[1] |
Allais, M., 1957.Method of Appraising Economic Prospects of Mining Exploration over Large Territories:Algerian Sahara Case Study.Management Science, 3(4):285-347. https://doi.org/10.1287/mnsc.3.4.285
|
[2] |
Cargill, S.M., Clark, A.L., 1978.Report on the Activity of IGCP Project 98.Mathematical Geology, 10(5):7. doi: 10.1007/BF02461973
|
[3] |
Carranza, E.J.M., Laborte, A.G., 2015.Data-Driven Predictive Mapping of Gold Prospectivity, Baguio District, Philippines:Application of Random Forests Algorithm.Ore Geology Reviews, 71:777-787. https://doi.org/10.1016/j.oregeorev.2014.08.010
|
[4] |
Carranza, E.J.M., Laborte, A.G., 2016.Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests:A Case Study in Catanduanes Island (Philippines).Natural Resources Research, 25(1):35-50. https://doi.org/10.1007/s11053-015-9268-x
|
[5] |
Chen, Y.L., Lu, L.J., Li, X.B., 2014.Application of Continuous Restricted Boltzmann Machine to Identify Multivariate Geochemical Anomaly.Journal of Geochemical Exploration, 140:56-63. https://doi.org/10.1016/j.gexplo.2014.02.013
|
[6] |
Cheng, G.X., Niu, R.Q., Zhang, K.X., et al., 2018.Opencast Mining Area Recognition in High-Resolution Remote Sensing Images Using Convolutional Neural Networks.Earth Science, 43(Suppl.2):256-262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2021.htm
|
[7] |
Hariharan, S., Tirodkar, S., Porwal, A., et al., 2017.Random Forest-Based Prospectivity Modelling of Greenfield Terrains Using Sparse Deposit Data:An Example from the Tanami Region, Western Australia.Natural Resources Research, 26(4):489-507. https://doi.org/10.1007/s11053-017-9335-6
|
[8] |
Huang, Y., Fu, J.G., Li, G.M., et al., 2019.Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization.Earth Science, 44(7):2197-2206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907001.htm
|
[9] |
Jiao, Y.J., Huang, X.R., Li, G.M., et al., 2019.Deep Structure and Mineralization of Zhaxikang Ore-Concentration Area, South Tibet:Evidence from Geophysics.Earth Science, 44(6):2117-2128(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906026.htm
|
[10] |
LeCun, Y., Bengio, Y., Hinton, G., 2015.Deep Learning.Nature, 521:436-444. https://doi.org/10.1038/nature14539
|
[11] |
Li, G.M., Wang, G.M., Gao, D.F., et al., 2002.Perspective of Copper Ore Deposit and Its Exploration Direction in Gangdise Metallogenic Belt, Tibet.Mineral Deposits, 21(Suppl.1):144-147(in Chinese with English abstract).
|
[12] |
Liu, F.T., Ting, K.M., Zhou, Z.H., 2010.On Detecting Clustered Anomalies Using SCiForest.Machine Learning and Knowledge Discovery in Databases.Springer, Berlin Heidelberg, 274-290. https://doi.org/10.1007/978-3-642-15883-4_18
|
[13] |
Liu, W.L., Li, S.T., Sun, D.J., et al., 2000.Prediction of Pore-Fluid Pressure in Deep Strata of Songliao Basin.Earth Science, 25(2):137-142(in Chinese with English abstract). http://www.researchgate.net/publication/304822307_Prediction_of_pore_fluid_pressure_in_deep_strata_of_Songliao_Basin
|
[14] |
Liu, X.Z., 2007.Copper Resources in China:Today and Tomorrow.Northwestern Geology, 40(1):83-88(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDI200701008.htm
|
[15] |
Ma, Z.Z., 2009.Thoughts on the Guarantee of Mineral Resources in China.Land and Resources Information, (3):2-7(in Chinese with English abstract).
|
[16] |
Moser, G., Serpico, S.B., Benediktsson, J.A., 2013.Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images.Proceedings of the IEEE, 101(3):631-651. https://doi.org/10.1109/JPROC.2012.2211551
|
[17] |
Pan, H.P., Liu, G.Q., 1997.Applying Back-Propagation Artificial Neural Networks to Predict Coal Quality Parameters and Coalbed Gas Content.Earth Science, 22(2):210-214(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020418035049.html
|
[18] |
Quan, X.D., Wang, Y.J., Wang, B., et al., 2013.Application of ANN and GIS in Uranium Metallization Prediction:A Case Study of Northern Tarim Basin.Uranium Geology, 29(6):374-379. http://en.cnki.com.cn/Article_en/CJFDTotal-YKDZ201306009.htm
|
[19] |
Shao, Y.J., He, H., Zhang, Y.Z., et al., 2007.Metallogenic Prediction of Xiangxi Gold Deposit Based on BP Neural Networks.Journal of Central South University (Science and Technology), 38(6):1192-1198. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD200706032.htm
|
[20] |
Tessema, A., 2017.Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex, South Africa.Natural Resources Research, 26(4):465-488. https://doi.org/10.1007/s11053-017-9344-5
|
[21] |
Wang, J., Song, J.W., Chen, M.Q., et al., 2015.Road Network Extraction:A Neural-Dynamic Framework Based on Deep Learning and a Finite State Machine.International Journal of Remote Sensing, 36(12):3144-3169. https://doi.org/10.1080/01431161.2015.1054049
|
[22] |
Xiong, Y.H., Zuo, R.G., 2016.Recognition of Geochemical Anomalies Using a Deep Autoencoder Network.Computers & Geosciences, 86:75-82. https://doi.org/10.1016/j.cageo.2015.10.006
|
[23] |
Xiong, Y.H., Zuo, R.G., 2018.GIS-Based Rare Events Logistic Regression for Mineral Prospectivity Mapping.Computers & Geosciences, 111:18-25. https://doi.org/10.1016/j.cageo.2017.10.005
|
[24] |
Xu, Y.Y., Chen, Z.L., Xie, Z., et al., 2017.Quality Assessment of Building Footprint Data Using a Deep Autoencoder Network.International Journal of Geographical Information Science, 31(10):1929-1951. https://doi.org/10.1080/13658816.2017.1341632
|
[25] |
Xu, Y.Y., Wu, L., Xie, Z., et al., 2018.Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters.Remote Sensing, 10(1):144. https://doi.org/10.3390/rs10010144
|
[26] |
Zhao, P.D., 2007.Quantitative Mineral Prediction and Deep Mineral Exploration.Earth Science Frontiers, 14(5):1-10. https://doi.org/10.1007/s11442-007-0020-2
|
[27] |
Zuo, R.G., Xiong, Y.H., Wang, J., et al., 2019.Deep Learning and Its Application in Geochemical Mapping.Earth Science Reviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
|
[28] |
程国轩, 牛瑞卿, 张凯翔, 等, 2018.基于卷积神经网络的高分遥感影像露天采矿场识别.地球科学, 43(增刊2):256-262. doi: 10.3799/dqkx.2018.987
|
[29] |
黄勇, 付建刚, 李光明, 等, 2019.藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现.地球科学, 44(7):2197-2206. doi: 10.3799/dqkx.2019.114
|
[30] |
焦彦杰, 黄旭日, 李光明, 等, 2019.藏南扎西康矿集区深部结构与成矿:来自地球物理的证据.地球科学, 44(6):2117-2128. doi: 10.3799/dqkx.2018.352
|
[31] |
李光明, 王高明, 高大发, 等, 2002.西藏冈底斯铜矿资源前景与找矿方向.矿床地质, 21(增刊1):144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1044.htm
|
[32] |
刘文龙, 李思田, 孙德君, 等, 2000.松辽盆地深层孔隙流体压力预测.地球科学, 25(2):137-142. http://www.earth-science.net/article/id/914
|
[33] |
刘小舟, 2007.我国重要有色金属资源——铜矿的现状及展望.西北地质, 40(1):83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200701008.htm
|
[34] |
麻志周, 2009.我国矿产资源保障问题的思考.国土资源情报, (3):2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ200903002.htm
|
[35] |
潘和平, 刘国强, 1997.应用BP神经网络预测煤质参数及含气量.地球科学, 22(2):210-214. http://www.earth-science.net/article/id/488
|