0.023 7 0.136 3 0.001 2 857 33 834 11 824 7 98 910 1 569 0.58
      34 0.065 2 0.001 6 1.118 6 0.029 4 0.124 4 0.001 4 783 50 762 14 756 8 99 241 682 0.35
      35 0.056 9 0.001 9 0.549 9 0.018 1 0.070 6 0.000 8 487 77 445 12 440 5 98 394 599 0.66
      36 0.055 1 0.001 2 0.537 1 0.012 7 0.070 7 0.000 7 417 46 436 8 440 4 99 431 1 400 0.31
      37 0.061 5 0.002 2 0.593 4 0.024 0 0.069 5 0.000 9 657 84 473 15 433 5 91 211 448 0.47
      38 0.135 2 0.009 3 1.435 1 0.116 0 0.069 8 0.001 2 2 166 121 904 48 435 7 29 720 944 0.76
      39 0.057 1 0.001 6 0.544 4 0.015 5 0.069 3 0.000 7 494 61 441 10 432 5 97 605 1 092 0.55
      40 0.058 0 0.001 5 0.579 3 0.016 9 0.072 9 0.001 0 528 55 464 11 453 6 97 688 1 121 0.61
      15DA-02(煌斑岩)
      1 0.053 8 0.001 9 0.393 7 0.013 7 0.053 0 0.000 8 364 51 337 10 333 5 99 98 81 1.21
      2 0.113 9 0.002 5 5.251 7 0.116 6 0.334 5 0.0050 1 862 20 1 861 19 1 860 24 100 83 35 2.39
      3 0.070 0 0.001 2 1.608 1 0.028 9 0.166 7 0.002 1 928 18 973 11 994 12 102 288 446 0.65
      4 0.060 6 0.001 0 0.733 6 0.013 4 0.087 8 0.001 2 626 19 559 8 542 7 97 520 325 1.60
      5 0.056 2 0.000 9 0.552 3 0.009 4 0.071 2 0.000 9 461 18 446 6 444 5 100 572 407 1.41
      6 0.055 3 0.001 7 0.379 9 0.011 3 0.049 9 0.000 7 422 40 327 8 314 5 96 156 242 0.64
      7 0.067 7 0.001 3 0.669 1 0.013 9 0.071 7 0.001 0 858 22 520 8 447 6 86 1 501 794 1.89
      8 0.105 9 0.002 2 4.570 7 0.093 8 0.313 1 0.004 2 1 729 19 1 744 17 1 756 21 101 93 83 1.12
      9 0.076 3 0.001 2 1.750 0 0.029 2 0.166 4 0.002 1 1 102 16 1 027 11 992 11 97 379 353 1.07
      10 0.053 6 0.001 7 0.495 9 0.015 4 0.067 1 0.001 0 355 43 409 10 419 6 102 174 124 1.40
      11 0.075 2 0.001 4 1.734 4 0.031 8 0.167 4 0.002 1 1 073 18 1 021 12 998 12 98 374 223 1.68
      12 0.057 3 0.001 1 0.590 1 0.011 2 0.074 7 0.001 0 503 21 471 7 464 6 99 334 257 1.30
      13 0.064 4 0.001 5 1.053 7 0.023 8 0.118 7 0.001 6 754 26 731 12 723 9 99 41 95 0.43
      14 0.051 9 0.001 0 0.267 8 0.005 5 0.037 4 0.000 5 282 24 241 4 237 3 98 98 300 0.33
      15 0.098 5 0.001 6 2.070 2 0.035 0 0.152 5 0.002 0 1 596 15 1 139 12 915 11 80 368 1 039 0.35
      16 0.236 9 0.003 2 17.616 7 0.271 3 0.539 4 0.0070 3 099 11 2 969 15 2 781 29 94 203 865 0.23
      17 0.056 2 0.001 2 0.494 5 0.011 1 0.063 9 0.000 9 459 27 408 8 399 5 98 70 159 0.44
      18 0.076 8 0.001 2 1.135 2 0.019 3 0.107 2 0.001 5 1 115 16 770 9 657 8 85 1 218 2 932 0.42
      19 0.106 2 0.001 5 4.427 6 0.070 1 0.302 4 0.003 9 1 735 13 1 718 13 1 703 19 99 115 146 0.79
      20 0.051 9 0.001 2 0.278 1 0.006 6 0.038 9 0.000 5 281 30 249 5 246 3 99 171 206 0.83
      21 0.162 7 0.0131 1.783 0 0.138 8 0.079 5 0.001 6 2 484 140 1 039 51 493 10 47 267 1 070 0.25
      22 0.073 9 0.001 5 1.623 5 0.034 9 0.159 3 0.002 4 1 039 22 979 13 953 13 97 691 1 826 0.38
      23 0.072 9 0.001 2 1.593 2 0.029 1 0.158 5 0.002 1 1 012 18 968 11 948 12 98 184 113 1.63
      24 0.094 8 0.002 0 3.234 1 0.071 4 0.247 6 0.003 6 1 523 21 1 465 17 1 426 19 97 159 157 1.01
      25 0.105 7 0.002 7 2.236 1 0.056 5 0.153 4 0.002 2 1 727 26 1 192 18 920 12 77 278 756 0.37
      26 0.072 1 0.001 5 1.585 4 0.033 9 0.159 6 0.002 2 988 22 964 13 954 12 99 241 125 1.92
      27 0.079 3 0.001 3 1.730 4 0.030 7 0.158 4 0.002 1 1 179 17 1 020 11 948 12 93 195 1 050 0.19
      28 0.058 6 0.009 7 0.171 2 0.028 2 0.021 2 0.000 5 552 371 160 24 135 3 84 407 169 2.40
      29 0.074 0 0.001 0 1.610 3 0.025 2 0.157 8 0.002 1 1 043 14 974 10 945 12 97 237 258 0.92
      30 0.128 5 0.002 3 5.480 9 0.105 9 0.309 4 0.004 6 2 078 16 1 898 17 1 738 22 92 545 539 1.01
      31 0.065 6 0.001 2 1.069 7 0.020 4 0.118 3 0.001 7 794 19 739 10 721 10 98 777 565 1.38
      32 0.093 5 0.001 3 3.210 0 0.052 0 0.249 3 0.003 5 1 497 14 1 460 13 1 435 18 98 336 968 0.35
      33 0.201 2 0.002 6 10.435 9 0.156 0 0.376 3 0.005 0 2 836 11 2 474 14 2 059 23 83 481 1 121 0.43
      34 0.080 6 0.001 5 1.261 3 0.024 1 0.113 5 0.001 6 1 213 18 828 11 693 9 84 360 428 0.84
      35 0.077 8 0.001 2 1.225 9 0.022 1 0.114 4 0.001 6 1 140 16 812 10 698 9 86 1 105 959 1.15
      36 0.059 4 0.001 8 0.476 0 0.012 5 0.058 1 0.000 8 582 66 395 9 364 5 92 297 1 304 0.23
      37 0.208 7 0.003 0 15.604 0 0.250 4 0.542 3 0.007 4 2 896 12 2 853 15 2 793 31 98 74 64 1.15
      38 0.060 9 0.001 7 0.201 0 0.005 7 0.023 9 0.000 4 636 34 186 5 152 2 82 412 499 0.83
      GX1506(煌斑岩)
      1 0.121 1 0.001 5 5.961 3 0.082 9 0.357 0 0.004 3 1 973 11 1 970 12 1 968 21 100 121 482 0.25
      2 0.089 6 0.001 2 3.039 9 0.045 7 0.246 1 0.003 1 1 417 13 1 418 11 1 418 16 100 709 524 1.35
      3 0.104 6 0.001 4 4.380 3 0.062 8 0.303 7 0.003 7 1 708 12 1 709 12 1 709 18 100 852 582 1.46
      4 0.052 9 0.001 2 0.374 9 0.008 8 0.051 4 0.000 7 326 29 323 6 323 4 100 512 281 1.82
      5 0.059 5 0.001 5 0.416 2 0.010 4 0.050 7 0.000 7 587 30 353 7 319 5 90 339 198 1.71
      6 0.052 4 0.000 9 0.364 5 0.006 5 0.050 5 0.000 7 301 19 316 5 318 4 101 4 689 1 732 2.71
      7 0.066 3 0.000 9 1.102 6 0.016 9 0.120 7 0.001 5 815 15 755 8 735 9 97 400 567 0.71
      8 0.070 4 0.001 0 1.472 3 0.023 0 0.151 7 0.001 9 940 15 919 9 910 11 97 296 284 1.04
      9 0.072 1 0.001 2 1.524 8 0.026 8 0.153 3 0.001 9 990 18 940 11 919 11 98 249 294 0.85
      10 0.171 3 0.003 5 11.360 4 0.238 7 0.481 0 0.006 9 2 570 18 2 553 20 2 532 30 99 273 481 0.57
      12 0.147 2 0.002 5 8.684 2 0.155 6 0.428 1 0.005 8 2 313 14 2 305 16 2 297 26 100 108 108 1.01
      13 0.138 3 0.002 0 4.885 8 0.076 0 0.256 3 0.003 2 2 205 12 1 800 13 1 471 16 82 702 867 0.81
      14 0.066 3 0.001 4 1.163 5 0.021 3 0.127 2 0.001 1 817 24 784 10 772 6 98 100 121 0.83
      15 0.512 5 0.0439 4.906 0 0.306 7 0.069 4 0.004 2 4 277 42 1 803 53 433 25 24 10 2 4.79
      16 0.066 9 0.001 5 1.206 1 0.024 7 0.130 7 0.001 3 836 27 803 11 792 7 99 621 476 1.30
      17 0.056 9 0.000 9 0.263 4 0.003 3 0.033 6 0.000 2 488 16 237 3 213 1 90 3 626 1 409 2.57
      18 0.066 5 0.001 2 1.165 0 0.018 2 0.127 1 0.001 0 821 19 784 9 771 6 98 1 953 526 3.71
      19 0.057 5 0.001 5 0.577 6 0.013 9 0.072 9 0.000 7 510 35 463 9 453 4 98 215 164 1.31
      20 0.068 7 0.001 5 1.203 8 0.023 5 0.127 0 0.001 1 891 26 802 11 771 6 96 120 134 0.89
      21 0.068 3 0.002 1 1.296 5 0.037 3 0.137 8 0.001 7 876 39 844 17 832 10 99 91 110 0.83
      22 0.108 6 0.001 8 4.726 4 0.066 9 0.315 7 0.002 6 1 776 14 1 772 12 1 769 13 100 38 43 0.89
      23 0.056 8 0.001 4 0.574 1 0.012 9 0.073 3 0.000 7 484 33 461 8 456 4 99 73 109 0.68
      24 0.064 4 0.002 2 1.037 0 0.033 3 0.116 8 0.001 5 753 46 722 17 712 9 99 236 139 1.70
      25 0.059 9 0.001 8 0.620 9 0.016 8 0.075 2 0.000 8 599 39 490 11 468 5 96 1 637 1 368 1.20
      26 0.076 1 0.001 2 1.936 8 0.025 8 0.184 7 0.001 4 1 097 15 1 094 9 1 092 7 100 139 326 0.43
      27 0.049 7 0.000 9 0.118 4 0.001 8 0.017 3 0.000 1 181 22 114 2 110 1 97 1 097 2 389 0.46
      下载: 导出CSV

      表  3  广西都安和马山煌斑岩中锆石Hf同位素组成

      Table  3.   Hf isotopic compositions for zircons of the lamprophyres from Du'an and Mashan in Guangxi

      测点号 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf (176Hf/177Hf)i 年龄(Ma) εHf(t) TDM1(Ga) TDM2(Ga)
      15DA-02(煌斑岩)
      1 0.282 925 0.000 019 0.001 495 0.000 022 0.034 269 0.000 405 0.282 916 333 12.05 0.67 0.47 0.55
      2 0.281 443 0.000 019 0.000 236 0.000 005 0.006 299 0.000 114 0.281 435 1 862 -5.74 0.65 2.48 2.90
      3 0.282 301 0.000 019 0.001 058 0.000 057 0.029 028 0.001 510 0.282 281 994 4.44 0.66 1.34 1.57
      4 0.282 454 0.000 019 0.000 860 0.000 005 0.019 869 0.000 232 0.282 445 542 0.08 0.65 1.12 1.48
      5 0.282 469 0.000 020 0.000 931 0.000 011 0.023 257 0.000 340 0.282 461 444 -1.58 0.72 1.11 1.51
      6 0.282 923 0.000 020 0.001 355 0.000 006 0.034 280 0.000 211 0.282 915 314 11.59 0.70 0.47 0.57
      8 0.281 601 0.000 021 0.000 596 0.000 018 0.018 326 0.000 673 0.281 581 1 729 -3.59 0.74 2.29 2.66
      9 0.281 908 0.000 016 0.000 704 0.000 003 0.018 685 0.000 037 0.281 895 992 -9.29 0.57 1.87 2.43
      10 0.282 629 0.000 018 0.000 681 0.000 001 0.016 719 0.000 053 0.282 624 419 3.64 0.63 0.87 1.16
      11 0.281 861 0.000 018 0.000 343 0.000 020 0.009 795 0.000 534 0.281 854 998 -10.60 0.63 1.92 2.52
      12 0.282 527 0.000 020 0.000 428 0.000 007 0.010 771 0.000 205 0.282 523 464 1.07 0.70 1.01 1.36
      14 0.282 344 0.000 019 0.001 796 0.000 030 0.046 725 0.000 755 0.282 336 237 -10.63 0.67 1.31 1.92
      22 0.281 921 0.000 017 0.001 257 0.000 020 0.0385 47 0.000 703 0.281 898 953 -10.05 0.61 1.88 2.45
      23 0.282 145 0.000 024 0.001 293 0.000 024 0.038 778 0.000 603 0.282 122 948 -2.24 0.83 1.57 1.95
      26 0.282 028 0.000 019 0.000 804 0.000 008 0.023 740 0.000 122 0.282 013 954 -5.95 0.67 1.71 2.19
      GX1506(煌斑岩)
      1 0.281 500 0.000 018 0.000 623 0.000 004 0.017 245 0.000 138 0.281 477 1 973 -1.68 0.63 2.43 2.73
      2 0.281 769 0.000 017 0.000 733 0.000 004 0.017 861 0.000 132 0.281 749 1 417 -4.78 0.58 2.07 2.49
      3 0.282 297 0.000 020 0.001 061 0.000 057 0.029 094 0.001 507 0.282 263 1 708 20.11 0.68 1.35 1.12
      4 0.282 123 0.000 023 0.001 694 0.000 014 0.040 214 0.000 319 0.282 113 323 -16.58 0.79 1.62 2.36
      5 0.282 118 0.000 020 0.001 636 0.000 017 0.038 915 0.000 506 0.282 109 319 -16.83 0.70 1.62 2.37
      6 0.282 741 0.000 019 0.002 751 0.000 033 0.087 060 0.000 987 0.282 725 318 4.94 0.68 0.76 1.00
      7 0.282 282 0.000 018 0.001 318 0.000 009 0.035 887 0.000 325 0.282 264 735 -2.02 0.63 1.38 1.77
      8 0.282 135 0.000 019 0.000 960 0.000 005 0.025 916 0.000 168 0.282 118 910 -3.23 0.65 1.57 1.99
      9 0.282 098 0.000 016 0.000 672 0.000 001 0.017 947 0.000 057 0.282 086 919 -4.16 0.56 1.61 2.05
      10 0.281 184 0.000 017 0.000 449 0.000 013 0.012 037 0.000 413 0.281 162 2 570 1.00 0.60 2.84 3.03
      12 0.281 339 0.000 019 0.000 726 0.000 003 0.018 686 0.000 162 0.281 307 2 313 0.17 0.65 2.65 2.88
      14 0.282 371 0.000 019 0.000 727 0.000 011 0.018 985 0.000 196 0.282 361 772 2.24 0.66 1.24 1.53
      16 0.282 484 0.000 022 0.001 625 0.000 005 0.040 610 0.000 132 0.282 460 792 6.20 0.78 1.10 1.29
      17 0.282 675 0.000 024 0.002 647 0.000 122 0.067 438 0.003 293 0.282 664 213 0.47 0.84 0.85 1.20
      20 0.282 405 0.000 021 0.001 471 0.000 009 0.035 360 0.000 190 0.282 384 771 3.05 0.73 1.21 1.48
      21 0.282 072 0.000 018 0.000 830 0.000 002 0.020 753 0.000 073 0.282 059 832 -7.07 0.64 1.65 2.17
      25 0.282 510 0.000 023 0.001 264 0.000 045 0.029 966 0.001 144 0.282 499 468 0.30 0.82 1.06 1.41
      下载: 导出CSV

      表  4  桂中马山煌斑岩金云母40Ar/39Ar测年结果

      Table  4.   Phlogopite 40Ar/39Ar dating results of the lamprophyres veins in Mashan, central Guangxi

      分段加热 36Ar(a) FA 37Ar(a) FA 38Ar(ca) FA 39Ar(k) FA 40Ar(r) FA 年龄±2σ(Ma) 40Ar(r) % 39Ar(k) %
      GX1506煌斑岩,J= 0.009 505 09±0.000 0475 3,Tp坪年龄=100.4±0.99 Ma
      002 3.6 % 0.707 217 5.185 83 0.355 858 165.982 1 179.932 118.24±0.67 84.93 1.44
      003 4.0 % 0.699 562 6.875 89 0.505 287 306.167 2 155.999 117.16±0.55 91.22 2.66
      004 4.5 % 0.840 834 6.040 99 1.602 537 992.781 8 364.545 139.31±0.55 97.09 8.64
      005 5.0 % 0.572 124 3.555 41 0.648 611 411.263 2 777.402 112.50±0.49 94.23 3.58
      006 5.6 % 0.735 265 5.130 10 0.987 578 654.704 4 293.628 109.35±0.45 95.15 5.69
      001 6.4 % 0.974 426 7.612 97 1.383 390 931.945 5 962.277 106.75±0.43 95.36 8.11
      002 7.2 % 0.644 404 0.555 43 1.143 274 763.200 4 799.365 104.98±0.42 96.15 6.64
      003 8.0 % 1.348 542 18.668 55 2.498 288 1 674.823 10 292.218 102.66±0.41 96.24 14.57
      004 9.0 % 1.062 488 14.625 13 2.067 031 1 337.220 8 012.337 100.16±0.40 96.19 11.63
      005 10.0 % 0.656 970 9.917 16 1.194 158 757.249 4 555.494 100.55±0.41 95.88 6.59
      006 11.0 % 0.747 882 11.718 10 1.320 806 839.227 5 045.532 100.49±0.43 95.77 7.30
      001 12.0 % 0.544 354 6.791 59 0.970 608 564.059 3 380.094 100.17±0.41 95.42 4.91
      002 14.0 % 0.956 625 13.196 49 1.375 792 850.141 5 115.196 100.57±0.42 94.73 7.39
      003 17.0 % 1.144 011 9.701 81 1.349 841 792.061 4 754.919 100.35±0.45 93.33 6.89
      004 20.0 % 0.482 542 1.496 40 0.488 011 274.894 1 659.188 100.88±0.46 92.05 2.39
      005 25.0 % 0.526 213 0.000 00 0.305 764 145.589 915.811 105.01±0.75 85.46 1.27
      006 30.0 % 0.557 759 0.000 00 0.152 314 35.185 230.879 109.41±1.84 58.34 0.31
      下载: 导出CSV

      表  5  桂中都安-马山周缘燕山晚期岩浆活动

      Table  5.   The Late Yanshanian magmatism around Du'an-Mashan, Central Guangxi

      产地 岩石 年龄(Ma) 测试方法 资料来源
      广西都安丹桃 云煌岩 104 黑云母K-Ar 陆刚等(2013)
      广西都安东庙 煌斑岩 93.6±0.6 金云母Ar-Ar 王新宇等(2019)
      广西凌云-凤山县明山金矿附近 石英斑岩脉 89 白云母K-Ar 广西壮族自治区地质矿产局(1985)
      石英斑岩脉 80.9~84.9 全岩K-Ar 广西壮族自治区地质矿产局(1992)
      广西凤山县弄黄 石英斑岩脉 96.5±0.7 白云母斑晶Ar-Ar 陈懋弘等(2012)
      广西巴马县县城 石英斑岩脉 95.6±0.7
      广西都安县保安 煌斑岩墙 99.02±0.78 金云母Ar-Ar
      广西大厂龙箱盖 黑云母花岗岩 93±1 SHRIMP锆石U-Pb 蔡明海等(2006)
      斑状黑云母花岗岩 91±1
      花岗斑岩墙 91±1
      闪长玢岩墙 91±1
      广西大明山 中酸性岩墙群 89~90 白云母K-Ar 广西壮族自治区地质矿产局(1985)
      广西大瑶山 花岗斑岩 91.3±0.6 LA-ICP-MS锆石U-Pb 毕诗健等(2015)
      广西大瑶山龙头山 流纹斑岩 103.3±2.4 LA-ICP-MS锆石U-Pb 陈富文等(2008)
      花岗斑岩 103.3±1.5
      广西大瑶山平天山 中酸性侵入岩 96.1±3.0 LA-ICP-MS锆石U-Pb 段瑞春等(2011)
      96.2±0.4
      广西大瑶山大黎 石英二长岩 102.8±0.9 LA-ICP-MS锆石U-Pb 胡升奇等(2012)
      101.7±1.2
      广西昆仑关 斑状黑云母花岗岩 93±1 LA-ICP-MS锆石U-Pb 谭俊等(2008)
      广西昆仑关 A型花岗岩 97.7±1.3 LA-ICP-MS锆石U-Pb 刘飞等(2018)
      广西罗城 煌斑岩 100±14 LA-ICP-MS锆石U-Pb 王磊等(2015)
      广西大明山 那宁石英斑岩 93.11±0.64 LA-ICP-MS锆石U-Pb 肖昌浩等(2018)
      罗维二长花岗岩 92.92±0.69
      罗维黑云母花岗岩 92.5±1.1
      广西马山 龙昌钾质煌斑岩 89±0.76 云母K-Ar Li et al., (2014)
      广西马山 百龙滩煌斑岩 100.4±0.99 金云母Ar-Ar 本文
      广西大瑶山 二长花岗岩 99±2 LA-ICP-MS锆石U-Pb 王强等(2005)
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
      [2] Bai, X.J., Qiu, H.N., Liu, W.G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9
      [3] Bernard-Griffiths, J., Fourcade, S., Dupuy, C., 1991. Isotopic Study (Sr, Nd, O and C) of Lamprophyres and Associated Dykes from Tamazert (Morroco): Crustal Contamination Processes and Source Characteristics. Earth and Planetary Science Letters, 103(1-4): 190-199. https://doi.org/10.1016/0012-821x(91)90160-J doi: 10.1016/0012-821X(91)90160-J
      [4] Bi, S.J., Yang, Z., Li, W., et al., 2015. Discovery of Late Cretaceous Baoshan Porphyry Copper Deposit in Dayaoshan, Qinhang Metallogenic Belt: Constraints from Zircon U-Pb Age and Hf Isotope. Earth Science, 40(9): 1458-1479(in Chinese with English abstract).
      [5] Bienvenu, P., Bougault, H., Joron, J.L., et al., 1990. MORB Alteration: Rare-Earth Element/Non-Rare-Earth Hygromagmaphile Element Fractionation. Chemical Geology, 82(1-2): 1-14. https://doi.org/10.1016/0009-2541(90)90070-n http://www.sciencedirect.com/science/article/pii/000925419090070N
      [6] Blichert-Toft, J., Albarède, H., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and planetary Science Litters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x doi: 10.1016/S0012-821X(97)00040-X
      [7] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      [8] Cai, M.H., Liang, T., Wei, K.L., et al., 2006. Rb-Sr Dating of the No. 92 Orebody of the Tongkeng-Changpo Deposit in the Dachang Tin-Polymetallic Ore Field, Guangxi, and Its Significance. Geology and Mineral Resources of South China, (2): 31-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200602005.htm
      [9] Cai, Y., Lu, J.J., Ma, D.S., et al., 2015. The Late Triassic Dengfuxian A-Type Granite, Hunan Province: Age, Petrogenesis, and Implications for Understanding the Late Indosinian Tectonic Transition in South China. International Geology Review, 57(4): 428-445. https://doi.org/10.1080/00206814.2015.1012565
      [10] Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermo Tectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)029<0211:umaisa>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
      [11] Chen, F.W., Li, H.Q., Mei, Y.P., 2008. Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield, Gui County, Guangxi. Acta Geologica Sinica, 82(7): 921-926(in Chinese with English abstract). http://www.researchgate.net/publication/285631496_Zircon_SHRIMP_U-Pb_chronology_of_diagenetic_mineralization_of_the_Longtoushan_porphyry_gold_orefield_Gui_County_Guangxi
      [12] Chen, M.H., Lu, G., Li, X.H., 2012. Muscovite 40Ar/39Ar Dating of the Quartz Porphyry Veins from Northwest Guangxi, China, and Its Geological Significance. Geological Journal of China Universities, 18(1): 106-116(in Chinese with English abstract).
      [13] Chen, W.F., Chen, P.R., Xu, X.S., et al., 2005. Geochemical Characteristics of Cretaceous Basaltic Rocks in South China and Their Restriction on Pacific Plate Subduction. Science in China: Earth Science, 35(11): 1007-1018(in Chinese).
      [14] Condie, K.C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28. https://doi.org/10.1029/2002gc000333.
      [15] Dai, L.Q., Zhao, Z.F., 2019. Mafic Igneous Rocks in Continental Collision Orogen Record Recycling of Subducted Paleo-Oceanic Crust. Earth Science, 44(12): 4128-4134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912022.htm
      [16] Dong, S.W., Zhang, Y.Q., Chen, X.H., et al., 2008. The Formation and Deformational Characteristics of East Asia Multi-Direction Convergent Tectonic System in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317(in Chinese with English abstract).
      [17] Duan, R.C., Ling, W.L., Li, Q., et al., 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with Metallogenesis in South China: Geochemical Constraints from the Longtoushan Gold Ore Deposit of the Dayaoshan Area, Guangxi. Acta Geologica Sinica, 85(10): 1644-1658(in Chinese with English abstract).
      [18] Duggen, S., Hoernle, K., Vand, B.P., et al., 2005. Post-Collisional Transition from Subduction to Intraplate-Type Magmatism in the Western Most Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013
      [19] Fan, W.M., Wang, Y.J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303022.htm
      [20] Foley, S.F., Jackson, S.E., Fryer, B.J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAMICP-MS. Geochimica et Cosmochimica Acta, 60(4): 629-638. https://doi.org/10.1016/0016-7037(95)00422-x doi: 10.1016/0016-7037(95)00422-X
      [21] Franzini, M., Leoni, L., Saitta, M., 1972. A Simple Method to Evaluate the Matrix Effects in X-Ray Fluorescence Analysis. X-Ray Spectrometry, 1(4): 151-154. https://doi.org/10.1002/xrs.130001 0406 doi: 10.1002/xrs.1300010406
      [22] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4): 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 doi: 10.1016/S0024-4937(99)00031-6
      [23] Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026140653
      [24] Gao, Q., Yu, J.H., Zhu, G.L., 2019. Geochemistry of Certain Mantle-Derived Dykes: Constraint on the Western Boundary between the Yangtze and Cathaysia Blocks. Geochimica, 48(1): 9-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201901002.htm
      [25] Gao, S., Rudnick, R.L., Carlson, R.W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322. https://doi.org/10.1016/s0012-821x(02)00489-2 doi: 10.1016/S0012-821X(02)00489-2
      [26] Gilder, S.A., Keller, G.R., Luo, M., et al., 1991. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China. Tectonophysics, 197(2-4): 225-243. https://doi.org/10.1016/0040-1951(91)90043-r doi: 10.1016/0040-1951(91)90043-R
      [27] Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, 1985. Regional Geology of Guangxi Zhuang Autonimous Region. Geological Publishing House, Beijing(in Chinese).
      [28] Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, 1992. Redional Geological Survey Report of 1: 50 000 in Jinya-Lingyun Area. Guangxi Zhuang Autonimous Region Bureau of Geology and Mineral Resources, Guangxi, 135-143(in Chinese).
      [29] Guo, F., Fan, W.M., Wang, Y.J., et al., 2003. Geochemistry of Late Mesozoic Mafic Magmatism in West Shandong Province, Eastern China: Characterizing the Lost Lithospheric Mantle beneath the North China Block. Geochemical Journal, 37(1): 63-77. https://doi.org/10.2343/geochemj.37.63
      [30] Gutscher, M.A., Maury, R., Eissen, J.P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535-538. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
      [31] Hardarson, B.S., Fitton, G.J., 1991. Increased Mantle Melting beneath Snaefellsjökull Volcano during Late Pleistocene Deglaciation. Nature, 353: 62-64. https://doi.org/10.1038/353062a0
      [32] Hermann, J., Spandler, C.J., 2008. Sediment Melts at Sub-Arc Depths: An Experimental Study. Journal of Petrology, 49(4): 717-740. https://doi.org/10.1093/petrology/egm073
      [33] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x doi: 10.1016/0012-821X(88)90132-X
      [34] Hu, A.X., Peng, J.T., 2016. Mesozoic Lamprophyre and Its Origin in the Xikuangshan District, Central Hunan. Acta Petrologica Sinica, 32(7): 2041-2056(in Chinese with English abstract).
      [35] Hu, S.Q., Zhou, G.F., Peng, S.B., et al., 2012. Chronology and Geochemical Characteristics of Quartz Monzonite (Porphyry) in the Dali Copper-Molybdenum Deposit and Its Geological Significance. Acta Geoscientica Sinica, 33(1): 23-37(in Chinese with English abstract).
      [36] Hua, R.M., 2005. Differences between Rock-Forming and Related Ore-Forming Times for the Mesozoic Granitoids of Crust Remelting Types in the Nanling Range, South China, and Its Geological Significance. Geological Review, 51(6): 633-639(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200506005.htm
      [37] Humphris, S.E., Thompson, G., 1978. Trace Element Mobility during Hydrothermal Alteration of Oceanic Basalts. Geochimica et Cosmochimica Acta, 42(1): 127-136. https://doi.org/10.1016/0016-7037(78)90222-3
      [38] Imaoka, T., Nakashima, K., Kamei, A., et al., 2014. Episodic Magmatism at 105 Ma in the Kinki District, SW Japan: Petrogenesis of Nb-Rich Lamprophyres and Adakites, and Geodynamic Implications. Lithos, 184-187: 105-131. https://doi.org/10.1016/j.lithos.2013.10.014
      [39] Jia, D.C., Hu, R.Z., Lu, Y., et al., 2004. Characteristics of the Mantle Source Region of Sodium Lamprophyres and Petrogenetic Tectonic Setting in Northeastern Hunan, China. Science China: Earth Sciences, 47(6): 559-569. https://doi.org/10.1360/02yd0174
      [40] Jia, Z.B., 2017. The Mantle Evolution of South China from Mesozoic to Cenozoic: A Causal Link with the Subduction of the Pacific Plate (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract).
      [41] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2010. Petrogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3-4): 127-151. https://doi.org/10.1007/s00710-010-0124-8
      [42] Jiang, Y.H., Zhao, P., Zhou, Q., et al., 2011. Petrogenesis and Tectonic Implications of Early Cretaceous S- and A-Type Granites in the Northwest of the Gan-Hang Rift, SE China. Lithos, 121(1-4): 55-73. https://doi.org/10.1016/j.lithos.2010.10.001
      [43] La Tourrette, T., Hervig, R.L., Holloway, J.R., 1995. Trace Element Partitioning between Amphibole, Phlogopite, and Basanite Melt. Earth and Planetary Science Letters, 135(1-4): 13-30. https://doi.org/10.1016/0012-821x(95)00146-4 doi: 10.1016/0012-821X(95)00146-4
      [44] Le Maitre. R.W., Bateman, P., Dudek, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.
      [45] Lei, Z.L., Zeng, G., Wang, X.J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China. Earth Science, 44(4): 1159-1170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm
      [46] Li, J.H., 2013. The Mesozoic Tectonic Evolution of South China (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      [47] Li, J.H., Zhang, Y.Q., Dong, S.W., et al., 2013. The Hengshan Low-Angle Normal Fault Zone: Structural and Geochronological Constraints on the Late Mesozoic Crustal Extension in South China. Tectonophysics, 606: 97-115. https://doi.org/10.1016/j.tecto.2013.05.013
      [48] Li, S.B., Wang, Y.J., 2016. The Fission Track Record of Meso-Cenozoic Tectonic Thermal Evolution Pattern in Eastern China. Collections of the China Earth Science Joint Scientific Annual Conference, Beijing(in Chinese).
      [49] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm
      [50] Li, X.H., Zhou, H.W., Liu, Y., et al., 1999. Petrologic and Geochemical Characteristics of Potassic Intrusive Rock Zone in Southeast Guangxi. Chinese Science Bulletin. 44(18): 1992-1998(in Chinese). doi: 10.1360/csb1999-44-18-1992
      [51] Li, X.Y., Zheng, J.P., Ma, Q., et al., 2014. From Enriched to Depleted Mantle: Evidence from Cretaceous Lamprophyres and Paleogene Basaltic Rocks in Eastern and Central Guangxi Province, Western Cathaysia Block of South China. Lithos, 184-187: 300-313. https://doi.org/10.1016/j.lithos.2013.10.039
      [52] Li, Z.C., Lu, Y.F., Huang, G.C., 2004. Methods and Advances Radioisotope Geology. China University of Geosciences Press, Wuhan(in Chinese).
      [53] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 doi: 10.1130/G23193A.1
      [54] Liu, B., Wu, J.H., Li, H., et al., 2020. Geochronology, Geochemistry and Petrogenesis of the Dengfuxian Lamprophyres: Implications for the Early Cretaceous Tectonic Evolution of the South China Block. Geochemistry, 80(2): 209-225. https://doi.org/10.1016/j.chemer.2020.125598 http://www.sciencedirect.com/science/article/pii/S0009281920300015
      [55] Liu, F., Li, K., Huang, G.C., et al., 2018. Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract).
      [56] Liu, J., Zhou, Y., Xie, D.G., et al., 2016. Geochronology, Geochemistry and Geological Implications of the Lamprophyre in Jianshui, East Yunnan Province. Geology in China, 43(6): 1977-1991(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201606010.htm
      [57] Liu, R., Li, J.W., Bi, S.J., et al., 2013. Magma Mixing Revealed from In Situ Zircon U-Pb-Hf Isotope Analysis of the Muhuguan Granitoid Pluton, Eastern Qinling Orogen, China: Implications for Late Mesozoic Tectonic Evolution. International Journal of Earth Sciences, 102(6): 1583-1602. https://doi.org/10.1007/s00531-013-0900-x
      [58] Liu, S., 2004. The Mesozoic Magmatism and Crustal Extension in Shandong Province, China: Additionally Discussing the Relationship between Lamprophyres and Gold Mineralization (Dissertation). Graduate School, Chinese Academy of Sciences, Beijing(in Chinese with English abstract).
      [59] Liu, S., Hu, R.Z., Gao, S., et al., 2009. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust. Lithos, 113(3-4): 621-639. https://doi.org/10.1016/j.lithos.2009.06.035
      [60] Lu, F.X., Shu, X.X., Zhao, C.H., 1991. A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(Suppl. 1): 55-62(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10016752820
      [61] Lu, G., Huang, X.L., Li, W.Q., et al., 2013.1: 250 000 Nandan Regional Geological Survey Report. Guangxi Zhuang Autonimous Region Geological Survey Institute, Nanning(in Chinese).
      [62] Mao, J.R., Gao, Q.H., Li, Z.L., et al., 2009. Correlation of Meso-Cenozoic Tectono-Magmatism between SE China and Japan. Geological Bulletin of China, 28(7): 844-856(in Chinese with English abstract). http://www.researchgate.net/publication/279603536_Correlation_of_Meso-Cenozoic_tectono-magmatism_between_SE_China_and_Japan
      [63] Mao, J.R., Li, Z.L., Ye, H.M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science in China: Earth Sciences, 57(12): 2853-2877. https://doi.org/10.1007/s11430-014-5006-1
      [64] Mao, J.R., Ye, H.M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004
      [65] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
      [66] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      [67] Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICP-MS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/s0009-2541(97)00105-8 doi: 10.1016/S0009-2541(97)00105-8
      [68] Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [69] Pearce, J.A., Stern, R.J., Bloomer, S.H., et al., 2005. Geochemical Mapping of the Mariana Arc-Basin System: Implications for the Nature and Distribution of Subduction Components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006. https://doi.org/10.1029/2004gc000895 doi: 10.1029/2004GC000895/full
      [70] Plank, T., Langmuir, C.H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 doi: 10.1016/S0009-2541(97)00150-2
      [71] Prelević, D., Foley, S.F., Cvetković, V., et al., 2004. Origin of Minette by Mixing of Lamproite and Dacite Magmas in Veliki Majdan, Serbia. Journal of Petrology, 45(4): 759-792. https://doi.org/10.1093/petrology/egg109
      [72] Qin, S.C., 2007. Geochronology and Geochemistry of Cretaceous Mafic Volcanic Rocks from Zhejiang and Fujian Provinces, SE China: Petrogenesis and Geodynamic Implications for Lithospheric Extension (Dissertation). Graduate School, Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract).
      [73] Qin, S.C., Fan, W.M., Guo, F., 2019. Petrogenesis and Geodynamic Implications of Late Mesozoic Mafic Volcanic Rocks along the Jiangshan-Shaoxing Fault in SE China. Acta Petrologica Sinica, 35(6): 1892-1906(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.16
      [74] Qin, S.X., Li, Y.X., Li, X.H., et al., 2019. Paleomagnetic Results of Cretaceous Cherts from Zhongba, Southern Tibet: New Constraints on the India-Asia Collision. Journal of Asian Earth Sciences, 173: 42-53. https://doi.org/10.1016/j.jseaes.2019.01.012
      [75] Rock, N.M.S., 1987. The Nature and Origin of the Lamprophyres: An Overview. Geological Society, London, Special Publications, 30: 191-226. doi: 10.1144/GSL.SP.1987.030.01.09
      [76] Rock, N.M.S., 1991. Lamprophyres. Thomson LithoLtd., East Kilbride. https://doi.org/10.1016/0098-3004(91)90069-p
      [77] Sayab, M., Shah, S.Z., Aerden, D., 2016. Metamorphic Record of the NW Himalayan Orogeny between the Indian Plate-Kohistan Ladakh Arc and Asia: Revelations from Foliation Intersection Axis (FIA) Controlled P-T-t-d Paths. Tectonophysics, 671: 110-126. https://doi.org/10.1016/j.tecto.2015.12.032
      [78] Schiano, P., Clocchiatti, R., Joron, J.L., 1992. Melt and Fluid Inclusions in Basalts and Xenoliths from Tahaa Island, Society Archipelago: Evidence for a Metasomatized Upper Mantle. Earth and Planetary Science Letters, 111(1): 69-82. https://doi.org/10.1016/0012-821x(92)90170-z doi: 10.1016/0012-821X(92)90170-Z
      [79] Shi, Y., Pei, X.L., Castillo, P.R., et al., 2017. Petrogenesis of the ~500 Ma Fushui Mafic Intrusion and Early Paleozoic Tectonic Evolution of the Northern Qinling Belt, Central China. Journal of Asian Earth Sciences, 141: 74-96. https://doi.org/10.1016/j.jseaes.2016.09.003
      [80] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.researchgate.net/publication/279561053_An_analysis_of_principal_features_of_tectonic_evolution_in_South_China_Block
      [81] Shu, L.S., Zhou, X.M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200203004.htm
      [82] Stolper, E., Newman, S., 1994. The Role of Water in the Petrogenesis of Mariana Trough Magmas. Earth and Planetary Science Letters, 121(3-4): 293-325. https://doi.org/10.1016/0012-821x(94)90074-4 doi: 10.1016/0012-821X(94)90074-4
      [83] Sun, M.D., Xu, Y.G., Wilde, S.A., et al., 2015. The Permian Dongfanghong Island-Arc Gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific Subduction. Tectonophysics, 659: 122-136. https://doi.org/10.1016/j.tecto.2015.07.034
      [84] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [85] Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi. Earth Science, 33(6): 743-754(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqkx200806002
      [86] Wang, L., Jin, X.B., Wang, X.Y., et al., 2015. Forming Process of Lamprophyre from Leidong in Luocheng, Northern Guangxi: Constrains from Geochemistry, Geochronology and Sr-Nd-Pb Isotopes. Geological Science and Technology Information, 34(1): 10-19(in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/456613
      [87] Wang, Q., Zhao, Z.H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21(3): 795-808(in Chinese with English abstract). http://www.oalib.com/paper/1472202
      [88] Wang, X.Y., Wu, X.K., He, C., et al., 2019. Phlogopite 40Ar/39Ar Dating of the Lamproite Veins in Du'an County, Central Guangxi and Its Tectonic Significance. Geological Bulletin of China, 38(4): 680-688(in Chinese with English abstract).
      [89] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421(in Chinese with English abstract).
      [90] Wu, G.Y., Wu, H.R., Zhong, D.L., et al., 2000. Volcanic Rocks of Paleotethyan Oceanic Island and Island-Arc Bordering Yunnan and Guangxi, China. Geoscience, 14(4): 393-400(in Chinese with English abstract). http://www.researchgate.net/publication/284486374_Volcanic_rocks_of_Paleotethyan_oceanic_island_and_island-arc_bordering_Yunnan_and_Guangxi_China/download
      [91] Wu, F.Y., Ge, W.C., Sun, D.Y., et al., 2003. Discussions on the Lithospheric Thinning in Eastern China. Earth Science Frontiers, 10(3): 51-60(in Chinese with English abstract).
      [92] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
      [93] Wu, G.G., Zhang, D., Chen, B.L., et al., 2000. Transformation of Mesozoic Tectonic Domain and Its Relation to Mineralization in Southeastern China: An Evidence of Southwestern Fujian Province. Earth Science, 25(4): 390-396(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200004011
      [94] Wu, Y.M., Guo, F., Wang, X.C., et al., 2020. Derivation of Jurassic HIMU-Like Intraplate Basalts from Mantle Transition Zone in South China: New Geochemical Constraints from Olivine-Hosted Melt Inclusion. Lithos, 354-355: 105337. https://doi.org/10.1016/j.lithos.2019.105337
      [95] Xiao, C.H., Shen, Y.K., Wei, C.S., et al., 2018. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of the Yanshanian Acid Magma in the Xidamingshan Cluster, Southeastern Margin of the Youjiang Fold Belt, Guangxi. Geoscience, 32(2): 289-304(in Chinese with English abstract).
      [96] Xiao, Q.R., 2018. Diagenetic Tectonic Setting and Mineralization Response of Magmatic Rocks in Yanshanian in Western Zhejiang Province. Collections of the China Earth Science Joint Scientific Annual Conference, Beijing(in Chinese).
      [97] Xie, G.Q., Hu, R.Z., Zhao, J.H., et al., 2001. Mantle Plume and the Relationship between It and Mesozoic Large-Scale Metallogenesis in Southeastern China: A Preliminary Discussion. Geotectonica et Metallogenia, 25(2): 179-186(in Chinese with English abstract). http://www.researchgate.net/publication/284981848_Mantle_plume_and_the_relationship_between_it_and_Mesozoic_large-scale_metallogenesis_in_southeastern_China_A_preliminary_discussion
      [98] Xu, J.W., Zhu, G., Tong, W.X., et al., 1987. Formation and Evolution of the Tancheng-Lujiang Wrench Fault System: A Major Shear System to the Northwest of the Pacific Ocean. Tectonophysics, 134(4): 273-310. https://doi.org/10.1016/0040-1951(87)90342-8
      [99] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027
      [100] Zhang, B., Guo, F., Zhang, X.B., 2020. Petrogenesis of Granitic Rocks in the Pingtan Island, Fujian Province: Constraints from Zircon U-Pb Dating, O-Hf Isotopes and Biotite Mineral Chemistry. Acta Petrologica Sinica, 36(4): 995-1014(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.02
      [101] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Structure and Problems of South China Continent. Science in China: Earth Science, 43(10): 1553-1582(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912012003525
      [102] Zhang, Q., Qian, Q., Wang, Y., et al., 1999. Late Paleozoic Basic Magmatism from SW Yangtze Massif and Evolution of the Paleo- Tethyan Ocean. Acta Petrologica Sinica, 15(4): 576-583(in Chinese with English abstract). http://www.oalib.com/paper/1471860
      [103] Zhang, Y.Q., Dong, S.W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5): 613-641(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905004.htm
      [104] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247(in Chinese with English abstract). http://www.researchgate.net/publication/284573329_Deformation_record_of_the_change_from_Indosinian_collision-related_tectonic_system_to_Yanshanian_subduction-related_tectonic_system_in_South_China_during_the_Early_Mesozoic
      [105] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      [106] Zhou, Y.Z., Li, X.Y., Zheng, Y., et al., 2017. Geological Settings and Metallogenesis of Qinzhou Bay-Hangzhou Bay Orogenic Juncture Belt, South China. Acta Petrologica Sinica, 33(3): 667-681(in Chinese with English abstract). http://www.researchgate.net/publication/316279671_Geological_settings_and_metallogenesis_of_Qinzhou_Bay-Hangzhou_Bay_orogenic_juncture_belt_South_China
      [107] 毕诗健, 杨振, 李巍, 等, 2015. 钦杭成矿带大瑶山地区晚白垩世斑岩型铜矿床: 锆石U-Pb定年及Hf同位素制约. 地球科学, 40(9): 1458-1479. doi: 10.3799/dqkx.2015.132
      [108] 蔡明海, 梁婷, 韦可利, 等, 2006. 大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义. 华南地质与矿产, (2): 31-36. doi: 10.3969/j.issn.1007-3701.2006.02.006
      [109] 陈富文, 李华芹, 梅玉萍, 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究. 地质学报, 82(7): 921-926. doi: 10.3321/j.issn:0001-5717.2008.07.009
      [110] 陈懋弘, 陆刚, 李新华, 2012. 桂西北地区石英斑岩脉白云母40Ar/39Ar年龄及其地质意义. 高校地质学报, 18(1): 106-116. doi: 10.3969/j.issn.1006-7493.2012.01.009
      [111] 陈卫锋, 陈培荣, 徐夕生, 等, 2005. 华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约. 中国科学: 地球科学, 35(11): 1007-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200511000.htm
      [112] 戴立群, 赵子福, 2019. 大陆碰撞造山带镁铁质岩浆岩记录俯冲古洋壳物质再循环. 地球科学, 44(12): 4128-4134. doi: 10.3799/dqkx.2019.240
      [113] 董树文, 张岳桥, 陈宣华, 等, 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317. doi: 10.3321/j.issn:1006-3021.2008.03.005
      [114] 段瑞春, 凌文黎, 李青, 等, 2011. 华南燕山晚期构造-岩浆事件与成矿作用: 来自广西大瑶山龙头山金矿床的地球化学约束. 地质学报, 85(10): 1644-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110009.htm
      [115] 范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. doi: 10.3321/j.issn:1005-2321.2003.03.015
      [116] 高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
      [117] 高秦, 于津海, 朱光磊, 2019. 地幔组成差异对扬子地块和华夏地块西延边界的限定: 来自幔源岩脉的地球化学证据. 地球化学, 48(1): 9-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901002.htm
      [118] 广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社.
      [119] 广西壮族自治区地质矿产局, 1992. 广西金牙-凌云地区1: 5万区域地质调查报告. 广西: 广西壮族自治区地质矿产局, 135-143.
      [120] 胡阿香, 彭建堂, 2016. 湘中锡矿山中生代煌斑岩及其成因研究. 岩石学报, 32(7): 2041-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607008.htm
      [121] 胡升奇, 周国发, 彭松柏, 等, 2012. 广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义. 地球学报, 33(1): 23-37. doi: 10.3975/cagsb.2012.01.04
      [122] 华仁民, 2005. 南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义. 地质论评, 51(6): 633-639. doi: 10.3321/j.issn:0371-5736.2005.06.004
      [123] 贾祖冰, 2017. 华南中新生代地幔性质的演化及其与太平洋板块俯冲之间的关系(博士学位论文). 合肥: 中国科学技术大学.
      [124] 雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021
      [125] 李建华, 2013. 华南中生代大地构造过程-源于北部大巴山和中部沅麻盆地、衡山的构造变形及年代学约束(博士学位论文). 北京: 中国地质科学院.
      [126] 李庶波, 王岳军, 2016. 华南东部中-新生代构造热演化格局的裂变径迹记录. 北京: 中国地球科学联合学术年会论文集.
      [127] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
      [128] 李献华, 周汉文, 刘颖, 等, 1999. 桂东南钾玄质侵入岩带及其岩石学和地球化学特征. 科学通报, 44(18): 1992-1998. doi: 10.3321/j.issn:0023-074X.1999.18.017
      [129] 李志昌, 路远发, 黄圭成, 2004. 放射性同位素地质学方法与进展. 武汉: 中国地质大学出版社.
      [130] 刘飞, 李堃, 黄圭成, 等, 2018. 桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征. 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180
      [131] 刘娇, 周洋, 谢德根, 等, 2016. 云南建水煌斑岩年代学和地球化学及其构造意义. 中国地质, 43(6): 1977-1991. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201606010.htm
      [132] 刘燊, 2004. 山东地区中生代岩浆作用与地壳拉张-兼论煌斑岩与金成矿的关系(博士学位论文). 北京: 中国科学院研究生院.
      [133] 路凤香, 舒小辛, 赵崇贺, 1991. 有关煌斑岩分类的建议. 地质科技情报, 10(增刊1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1991S1006.htm
      [134] 陆刚, 黄祥林, 李文强, 等, 2013.1: 25万南丹幅区域地质调查报告. 南宁: 广西壮族自治区地质调查院.
      [135] 毛建仁, 高桥浩, 厉子龙, 等, 2009. 中国东南部与日本中-新生代构造-岩浆作用对比研究. 地质通报, 28(7): 844-856. doi: 10.3969/j.issn.1671-2552.2009.07.004
      [136] 毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
      [137] 秦社彩, 2007. 浙闽白垩纪镁铁质火山岩地球化学特征及其深部动力学意义(博士学位论文). 广州: 中国科学院研究生院.
      [138] 秦社彩, 范蔚茗, 郭锋, 2019. 江绍断裂带晚中生代镁铁质火山岩成因及其深部过程意义. 岩石学报, 35(6): 1892-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906016.htm
      [139] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [140] 舒良树, 周新民, 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004
      [141] 谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学, 33(6): 743-754. doi: 10.3321/j.issn:1000-2383.2008.06.002
      [142] 汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      [143] 王磊, 金鑫镖, 王新宇, 等, 2015. 桂北罗城垒洞煌斑岩形成过程: 地球化学、年代学和Sr-Nd-Pb同位素约束. 地质科技情报, 34(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501003.htm
      [144] 王强, 赵振华, 简平, 等, 2005. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约. 岩石学报, 21(3): 795-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503020.htm
      [145] 王新宇, 吴祥珂, 何川, 等, 2019. 桂中都安钾镁煌斑岩金云母40Ar/39Ar年龄及其构造意义. 地质通报, 38(4): 680-688. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201904018.htm
      [146] 吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004
      [147] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [148] 吴淦国, 张达, 陈柏林, 等, 2000. 中国东南大陆中生代构造域的转换及其与成矿的关系: 以闽西南地区为例. 地球科学, 25(4): 390-396. doi: 10.3321/j.issn:1000-2383.2000.04.011
      [149] 吴根耀, 吴浩若, 钟大赉, 等, 2000. 滇桂交界处古特提斯的洋岛和岛弧火山岩. 现代地质, 14(4): 393-400. doi: 10.3969/j.issn.1000-8527.2000.04.002
      [150] 肖昌浩, 申玉科, 韦昌山, 等, 2018. 广西右江褶皱带东南缘西大明山矿集区燕山期酸性岩浆锆石U-Pb年龄、Hf同位素和Ce(Ⅳ)/Ce(Ⅲ)特征. 现代地质, 32(2): 289-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201802008.htm
      [151] 肖倩茹, 2018. 浙西燕山期岩浆岩成岩构造背景及成矿响应. 北京: 中国地球科学联合学术年会论文集.
      [152] 谢桂青, 胡瑞忠, 赵军红, 等, 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探. 大地构造与成矿学, 25(2): 179-186. doi: 10.3969/j.issn.1001-1552.2001.02.010
      [153] 张博, 郭锋, 张晓兵, 2020. 福建平潭岛花岗质岩石成因: 来自锆石U-Pb定年、O-Hf同位素及黑云母矿物化学的约束. 岩石学报, 36(4): 995-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004002.htm
      [154] 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      [155] 张旗, 钱青, 王焰, 等, 1999. 扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化. 岩石学报, 15(4): 576-583. doi: 10.3321/j.issn:1000-0569.1999.04.010
      [156] 张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展. 地质力学学报, 25(5): 613-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905004.htm
      [157] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      [158] 周永章, 李兴远, 郑义, 等, 2017. 钦杭结合带成矿地质背景及成矿规律. 岩石学报, 33(3): 667-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703001.htm
    • 加载中
    图(19) / 表(5)
    计量
    • 文章访问数:  904
    • HTML全文浏览量:  347
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-20
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回