Reservoir Characteristics and Differential Evolution Process of Xujiahe Formation in Jiannan Area, East Sichuan
-
摘要: 川东建南地区须家河组储层非均质性极强,致密化程度极高,为了查明储层差异演化过程,剖析储层差异演化控制因素,运用岩石学和岩石地球化学的多种实验方法,在详细刻画储层岩石学特征的基础上,划分了储层成岩相类型,查明了不同类型砂岩的物性特征和孔隙结构特征,分析了储层的差异性演化过程.研究区砂岩可以划分为4种成岩相类型,即强压实相、溶蚀相、硅质胶结相和强钙质胶结相.溶蚀相砂岩物性最好,强压实相砂岩次之,硅质胶结相和钙质胶结相砂岩物性最差.碎屑组分的差异是造成储层非均质性强和差异性演化的重要原因.塑性岩屑含量的差异,导致早成岩时期压实减孔程度的不同;长石含量的差异,影响了砂岩中溶蚀强度和方解石胶结程度;石英含量的差异,控制了砂岩中硅质胶结作用的强弱;最终,使得储层演化有先有后,空间分布非均质.Abstract: The reservoir of Xujiahe Formation in the Jiannan area of East Sichuan basin is highly heterogeneous and the densification is extremely high. To clarify the process and the controlling factors of reservoir differential evolution, a variety of experimental methods of petrology and petrogeochemistry are used in this study. Based on the detailed description for petrology characteristics of the reservoir, the diagenetic facies are classified; then the rock properties and pore structures are characterized, and finally the reservoir differential evolution process is investigated. Sandstones in study area can be divided into four diagenetic facies, namely, tight compaction facies, dissolution facies, siliceous cementation facies and tight calcite cementation facies. Sandstones from dissolution facies have the best rock properties, followed by the tight compaction sandstone. Siliceous cementation sandstone and calcite cementation sandstone are highly densified with the poorest rock properties. The variations of detrital component are the key factors controlling the heterogeneity and differential evolution of the reservoir. The various contents of ductile rock fragments result in the different degrees of compaction and pore reduction in the early diagenetic period, while feldspar and quartz contents affect the dissolution and calcite cementation degree, and the siliceous cementation degree, respectively. Finally, the detrital component controls the evolution process of reservoir in a different time order, and results in the spatial heterogeneity for the distribution.
-
图 4 建南地区须家河组砂岩成岩作用类型薄片和扫描电镜镜下特征
a. 岩屑砂岩,压实作用强烈,白云母受到强烈压实作用后发生弯曲、断折,须四段,JP1井,1 767.11 m,正交偏光;b. 岩屑砂岩,压实作用强烈,石英颗粒压溶呈缝合线接触,颗粒间粘土矿物普遍伊利石化,须四段,JP1井,1 767.11 m,正交偏光;c. 岩屑砂岩,泥质条带因强烈压实发生完全变形,石英颗粒普遍呈凹凸‒缝合线接触,须四段,JP1井,1 767.27 m,单偏光;d. 岩屑砂岩,含铁方解石充填孔隙并交代长石形成嵌‒连晶胶结,须四段,JP1井,1 739.24 m,单偏光;e. 岩屑砂岩,压实程度较弱,石英颗粒点‒线接触,含铁方解石充填孔隙呈连晶式胶结,须六段,J111井,808.39 m,单偏光;f. 岩屑砂岩,铁方解石交代长石,并呈斑块状充填剩余孔隙,须四段,J43井,1 361.29 m,单偏光;g. 岩屑砂岩,石英颗粒普遍Ⅱ-Ⅲ级加大,颗粒与加大边之间可见清晰尘边,须四段,JP1井,1 773.75 m,正交偏光;h. 岩屑砂岩,石英加大边包裹伊利石等粘土矿物,须四段,JP1井,1 742.29 m,扫描电镜;i. 岩屑石英砂岩,石英颗粒普遍具Ⅱ-Ⅲ级加大边,石英颗粒周围见自生菱铁矿环边,须四段,JP1井,1 744.04 m,单偏光;j. 岩屑砂岩,长石沿节理选择性溶蚀,溶蚀孔中见残余长石,须四段,JP1井,1 769.22 m,单偏光;k. 岩屑砂岩,长石沿节理选择性溶蚀,溶蚀孔中见残余长石,须四段,JP1井,1 744.82 m,扫描电镜;l. 岩屑砂岩,长石沿节理选择性溶蚀,溶蚀孔中见残余长石,须四段,JP1井,1 770.72 m,扫描电镜
Fig. 4. Diagenetic characteristics and scanning electron microscope of Xujiahe sandstones in Jiannan area
图 8 建南地区须家河组4类成岩相薄片、阴极发光和扫描电镜镜下特征
a. 强压实相,岩屑砂岩,石英颗粒压溶呈缝合线接触,云母压弯变形充填缝合线,须四段,JP1井,1 768.42 m,正交偏光;b. 强压实相,岩屑砂岩,塑性岩屑在压实作用下强烈变形,偶见少量溶蚀孔隙和早期石英加大,须四段,JP1井,1 774.52,单偏光;c. 强压实相,岩屑砂岩,泥岩、千枚岩等塑性岩屑强烈变形,不规则充填孔隙空间,岩屑普遍伊利石化,须四段,JP1井,1 768.2 m,正交偏光;d. 溶蚀相,岩屑砂岩,长石和岩屑选择性溶蚀,溶蚀孔中见残余长石、岩屑颗粒,须四段,J43井,1 305.81 m,单偏光;e. 溶蚀相,长石岩屑砂岩,溶蚀物质主要为长石,可见少量石英加大,须四段,JP1井,1 770.72 m,单偏光;f. 溶蚀相,长石岩屑砂岩,长石沿节理选择性溶蚀,丝状伊利石交代剩余长石并充填孔隙,须四段,JP1井,1 770.72 m,扫描电镜;g. 强钙质胶结相,长石岩屑砂岩,含铁方解石沿节理选择性交代方解石并充填粒间孔隙形成嵌‒连晶胶结,须六段,J111井,802.89 m,单偏光;h. 强钙质胶结相,岩屑砂岩,方解石大面积胶结并交代长石等骨架颗粒,形成方解石嵌‒连晶式胶结,交代残余长石发亮蓝色光,偶尔可见少量石英裂缝中充填方解石,须四段,JP1井,1 739.14 m,阴极发光;i. 强钙质胶结相,岩屑砂岩,方解石大面积胶结并交代长石等骨架颗粒,形成方解石嵌‒连晶式胶结,须四段,JP1井,1 739.24 m,阴极发光;j. 硅质胶结相,岩屑石英砂岩,石英颗粒普遍Ⅱ-Ⅲ级加大,颗粒与加大边之间可见少量菱铁矿环边胶结,须四段,JP1井,1 744.04 m,正交偏光;k. 硅质胶结相,岩屑石英砂岩,少量石英见破裂愈合现象,充填的石英多不发光,石英次生加大发育,加大边多不发光,须四段,JP1井,1 744.04 m,阴极发光;l. 硅质胶结相,岩屑石英砂岩,石英颗粒普遍具Ⅱ-Ⅲ级加大边,加大边多不发光,须四段,JP1井,1 744.34 m,阴极发光
Fig. 8. Thin section, CL and SEM images showing diagenetic characteristics of four diagenetic facies in Xujiahe sandstones, Jiannan area
图 10 建南地区须家河组4类成岩相压汞曲线和铸体薄片照片
a1和a2.强压实相,偶尔可见少量粒内溶孔,喉道类型以管束状喉道为主,须四段,J43井,1 361.8 m;b1和b2.溶蚀相,孔隙较发育,孔隙类型以粒内溶孔为主,喉道类型多为管束状喉道,可见少量窄片状喉道,须四段,J43井,1 304.58 m;c1和c2.硅质胶结相,砂岩通常致密无孔,偶见少量粒间溶孔,喉道类型以窄片状喉道为主,须四段,JZ1井,1 505.78 m;d1和d2.强钙质胶结相,砂岩致密无孔,喉道类型以管束状喉道为主,须六段,J111井,808.39 m
Fig. 10. Curves and casting thin section of four diagenetic facies in Xujiahe sandstones, Jiannan area
表 1 建南地区须家河组砂岩成岩相类型与划分方案
Table 1. Classification of diagenetic facies in the Xujiahe sandstones, Jiannan area
成岩相 强压实相 溶蚀相 强钙质胶结相 硅质胶结相 原始岩性 岩屑砂岩 岩屑砂岩 长石岩屑砂岩 岩屑石英砂岩 岩屑石英砂岩 岩屑砂岩 岩屑砂岩 长石岩屑砂岩 塑性岩屑含量(%) ≥20 <20 <20 <20 颗粒接触关系 凹凸‒缝合线 线接触 点‒线接触 点‒线接触 主要成岩作用 压实作用 压实作用 压实作用 压实作用 压溶作用 溶蚀作用 方解石胶结 硅质胶结 伊利石化 方解石交代 次要成岩作用 方解石胶结 方解石胶结 伊利石化 菱铁矿胶结 方解石交代 方解石交代 自生粘土 硅质胶结 硅质胶结 溶蚀作用 伊利石化 视压实率(%) 80~100 70~90 30~60 70~80 视胶结率(%) 0~20 0~20 40~70 20~30 面孔率(%) ≤2 >2 0 0 表 2 建南地区须家河组砂岩岩石结构特征
Table 2. Texture characteristics of the Xujiahe sandstones in the Jiannan area
成岩相类型 粒径(mm) 分选 磨圆 范围 均值 强压实相 0.1~0.9 0.37 中等‒好 次棱‒次圆 溶蚀相 0.25~0.90 0.50 中等‒好 次棱‒次圆 硅质胶结相 0.25~0.80 0.65 中等‒好 次圆 强钙质胶结相 0.1~0.5 0.26 中等 次棱‒次圆 表 3 建南地区须家河组4类成岩相压汞参数统计
Table 3. NMR T2 pore throat radius and mercury injection data statistics of four diagenetic facies in Xujiahe sandstones, Jiannan area
成岩相 压汞特征参数 分选系数 歪度 中值压力(MPa) 最大联通孔喉半径(μm) 排驱压力(MPa) 最小非饱和孔隙体积百分数(%) 强压实相 1.5~2.0 0.005~0.050 30~130 0.05~0.20 3~15 70~80 溶蚀相 0.8~1.5 0.05~0.1 5~30 0.2~0.8 1~3 80~90 硅质胶结相 > 2.0 < 0.005 > 130 < 0.05 > 15 30~50 强钙质胶结相 > 2.0 < 0.005 > 130 < 0.05 > 15 30~50 -
[1] Bjørkum, P. A., 1996. How Important is Pressure in Causing Dissolution of Quartz in Sandstones?. Journal of Sedimentary Research, 66(1): 147-154. https://doi.org/10.1306/d42682de-2b26-11d7-8648000102c1865d [2] Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301: 1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002 [3] Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite Diagenesis on Sandstone Cementation. Journal of Sedimentary Research, 49(1): 55-70. https://doi.org/10.1306/212f76bc-2b24-11d7-8648000102c1865d [4] Chen, D. X., Pang, X. Q., Yang, K. M., et al., 2012. Porosity Evolution of Tight Gas Sand of the Second Member of Xujiahe Formation of Upper Triassic, Western Sichuan Depression. Journal of Jilin University (Earth Science Edition), 42(S1): 42-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S1007.htm [5] Fischer, C., Dunkl, I., von Eynatten, H., et al., 2012. Products and Timing of Diagenetic Processes in Upper Rotliegend Sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geological Magazine, 149(5): 827-840. https://doi.org/10.1017/s0016756811001087 [6] Griffiths, J., Worden, R. H., Wooldridge, L. J., et al., 2019. Compositional Variation in Modern Estuarine Sands: Predicting Major Controls on Sandstone Reservoir Quality. AAPG Bulletin, 103(4): 797-833. https://doi.org/10.1306/09181818025 [7] Grigsby, J. D., Langford, R. P., 1996. Effects of Diagenesis on Enhanced-Resolution Bulk Density Logs in Tertiary Gulf Coast Sandstones: An Example from the Lower Vicksburg Formation, McAllen Ranch Field, South Texas. AAPG Bulletin, 80: 1801-1819. https://doi.org/10.1306/64eda172-1724-11d7-8645000102c1865d [8] Lai, J., Wang, G. W., Chen, Y. Y., et al., 2014. Diagenetic Facies and Prediction of High Quality Reservoir of Member 2 of Xujiahe Formation in Penglai Area, Central Sichuan Basin. Journal of Jilin University (Earth Science Edition), 44(2): 432-445 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201402003.htm [9] Li, Y. L., Jia, A. L., He, D. B., 2013. Control Factors on the Formation of Effective Reservoirs in Tight Sands: Examples from Guang'an and Sulige Gasfields. Acta Petrolei Sinica, 34(1): 71-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201301007.htm [10] Liu, J. H., Zhang, S. Q., Sun, Y. T., et al., 2007. Correlation and Evolution of the Upper Triassic Xujiahe Formation in the West Sichuan Foreland Basin. Journal of Stratigraphy, 31(2): 190-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200702014.htm [11] Liu, S. B., Huang, S. J., Shen, Z. M., et al., 2014. Diagenetic Fluid Evolution and Water-Rock Interaction Model of Carbonate Cements in Sandstone: an Example from the Reservoir Sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu Area, Sichuan Province, China. Science in China (Series D), 44(7): 1403-1417 (in Chinese). http://www.tandfonline.com/servlet/linkout?suffix=cit0035&dbid=16&doi=10.1080%2F08120099.2018.1437773&key=10.1007%2Fs11430-014-4851-2 [12] Liu, S. B., Shen, Z. M., Liu, H. N., et al., 2013. Mechanism of Water-Rock Interaction of the Upper Triassic Xujiahe Formation in the Middle Part of Western Sichuan Depression. Acta Petrolei Sinica, 34(1): 47-58 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201301005.htm [13] Lundegard, P. D., 1992. Sandstone Porosity Loss: A "Big Picture" View of the Importance of Compaction. Journal of Sedimentary Research, 62(2): 250-260. https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d [14] Luo, J. L., Liu, X. S., Fu, X. Y., et al., 2014. Impact of Petrologic Components and Their Diagenetic Evolution on Tight Sandstone Reservoir Quality and Gas Yield: a Case Study from He8 Gas-Bearing Reservoir of Upper Paleozoic in Northern Ordos Basin. Earth Science, 39(5): 537-545 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201405004 [15] Luo, J. L., Luo, X. R., Bai, Y. B., et al., 2016. Impact of Differential Diagenetic Evolution on the Chronological Tightening and Pore Evolution of Tight Sandstone Reservoirs-A Case Study from the Chang-7 Tight Turbidite Sandstone Reservoir in the Southwestern Ordos Basin. Journal of Earth Sciences and Environment, 38(1): 79-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201601011.htm [16] Luo, J. L., Wei, X. S., Yao, J. L., et al., 2010. Provenance and Depositional Facies Controlling on the Upper Paleozoic Excellent Natural Gas-Reservoir in Northern Ordos Basin, China. Geological Bulletin of China, 29(6): 811-820 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201006004.htm [17] Luo, X. R., Wang, Z. N., Lei, Y. H., et al., 2016. Heterogeneity Characteristics and Accumulation Model of Ultra-Low Permeability Sandstone Reservoirs: A Case Study of the Lower Part of Yanchang Formation in the Western Ordos Basin, China. Acta Petrolei Sinica, 37(S1): 87-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2016S1009.htm [18] Lü, Z. X., Liu, S. B., 2009. Ultra-Tight Sandstone Diagenesis and Mechanism for the Formation of Relatively High-Quality Reservoir of Xujiahe Group in Western Sichuan. Acta Petrologica Sinica, 25(10): 2373-2383 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200910007.htm [19] Maxwell, J. C., 1964. Influence of Depth, Temperature, and Geologic Age on Porosity of Quartzose Sandstone. AAPG Bulletin, 48(5): 697-709. https://doi.org/10.1306/bc743d25-16be-11d7-8645000102c1865d [20] Meng, Y. L., Jiang, W. Y., Liu, D. L., et al., 2008. Reservoir Porosity Prediction and Its Evolving History Modeling: A Case of Shuangqing Region in the Liaohe West Depression. Acta Sedimentologica Sinica, 26(5): 780-788 (in Chinese with English abstract). [21] Morad, S., Al-Ramadan, K., Ketzer, J. M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8): 1267-1309. https://doi.org/10.1306/04211009178 [22] Pittman, E. D., Larese, R. E., 1991. Compaction of Lithic Sands: Experimental Results and Applications. AAPG Bulletin, 75(8): 1279-1299. https://doi.org/10.1306/0c9b292f-1710-11d7-8645000102c1865d [23] Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. https://doi.org/10.1306/94886ed9-1704-11d7-8645000102c1865d [24] Shou, J. F., Zhang, H. L., Shen, Y., et al., 2006. Diagenetic Mechanisms of Sandstone Reservoirs in China Oil and Gas-Bearing Basins. Acta Petrologica Sinica, 22(8): 2165-2170 (in Chinese with English abstract). http://www.researchgate.net/publication/292649184_Diagenetic_mechanisms_of_sandstone_reservoirs_in_China_oil_and_gas-bearing_basins [25] Shou, J. F., Zhu, G. H., 1998. Study on Quantitative Prediction of Porosity Preservation in Sandstone Reservoir. Chinese Journal of Geology, 33(2): 244-250 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZKX802.013&dbcode=CJFD&year=1998&dflag=pdfdown [26] Sun, H. T., Zhong, D. K., Wang, X. M., 2013. Characteristics and Significance of the Turbidite Lenticular Sandbody Diagenesis in Shahejie Formation, Zhanhua Depression. Journal of Jilin University (Earth Science Edition), 43(3): 680-690 (in Chinese with English abstract). http://www.researchgate.net/publication/287684241_Characteristics_and_significance_of_the_turbidite_lenticular_sandbody_diagenesis_in_Shahejie_formation_Zhanhua_depression [27] Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. Journal of Sedimentary Research, 32(1): 26-28. https://doi.org/10.1306/74d70c3b-2b21-11d7-8648000102c1865d [28] Westcott, W. A., 1983. Diagenesis of Cotton Valley Sandstone (Upper Jurassic), East Texas: Implications for Tight Gas Formation Pay Recognition. AAPG Bulletin, 67(6): 1002-1013. https://doi.org/10.1306/03b5b6e6-16d1-11d7-8645000102c1865d [29] Worden, R. H., Mayall, M., Evans, I. J., 2000. The Effect of Ductile-Lithic Sand Grains and Quartz Cement on Porosity and Permeability in Oligocene and Lower Miocene Clastics, South China Sea: Prediction of Reservoir Quality. AAPG Bulletin, 84 (3): 345-359. https://doi.org/10.1306/c9ebcde7-1735-11d7-8645000102c1865d [30] Xu, Y. H., Yang, X. H., Mei, L. F., et al., 2020. Diagenetic Characteristics and Porosity Evolution of Low Permeability Sandstone Reservoir in Zhuhai Formation, Wenchang A Sag. Earth Science, 45(6): 2172-2185 (in Chinese with English abstract). [31] Yu, Y., Lin, L. B., Zhai, C. B., et al., 2019. Impacts of Lithologic Characteristics and Diagenesis on Reservoir Quality of the 4th Member of the Upper Triassic Xujiahe Formation Tight Gas Sandstones in the Western Sichuan Basin, Southwest China. Marine and Petroleum Geology, 107: 1-19. https://doi.org/10.1016/j.marpetgeo.2019.04.040 [32] Zhang, J., Li, G. H., Xie, J. R., et al., 2006. Stratigraphic Division and Correlation of Upper Triassic in Sichuan Basin. Natural Gas Industry, 26(1): 12-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200601004.htm [33] Zhang, L., Guo, X. S., Hao, F., et al., 2016. Lithologic Characteristics and Diagenesis of the Upper Triassic Xujiahe Formation, Yuanba Area, Northeastern Sichuan Basin. Journal of Natural Gas Science and Engineering, 35: 1320-1335. https://doi.org/10.1016/j.jngse.2016.09.067 [34] Zhang, L., Wang, W., Shu, Z. G., et al., 2019. Distribution and Genesis of Calcite-Replaced and Calcite-Cemented Tight Reservoirs in Xujiahe Formation, Yuanba Area, Northeast Sichuan. Acta Petrolei Sinica, 40(6): 692-705 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201906005.htm [35] Zhang, L., Zou, H. Y., Hao, F., et al., 2017. Characteristics and Densification Causes and of Highly-Tight Sandstone of the Xujiahe Formation(T3x2) in the Yuanba Area, Northeastern Sichuan Basin. Acta Geologica Sinica, 91(9): 2105-2118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201709013.htm [36] Zhang, N., Tian, Z. J., Wu, S. H., et al., 2008. Study Xujiahe Reservoir Diagenetic Process, Sichuan Basin. Acta Petrologica Sinica, 24(9): 2179-2184 (in Chinese with English abstract). http://www.oalib.com/paper/1473548 [37] Zhang, X. X., Zou, C. N., Tao, S. Z., et al., 2010. Diagenetic Facies Types and Semiquantitative Evaluation of Low Porosity and Permeability Sandstones of the Fourth Member Xujiahe Formation Guangan Area, Sichuan Basin. Acta Sedimentologica Sinica, 28(1): 50-57 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB201001008.htm [38] Zhang, X. X., Zou, C. N., Zhu, R. K., et al., 2011. Reservoir Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Central Sichuan Basin. Acta Petrolei Sinica, 32(2): 257-264 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-syxb201102011.htm [39] Zhao, C. L., Liu, M. H., 1993. Study on Micro-Sedimentary Facies and Diagenesis of Clastic Reservoir Rocks. Journal of China University of Petroleum (Edition of Natural Science), 17(S1): 1-7 (in Chinese with English abstract). [40] Zheng, J. M., Pang, M., 1989. Diagenesis of Clastic Reservoir Rock. China University of Geosciences Press, Wuhan (in Chinese). [41] Zhou, X., He, S., Chen, Z. Y., et al., 2016. Diagenesis and Diagenetic Facies of Low Porosity and Permeability Sandstone in Member 8 of the Yanchang Formation in Daijiaping Area, Ordos Basin. Oil & Gas Geology, 37(2): 155-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201602003.htm [42] Zhu, R. K., Zou, C. N., Zhang, N., et al., 2009. Diagenetic Fluids Evolution and Genetic Mechanism of Tight Sandstone Gas Reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China. Science in China (Series D), 39(3): 327-339 (in Chinese). [43] Zou, C. N., Tao, S. Z., Zhang, X. X., et al., 2009. Geologic Characteristics, Controlling Factors and Hydrocarbon Accumulation Mechanisms of China's Large Gas Provinces of Low Porosity and Permeability. Science in China: (Series D), 39(11): 1607-1624 (in Chinese). doi: 10.1007%2Fs11430-009-0104-1 [44] Zou, C. N., Tao, S. Z., Zhou, H., et al., 2008. Genesis, Classification and Evaluation Method of Diagenetic Facies. Petroleum Exploration and Development, 35(5): 526-540 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60086-0 [45] 陈冬霞, 庞雄奇, 杨克明, 等, 2012. 川西坳陷中段上三叠统须二段致密砂岩孔隙度演化史. 吉林大学学报(地球科学版), 42(增刊1): 42-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1007.htm [46] 赖锦, 王贵文, 陈阳阳, 等, 2014. 川中蓬莱地区须家河组须二段储层成岩相与优质储集层预测. 吉林大学学报(地球科学版), 44(2): 432-445. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201402003.htm [47] 李易隆, 贾爱林, 何东博, 2013. 致密砂岩有效储层形成控制因素. 石油学报, 34(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301007.htm [48] 刘金华, 张世奇, 孙耀庭, 等, 2007. 川西前陆盆地上三叠统须家河组地层的划分对比及沉积演化. 地层学杂志, 31(2): 190-196. doi: 10.3969/j.issn.0253-4959.2007.02.014 [49] 刘四兵, 黄思静, 沈忠民, 等, 2014. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式: 以川西孝泉-丰谷地区上三叠统须四段致密砂岩为例. 中国科学(D辑), 44(7): 1403-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407005.htm [50] 刘四兵, 沈忠民, 刘昊年, 等, 2013. 川西坳陷中段上三叠统须家河组水岩相互作用机制. 石油学报, 34(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301005.htm [51] 罗静兰, 刘新社, 付晓燕, 等, 2014. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响: 以鄂尔多斯盆地上古生界盒8天然气储层为例. 地球科学, 39(5): 537-545. doi: 10.3799/dqkx.2014.051 [52] 罗静兰, 罗晓容, 白玉彬, 等, 2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响: 以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例. 地球科学与环境学报, 38(1): 79-92. doi: 10.3969/j.issn.1672-6561.2016.01.008 [53] 罗静兰, 魏新善, 姚泾利, 等, 2010. 物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制. 地质通报, 29(6): 811-820. doi: 10.3969/j.issn.1671-2552.2010.06.003 [54] 罗晓容, 王忠楠, 雷裕红, 等, 2016. 特超低渗砂岩油藏储层非均质性特征与成藏模式: 以鄂尔多斯盆地西部延长组下组合为例. 石油学报, 37(增刊1): 87-98. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S1009.htm [55] 吕正祥, 刘四兵, 2009. 川西须家河组超致密砂岩成岩作用与相对优质储层形成机制. 岩石学报, 25(10): 2373-2383. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910007.htm [56] 孟元林, 姜文亚, 刘德来, 2008. 储层孔隙度预测与孔隙演化史模拟方法探讨: 以辽河坳陷双清地区为例. 沉积学报, 26(5): 780-788. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805012.htm [57] 寿建峰, 张惠良, 沈扬, 等, 2006. 中国油气盆地砂岩储层的成岩压实机制分析. 岩石学报, 22(8): 2165-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608005.htm [58] 寿建峰, 朱国华, 1998. 砂岩储层孔隙保存的定量预测研究. 地质科学, 33(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.013.htm [59] 孙海涛, 钟大康, 王兴明, 2013. 沾化凹陷沙河街组浊积砂岩透镜体成岩作用特征及其意义. 吉林大学学报(地球科学版), 43(3): 680-690. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201303005.htm [60] 徐燕红, 杨香华, 梅廉夫, 等, 2020. 文昌A凹陷珠海组低渗砂岩成岩特征与孔隙演化. 地球科学, 45(6): 2172-2185. doi: 10.3799/dqkx.2020.055 [61] 张健, 李国辉, 谢继容, 等, 2006. 四川盆地上三叠统划分对比研究. 天然气工业, 26(1): 12-16. doi: 10.3321/j.issn:1000-0976.2006.01.004 [62] 张莉, 王威, 舒志国, 等, 2019. 川东北元坝地区须家河组钙质交代-胶结致密层分布与成岩. 石油学报, 40(6): 692-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906005.htm [63] 张莉, 邹华耀, 郝芳, 等, 2017. 川东北元坝地区须家河组储层特征与超致密成因探讨. 地质学报, 91(9): 2105-2118. doi: 10.3969/j.issn.0001-5717.2017.09.013 [64] 张鼐, 田作基, 吴胜华, 等, 2008. 川西须家河组储层成岩演化. 岩石学报, 24(9): 2179-2184. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809027.htm [65] 张响响, 邹才能, 陶士振, 等, 2010. 四川盆地广安地区上三叠统须家河组四段低孔渗砂岩成岩相类型划分及半定量评价. 沉积学报, 28(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001008.htm [66] 张响响, 邹才能, 朱如凯, 等, 2011. 川中地区上三叠统须家河组储层成岩相. 石油学报, 32(2): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102011.htm [67] 赵澄林, 刘孟慧, 1993. 碎屑岩储集层砂体微相和成岩作用研究. 中国石油大学学报(自然科学版), 17(增刊1): 1-7. [68] 郑浚茂, 庞明, 1989. 碎屑储集岩的成岩作用研究. 武汉: 中国地质大学出版社. [69] 周翔, 何生, 陈召佑, 等, 2016. 鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相. 石油与天然气地质, 37(2): 155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201602003.htm [70] 朱如凯, 邹才能, 张鼐, 等, 2009. 致密砂岩气藏储层成岩流体演化与致密成因机理: 以四川盆地上三叠统须家河组为例. 中国科学(D辑), 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm [71] 邹才能, 陶士振, 张响响, 等, 2009. 中国低孔渗大气区地质特征、控制因素和成藏机制. 中国科学(D辑), 39(11): 1607-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911012.htm [72] 邹才能, 陶士振, 周慧, 等, 2008. 成岩相的形成、分类与定量评价方法. 石油勘探与开发, 35(5): 526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002