Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading
-
摘要: 边缘海如何形成是地球科学的基本问题.本研究通过对南海区域深反射地震数据及钻井数据的综合解释,聚焦地壳深部结构和三维全变形机制,在南海陆缘张裂-海盆扩张的构造动力学研究中取得重要进展:(1)“大陆破裂非均一”:拉张过程垂向上分层非均一,受拆离断层系统控制;裂离过程横向上高度变化,中-东侧受岩浆作用主导,西侧受构造作用主导.(2)“海盆扩张非对称”:受周期性地幔对流活动主导,扩张表现为两次洋脊南向跃迁,方向也发生多次转变,导致南海扩张的不连续-非对称性.据此提出西太俯冲背景下周缘受限型海盆高度变化-非均衡扩张模式的新认识,丰富大陆边缘动力学理论.Abstract: Opening mechanism of marginal basins is one of the fundamental issues of earth science. Based on integrated geological interpretations on deep-reflection seismic and drilling data in the South China Sea (SCS), this study analyzes the deep crustal structure and deformational patterns, the results show: (1) The extension and breakup process of the SCS was ununiform and highly variable, i.e. the continental margin experienced depth-dependent stretching dominated by detachment system, and the breakup process was "a magma-rich" type in the middle-east, but a "magma-poor" one in the west. (2) The spreading process of the SCS was unbalanced and asymmetric, featured with two episodic southward ridge jumps, as well as multiple changes of spreading orientation, resulting in the asymmetric post-spreading magmatism and inhomogeneous lithospheric structure. Base on above-mentioned research, we propose an opening model for tectonic-restricted marginal basins dominated by the West Pacific subduction, which is featured with highly variable continental rifting and ununiform seafloor spreading. The model can enrich the theory of continental margin dynamics.
-
图 1 南海南部陆缘的拆离断层构造(a), 陆缘地壳拉张因子计算结果(b), 经典均一伸展模型和分层差异伸展模型示意(c)
图b显示全地壳伸展因子与上地壳伸展因子之间存在巨大差异;图c中亮黄部分为上地壳, 暗黄部分为下地壳
Fig. 1. Geological interpretation shows the detachment structures within the southern continental margin of South China Sea (a); calculation results of the continental stretching factors (b); cartoons show the uniform stretching model and ununiform depth-dependent stretching model (c)
-
[1] Barckhausen, U., Ranero, C. R., Cande, S. C., et al., 2008. Birth of an Intraoceanic Spreading Center. Geology, 36(10): 767-770. https://doi.org/10.1130/G25056A.1 [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280 [3] Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018 [4] Clift, P., Lin, J., 2001. Preferential Mantle Lithospheric Extension under the South China Margin. Marine and Petroleum Geology, 18(8): 929-945. https://doi.org/10.1016/S0264-8172(01)00037-X [5] Crosby, A. G., White, N. J., Edwards, G. R. H., et al., 2011. Evolution of Deep-Water Rifted Margins: Testing Depth-Dependent Extensional Models. Tectonics, 30(1): TC1004. https://doi.org/10.1029/2010tc002687 [6] Davis, M., Kusznir, N. J., 2003. Depth-Dependent Lithopheric Stretching at Rifted Continental Margin. In: Karner, G. D., ed., Proceedings of NSF Rifted Margins. Columbia University Press, New York, 92-136. [7] Ding, W. W., Chen, Y. F., Sun, Z., et al., 2017. Chemical Compositions and Precipitation Timing of Basement Calcium Carbonate Veins from the South China Sea. Marine Geology, 392: 170-178. https://doi.org/10.1016/j.margeo.2017.08.021 [8] Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026 [9] Ding, W. W., Li, J. B., 2011a. Seismic Stratigraphy, Tectonic Structure and Extension Factors across the Southern Margin of the South China Sea: Evidence from Two Regional Multi-Channel Seismic Profiles. Chinese Journal of Geophysics, 54(12): 3038-3056 (in Chinese with English abstract). [10] Ding, W. W., Li, J. B., Clift, P. D., 2016a. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013 [11] Ding, W. W., Li, J. B., 2016b. Conjugate Margin Pattern of the Southwest Sub-Basin, South China Sea: Insights from Deformation Structures in the Continent-Ocean Transition Zone. Geological Journal, 51(S1): 524-534. https://doi.org/10.1002/gj.2733 [12] Ding, W. W., Li, J. B., 2016c. Propagated Rifting in the Southwest Sub-Basin, South China Sea: Insights from Analogue Modelling. Journal of Geodynamics, 100: 71-86. https://doi.org/10.1016/j.jog.2016.02.004 [13] Ding, W. W., Li, J. B., Li, M. B., 2011b. Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea: Evidence from NH973-2 Multichannel Seismic Profile. Earth Science, 36(5): 895-904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201105018.htm [14] Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x [15] Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011 [16] Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932 [17] Franke, D., Ladage, S., Schnabel, M., et al., 2010. Birth of a Volcanic Margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems, 11(2): Q0AB04. https://doi.org/10.1029/2009GC002715 [18] Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58(B): 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020 [19] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4 [20] Kodaira, S., Gou, F. J., Yamashita, M., et al., 2014. SeismologicalEvidence of Mantle Flow Driving Plate Motions at a Palaeo-Spreading Centre. NatureGeoscience, 7(5): 371-375. https://doi.org/10.1038/ngeo2121 [21] Larsen, H. C., Mohn, G. M., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Break-Up to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1 [22] Li, C. F., Lin, J., Kulhanek, D. K., 2015. The Expedition 349 Scientists. In: Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. [23] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567 [24] Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by SubductionDirection Reversal: A Numerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020TC006409 [25] Li, J. B., Jin, X. L., Gao, J. Y., 2002. Morpho-Tectonic Study on Late-Stage Spreading of the Eastern Subbasin of South China Sea. Science in China (Series D), 32(3): 239-248 (in Chinese). doi: 10.1007%2FBF02911236 [26] Liang, Y., Delescluse, M., Qiu, Y., et al., 2019. Decollements, Detachments, and Rafts in the Extended Crust of Dangerous Ground, South China Sea: The Role of Inherited Contacts. Tectonics, 38(6): 1863-1883, https://doi-org.libezproxy.um.edu.mo/10.1029/2018TC005418 doi: 10.1029/2018TC005418 [27] Manatschal, G., Müntener, O., 2009. A Type Sequence across an Ancient Magma-Poor Ocean-Continent Transition: The Example of the Western Alpine Tethys Ophiolites. Tectonophysics, 473(1-2): 4-19. https://doi.org/10.1016/j.tecto.2008.07.021 [28] McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7 [29] Morley, C. K., 2016. Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas: Review and Implications for Tectonic Development. Journal of Asian Earth Sciences, 120: 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013 [30] Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407-22433. https://doi.org/10.1029/95JB01866 [31] Ranero, C. R., Reston, T. J., Belykh, I., et al., 1997. Reflective Oceanic Crust Formed at a Fast-Spreading Center in the Pacific. Geology, 25(6): 499-502. https://doi.org/10.1130/0091-7613(1997)0250499:rocfaa>2.3.co;2 doi: 10.1130/0091-7613(1997)0250499:rocfaa>2.3.co;2 [32] Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022 [33] Sun, W. D., 2016. Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 35(3): 215-225. https://doi.org/10.1007/s11631-016-0110-x [34] Sun, W. D., Lin, Q. T., Zhang, L. P., et al., 2018. The Formation of the South China Sea Resulted from the Closure of the Neo-Tethys: A Perspective from Regional Geology. Acta Petrologica Sinica, 34(12): 3467-3478 (in Chinese with English abstract). [35] Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584 [36] Sun, Z., Jian, Z., Stock, J.M., et al., 2018. The Expedition 367/368 Scientists. In: Proceedings of the International Ocean Discovery Program, Vol. 367/368, South China Sea Rifted Margin. International Ocean Discovery Program, College Station. [37] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116 [38] Sun, Z., Sun, L.T., Zhou, D., et al., 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200903008.htm [39] Symonds, P. A., Planke, S., Frey, O., et al., 1998. Volcanic Evolution of the Western Australian Continental Margin and Its Implications for Basin Development, In: Purcell, R. R., ed., The Sedimentary Basins of Western Australia: Proceedings of the PESA Symposium. Perth. [40] Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanism of Collision between India and Asia. In: Coward, M. P., Ries, A. C., eds., Collision Tectonics. Geological Society London, Special Publications, 19(1): 113-157. https: //doi.org/10.1144/GSL.SP.1986.019.01.07 [41] Wang, P. X., 2012. Tracing the Life History of a Marginal Sea-On "The South China Sea Deep" Research Program. Chinese Science Bulletin, 57(20): 1807-1826 (in Chinese). doi: 10.1360/csb2012-57-20-1807 [42] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135 [43] Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039 [44] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291(5817): 645-648. https://doi.org/10.1038/291645a0 [45] White, R. S., Detrick, R. S., Mutter, J. C., et al., 1990. New Seismic Images of Oceanic Crustal Structure. Geology, 18(5): 462. https://doi.org/10.1130/0091-7613(1990)0180462:nsiooc>2.3.co;2 doi: 10.1130/0091-7613(1990)0180462:nsiooc>2.3.co;2 [46] Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085 [47] Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle Beneath Southernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003 [48] Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(20): 1863-1878 (in Chinese). doi: 10.1360/csb2012-57-20-1863 [49] Yao, B. C., Wan, L., 2010. Variation of the Lithospheric Thickness in the South China Sea Area and Its Tectonic Significance. Chinese Geology, 37(4): 888-899 (in Chinese with English abstract). http://www.researchgate.net/publication/287686204_Variation_of_the_lithospheric_thickness_in_the_South_China_Sea_area_and_its_tectonic_significance [50] Yao, B. C., Zeng, W. J., 1994. Special Report on China-USA Cooperation of Geology Investigation in the South China Sea. China University of Geosciences Press, Wuhan (in Chinese). [51] Yu, M. M., Yan, Y., Huang, C. Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017GL076872 [52] Zhang, F., Lin, J., Zhang, X. B., et al., 2020. Asymmetry in Oceanic Crustal Structure of the South China Sea Basin and Its Implications on Mantle Geodynamics. International Geology Review, 62(7-8): 840-858. https://doi.org/10.1080/00206814.2018.1425922 [53] Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China (Series D), 33(Z1): 12-20 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997685.html [54] Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm [55] Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004 [56] Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post-Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7-8): 955-969. https://doi.org/10.1080/00206814.2019.1577189 [57] Zhao, Y. H., Ren, J. Y., Pang, X., et al., 2018. Structural Style, Formation of Low Angle Normal Fault and Its Controls on the Evolution of Baiyun Rift, Northern Margin of the South China Sea. Marine and Petroleum Geology, 89(3): 687-700. https://doi.org/10.1016/j.marpetgeo.2017.11.001 [58] Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science in China (Series D), 45(6): 711-735 (in Chinese). doi: 10.1007/s11430-015-5097-3 [59] 丁巍伟, 李家彪, 2011a. 南海南部陆缘构造变形特征及伸展作用: 来自两条973多道地震测线的证据. 地球物理学报, 54(12): 3038-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112008.htm [60] 丁巍伟, 李家彪, 黎明碧, 2011b. 南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制: 来自NH973-2多道地震测线的证据. 地球科学, 36(5): 895-904. doi: 10.3799/dqkx.2011.094 [61] 李家彪, 金翔龙, 高金耀, 2002. 南海东部海盆晚期扩张的构造地貌研究. 中国科学(D辑), 32(3): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203008.htm [62] 孙卫东, 林秋婷, 张丽鹏, 等, 2018. 跳出南海看南海-新特提斯洋闭合与南海形成演化. 岩石学报, 34(12): 3467-3478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812001.htm [63] 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447. doi: 10.3321/j.issn:1000-2383.2009.03.008 [64] 汪品先, 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标. 科学通报, 57(20): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220002.htm [65] 徐义刚, 魏静娴, 邱华宁, 等, 2012. 用火山岩制约南海的形成演化: 初步认识与研究设想. 科学通报, 57(20): 1863-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220006.htm [66] 姚伯初, 万玲, 2010. 南海岩石圈厚度变化特征及其构造意义. 中国地质, 37(4): 888-899. doi: 10.3969/j.issn.1000-3657.2010.04.006 [67] 姚伯初, 曾维军, 1994. 中美合作调研南海地质专报. 武汉: 中国地质大学出版社. [68] 张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 33(Z1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm [69] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542 [70] 郑永飞, 陈伊翔, 戴立群, 赵子福, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学(D辑), 45(6): 711-735. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm