• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河流-潮汐耦合控制下河口湾坝体沉积动力学数值模拟

    刘雪萍 卢双舫 唐明明 孙东权 唐佳凡 张克鑫 何涛华 齐宁 卢明月

    刘雪萍, 卢双舫, 唐明明, 孙东权, 唐佳凡, 张克鑫, 何涛华, 齐宁, 卢明月, 2021. 河流-潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
    引用本文: 刘雪萍, 卢双舫, 唐明明, 孙东权, 唐佳凡, 张克鑫, 何涛华, 齐宁, 卢明月, 2021. 河流-潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
    Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Dongquan, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue, 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
    Citation: Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Dongquan, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue, 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305

    河流-潮汐耦合控制下河口湾坝体沉积动力学数值模拟

    doi: 10.3799/dqkx.2020.305
    基金项目: 

    国家自然科学基金项目 41972250

    山东省自然科学基金项目 ZR2019MD006

    详细信息
      作者简介:

      刘雪萍(1996-), 女, 硕士研究生, 主要从事沉积数值模拟及相关研究. ORCID: 0000-0001-5845-9867. E-mail: z18010073@s.upc.edu.cn

      通讯作者:

      卢双舫, E-mail: lushuangfang@upc.edu.cn

    • 中图分类号: P624

    Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control

    • 摘要: 潮控河口湾坝体复杂的沉积特征及内部结构尚不清楚.通过建立理想化的潮控河口湾模型,采用沉积动力学数值模拟方法,开展不同流量与潮汐能量条件下潮控河口湾坝体及内部夹层的沉积定量化模拟.结果表明,在理想情况下,大潮汐能量、中等流量条件下潮控河口湾坝体大规模发育.在潮汐能量因素分析中,潮控河口湾坝体长宽比为2~15,夹层长度集中在8 km,夹层厚度为0.1~0.2 m;在流量因素分析中,潮控河口湾坝体长宽比为1.5~9.0,夹层长度为1~2 km,夹层厚度为0.1~0.2 m.表明河流和潮汐共同作用控制着潮控河口湾坝体与夹层的形成与分布,但是潮汐作用更显著.基于沉积动力学对潮控河口湾沉积过程开展了数值模拟研究,得到了井震数据的验证,为潮控河口湾体系的沉积演化提供了新思路,从而指导潮控河口湾含油储层的勘探和开发.

       

    • 图  1  河口湾概念模型

      Fig.  1.  Estuarine concept model

      图  2  五种模型的三维模拟结果(a1~a5)和河口湾五种坝体形状和长度、宽度及厚度的测量(b)

      a1.潮差3.4 m, 流量3 000 m3/s; a2. 潮差6.8 m, 流量3 000 m3/s; a3. 潮差7.2 m, 流量3 000 m3/s; a4. 流量1 500 m3/s, 潮差6.8 m; a5. 流量4 500 m3/s, 潮差6.8 m

      Fig.  2.  Three-dimensional simulation results of five models (a1-a5) and measurement of five bar shapes and length, width and thickness of estuaries (b)

      图  3  泥岩夹层长度及厚度的测量

      Fig.  3.  Measurement of the length and thickness of mudstone interlayer

      图  4  潮控河口湾坝体发育阶段

      Fig.  4.  Development stages of tide-controlled estuary bar

      图  5  潮控河口湾流体样式及成因图

      Fig.  5.  Flow patterns and genesis diagrams of tide-controlled estuary

      图  6  不同潮差下河口湾沉积侵蚀变化

      图a~c中潮差分别为3.4、6.8、7.2 m

      Fig.  6.  Sedimentary erosion changes in estuaries under different tidal ranges

      图  7  潮汐模型坝体内部夹层厚度分布

      Fig.  7.  Distribution of interlayer thickness in tidal model

      图  8  潮汐模型坝体内部夹层延展长度分布

      Fig.  8.  Distribution of interlayer length in tidal model

      图  9  不同流量下河口湾沉积侵蚀变化

      图a~c中流量分别为1 500、3 000、4 500 m3/s

      Fig.  9.  Sedimentary erosion changes in estuaries under different flow rates

      图  10  流量因素坝体内部夹层厚度分布

      Fig.  10.  Distribution of interlayer thickness in discharge mode

      图  11  流量因素坝体内部夹层延展长度分布

      Fig.  11.  Distribution of interlayer length in discharge mode

      图  12  坝体长度与宽度的关系

      Fig.  12.  The relationship between bar length and width

      图  13  D盆地过泥岩墙剖面

      a.连井剖面;b.地震剖面. 据杨金秀等(2017)

      Fig.  13.  Vertical and planar distribution of the mudstone dikes in D Basin

      图  14  泥岩墙生长模式

      Fig.  14.  The growth pattern of the mudstone dikes

      表  1  模型设置

      Table  1.   Model settings

      因素 潮汐模型 流量模型
      潮汐强度(m) 3.4 6.8 7.2 6.8 6.8 6.8
      河流流量(m3/s) 3 000 3 000 3 000 1 500 3 000 4 500
      下载: 导出CSV

      表  2  潮汐因素河口湾坝体形态统计(T=120 step)

      Table  2.   Tidal factors estuary bar shape statistics (T=120 step)

      场景 沉积进积范围(km) 河口湾编织指数 坝体数量(个) 坝体平均长度(km) 坝体平均宽度(km) 坝体平均厚度(m)
      3.4 m 38.2 5.0 18 7.41 1.61 24.5
      6.8 m 48.9 6.9 34 8.10 1.56 22.4
      7.2 m 70.5 8.5 40 11.65 1.43 16.8
      下载: 导出CSV

      表  3  流量因素河口湾坝体形态统计(T=120 step)

      Table  3.   Discharge factor estuary bar shape statistics (T=120 step)

      场景 沉积进积范围(km) 河口湾编织指数 坝体数量(个) 坝体平均长度(km) 坝体平均宽度(km) 坝体平均厚度(m)
      1 500 m3/s 49.1 7.1 38 7.7 1.80 19.9
      3 000 m3/s 48.9 6.9 34 8.1 1.56 22.4
      4 500 m3/s 49.8 5.9 20 12.3 2.56 24.4
      下载: 导出CSV

      表  4  数值模拟坝体规模与实例坝体规模

      Table  4.   Numerical simulation of the scale of a dam and the scale of an example dam

      小潮差3.4 m 大潮差7.2 m 基本模型 小流量1 500 m3/s 大流量4 500 m3/s D盆地A区块
      坝体长度(km) 7.41 11.65 8.10 7.7 12.30 10.0
      坝体宽度(km) 1.61 1.43 1.56 1.8 2.56 1.5
      下载: 导出CSV
    • [1] Akhtar, M. P., Sharma, N., Ojha, C. S. P., et al., 2011. Braiding Process and Bank Erosion in the Brahmaputra River. International Journal of Sediment Research, 26(4): 431-444. https://doi.org/10.1016/s1001-6279(12)60003-1
      [2] Braat, L., van Kessel, T., Leuven, J. R. F. W., et al., 2017. Effects of Mud Supply on Large-Scale Estuary Morphology and Development over Centuries to Millennia. Earth Surface Dynamics, 5(4): 617-652. https://doi.org/10.5194/esurf-5-617-2017
      [3] Carballo, R., Iglesias, G., Castro, A., 2009. Numerical Model Evaluation of Tidal Stream Energy Resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6): 1517-1524. https://doi.org/10.1016/j.renene.2008.10.028
      [4] Dalman, R., Weltje, G. J., Karamitopoulos, P., 2015. High-Resolution Sequence Stratigraphy of Fluvio-Deltaic Systems: Prospects of System-Wide Chronostratigraphic Correlation. Earth and Planetary Science Letters, 412: 10-17. https://doi.org/10.1016/j.epsl.2014.12.030
      [5] Dalrymple, R. W., Choi, K., 2007. Morphologic and Facies Trends through the Fluvial-Marine Transition in Tide-Dominated Depositional Systems: A Schematic Framework for Environmental and Sequence-Stratigraphic Interpretation. Earth-Science Reviews, 81(3-4): 135-174. https://doi.org/10.1016/j.earscirev.2006.10.002
      [6] de Jalón, D.G., Martínez-Fernández, V., Fazelpoor, K., et al., 2020. Vegetation Encroachment Ratios in Regulated and Non-Regulated Mediterranean Rivers (Spain): An Exploratory Overview. Journal of Hydro-Environment Research, 30: 35-44. https://doi.org/10.1016/j.jher.2019.11.006
      [7] de Paula Faria, D.L., dos Reis, A.T., de Souza Jr, O.G., 2017. Three-Dimensional Stratigraphic-Sedimentological Forward Modeling of an Aptian Carbonate Reservoir Deposited during the Sag Stage in the Santos Basin, Brazil. Marine and Petroleum Geology, 88: 676-695. https://doi.org/10.1016/j.marpetgeo.2017.09.013
      [8] dos Santos, V. H. M., da Silva Dias, F. J., Torres, A. R., et al., 2020. Hydrodynamics and Suspended Particulate Matter Retention in Macrotidal Estuaries Located in Amazonia-Semiarid Interface (Northeastern-Brazil). International Journal of Sediment Research, 35(4): 417-429. https://doi.org/10.1016/j.ijsrc.2020.03.004
      [9] Fan, D. D., Tu, J. B., Shang, S., et al., 2014. Characteristics of Tidal-Bore Deposits and Facies Associations in the Qiantang Estuary, China. Marine Geology, 348: 1-14. https://doi.org/10.1016/j.margeo.2013.11.012
      [10] Fu, X., Du, X. F., Guan, D. Y., 2020. Depositional System, Plane Distribution and Exploration Significance of Fan-Delta Mixed Siliciclastic-Carbonate Sediment in a Lacustrine Basin: An Example of Member 1-2 of Shahejie Formation in the Offshore of the Bohai Bay, Eastern China. Earth Science, 45(10): 3706-3720 (in Chinese with English abstract).
      [11] Geleynse, N., Storms, J. E. A., Walstra, D. J. R., et al., 2011. Controls on River Delta Formation; Insights from Numerical Modelling. Earth and Planetary Science Letters, 302(1-2): 217-226. https://doi.org/10.1016/j.epsl.2010.12.013
      [12] Guézennec, L., Lafite, R., Dupont, J. P., et al., 1999. Hydrodynamics of Suspended Particulate Matter in the Tidal Freshwater Zone of a Macrotidal Estuary (the Seine Estuary, France). Estuaries, 22(3): 717-727. https://doi.org/10.2307/1353058
      [13] Jiménez Robles, A. M., Ortega-Sánchez, M., 2018. Implications of River Discharge Angle and Basin Slope on Mouth Bar Morphology and Discharge Dynamics of Stable Jets. Journal of Hydraulic Engineering, 144(9): 04018061. https://doi.org/10.1061/(asce)hy.1943-7900.0001506
      [14] Kilaru, S., Goud, B. K., Rao, V. K., 2013. Crustal Structure of the Western Indian Shield: Model Based on Regional Gravity and Magnetic Data. Geoscience Frontiers, 4(6): 717-728. https://doi.org/10.1016/j.gsf.2013.02.006
      [15] Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., et al., 2004. Development and Validation of a Three-Dimensional Morphological Model. Coastal Engineering, 51(8-9): 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
      [16] Leuven, J. R. F. W., Braat, L., van Dijk, W. M., et al., 2018. Growing Forced Bars Determine Nonideal Estuary Planform. Journal of Geophysical Research: Earth Surface, 123(11): 2971-2992. https://doi.org/10.1029/2018jf004718
      [17] Leuven, J. R. F. W., Kleinhans, M. G., Weisscher, S. A. H., et al., 2016. Tidal Sand Bar Dimensions and Shapes in Estuaries. Earth-Science Reviews, 161: 204-223. https://doi.org/10.1016/j.earscirev.2016.08.004
      [18] Martinius, A. W., Fustic, M., Garner, D. L., et al., 2017. Reservoir Characterization and Multiscale Heterogeneity Modeling of Inclined Heterolithic Strata for Bitumen-Production Forecasting, McMurray Formation, Corner, Alberta, Canada. Marine and Petroleum Geology, 82: 336-361. https://doi.org/10.1016/j.marpetgeo.2017.02.003
      [19] Nardin, W., Fagherazzi, S., 2012. The Effect of Wind Waves on the Development of River Mouth Bars. Geophysical Research Letters, 39(12): L12607. https://doi.org/10.1029/2012gl051788
      [20] Qian, W. D., Yin, T. J., Hou, G. W., 2019. A New Method for Clastic Reservoir Prediction Based on Numerical Simulation of Diagenesis: A Case Study of Ed1 Sandstones in Bozhong Depression, Bohai Bay Basin, China. Advances in Geo-Energy Research, 3(1): 82-93. https://doi.org/10.26804/ager.2019.01.07
      [21] Schramkowski, G. P., Schuttelaars, H. M., de Swart, H. E., 2002. The Effect of Geometry and Bottom Friction on Local Bed Forms in a Tidal Embayment. Continental Shelf Research, 22(11-13): 1821-1833. https://doi.org/10.1016/s0278-4343(02)00040-7
      [22] Schuurman, F., Marra, W. A., Kleinhans, M. G., 2013. Physics-Based Modeling of Large Braided Sand-Bed Rivers: Bar Pattern Formation, Dynamics, and Sensitivity. Journal of Geophysical Research: Earth Surface, 118(4): 2509-2527. https://doi.org/10.1002/2013jf002896
      [23] Seminara, G., Tubino, M., 2001. Sand Bars in Tidal Channels. Part 1. Free Bars. Journal of Fluid Mechanics, 440: 49-74. https://doi.org/10.1017/s0022112001004748
      [24] Tan, L. S., Ge, Z. M., Fei, B. L., et al., 2020. The Roles of Vegetation, Tide and Sediment in the Variability of Carbon in the Salt Marsh Dominated Tidal Creeks. Estuarine, Coastal and Shelf Science, 239: 106752. https://doi.org/10.1016/j.ecss.2020.106752
      [25] Tang, M. M., Zhang, K. X., Huang, J. X., et al., 2019a. Facies and the Architecture of Estuarine Tidal Bar in the Lower Cretaceous Mcmurray Formation, Central Athabasca Oil Sands, Alberta, Canada. Energies, 12(9): 1769. https://doi.org/10.3390/en12091769
      [26] Tang, M. M., Lu, S. F., Zhang, K. X., et al., 2019b. A Three Dimensional High-Resolution Reservoir Model of Napo Formation in Oriente Basin, Ecuador, Integrating Sediment Dynamic Simulation and Geostatistics. Marine and Petroleum Geology, 110: 240-253. https://doi.org/10.1016/j.marpetgeo.2019.07.022
      [27] Taylor, T. R., Kittridge, M. G., Winefield, P., et al., 2015. Reservoir Quality and Rock Properties Modeling-Triassic and Jurassic Sandstones, Greater Shearwater Area, UK Central North Sea. Marine and Petroleum Geology, 65: 1-21. https://doi.org/10.1016/j.marpetgeo.2015.03.020
      [28] Toffolon, M., Crosato, A., 2007. Developing Macroscale Indicators for Estuarine Morphology: The Case of the Scheldt Estuary. Journal of Coastal Research, 231: 195-212. https://doi.org/10.2112/03-0133.1
      [29] van de Lageweg, W. I., Braat, L., Parsons, D. R., et al., 2018. Controls on Mud Distribution and Architecture along the Fluvial-to-Marine Transition. Geology, 46(11): 971-974. https://doi.org/10.1130/g45504.1
      [30] van de Lageweg, W. I., Feldman, H., 2018. Process-Based Modelling of Morphodynamics and Bar Architecture in Confined Basins with Fluvial and Tidal Currents. Marine Geology, 398: 35-47. https://doi.org/10.1016/j.margeo.2018.01.002
      [31] Winterwerp, J. C., 2011. Fine Sediment Transport by Tidal Asymmetry in the High-Concentrated Ems River: Indications for a Regime Shift in Response to Channel Deepening. Ocean Dynamics, 61(2-3): 203-215. https://doi.org/10.1007/s10236-010-0332-0
      [32] Yang, J.X., Zhang, K.X., Chen, H.P., et al., 2017. Genesis of Mudstone Dikes and Their Impact on Oil Accumulations in D-F Oilfield of Oriente Basin, Ecuador. Oil & Gas Geology, 38(6): 1156-1164 (in Chinese with English abstract). http://www.researchgate.net/publication/324131651_Genesis_of_mudstone_dikes_and_their_impact_on_oil_accumulations_in_D-F_oilfield_of_Oriente_Basin_Ecuador
      [33] Zhan, Q., Wang, Z.H., Zhao, B.C., et al., 2020. Sedimentary Evolution and Coastal Currents Variations of the Yangtze River Mouth(East China Sea) since Last Deglaciation. Earth Science, 45(7): 2697-2708 (in Chinese with English abstract).
      [34] Zhang, X.L., Wu, C.L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou, China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      [35] Zheng, X. Y., Mayerle, R., Wang, Y. B., et al., 2018. Study of the Wind Drag Coefficient during the Storm Xaver in the German Bight Using Data Assimilation. Dynamics of Atmospheres and Oceans, 83: 64-74. https://doi.org/10.1016/j.dynatmoce.2018.06.001
      [36] Zhou, H., Huang, J.X., Feng, W.J., et al., 2020. Analysis on Formation Factors and Development Characteristics of Sand Bar in Tide-Dominated Estuaries: A Case Study Based on Qiantang River. Geological Review, 66(1): 101-112 (in Chinese with English abstract).
      [37] 付鑫, 杜晓峰, 官大勇, 等, 2020. 渤海海域沙河街组一二段扇三角洲混合沉积特征、沉积模式及勘探意义. 地球科学, 45(10): 3706-3720. doi: 10.3799/dqkx.2020.173
      [38] 杨金秀, 张克鑫, 陈和平, 等, 2017. Oriente盆地D-F油田泥岩墙成因及其对油藏分布的影响. 石油与天然气地质, 38(6): 1156-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706018.htm
      [39] 战庆, 王张华, 赵宝成, 等, 2020. 末次冰消期以来长江口沉积环境演化及沿岸流变化. 地球科学, 45(7): 2697-2708. doi: 10.3799/dqkx.2020.073
      [40] 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      [41] 周涵, 黄继新, 冯文杰, 等, 2020. 潮控河口湾砂坝发育特征及形成因素分析: 以钱塘江为例. 地质论评, 66(1): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001008.htm
    • 加载中
    图(14) / 表(4)
    计量
    • 文章访问数:  489
    • HTML全文浏览量:  254
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-01
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回