Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet
-
摘要: 冰湖溃决型泥石流是高原山区特殊的地质灾害,以西藏聂拉木县嘉龙湖为例,建立了一套冰湖溃决型泥石流危险性评价方法.以喜马拉雅山区1970—2015年气温波动频次和聂拉木冰湖溃决历史事件预测了未来10年嘉龙湖溃决的时间概率.利用遥感影像识别嘉龙湖上方不稳定冰体的范围和规模,采用美国土木工程师协会推荐公式和修正的三峡库区涌浪计算方法分析了冰川滑坡产生的涌浪规模,从涌浪波压力和越顶水流推力两方面预测了冰碛坝发生失稳的可能性.采用FLO-2D模拟冰湖溃决泥石流的运动过程,以最大流速和泥深表达了嘉龙湖溃决泥石流的危险程度.评价结果表明:2002年嘉龙湖溃决事件与当年气温偏高有关,未来嘉龙湖发生溃决概率高;冰川滑坡激起涌浪能够翻越坝顶,并引起坝体快速侵蚀而溃决;冰湖溃决泥石流对聂拉木县城河道两侧54栋建筑造成威胁.评价方法实现了冰湖溃决型泥石流危险性的定量分析,评价结果对聂拉木县城泥石流防灾具有现实意义.Abstract: The debris flow caused by the outburst of glacial lake is a specific geohazard in the plateau mountainous area. With the study case of Jialong Lake, Nyalam County, Tibet, the hazard assessment model of the debris flow triggered by the outburst of glacial lake was established. Based on the analysis of temperature fluctuation from 1970 to 2015 in the Himalayas area and the historical events of glacial lake outburst in Nyalam County, the temporal probability of the outburst of Jialong Lake in the future 10 years is predicted. The range and magnitude of the unstable ice bodies above Jialong Lake are recognized relying on remote sensing images. The impulse waves generated by glacier landslide are determined with the formula recommended by American Society of Civil Engineers and the modified model of impulse waves in the Three Gorges Reservoir. The pressure of impulse waves and the thrust force of water current acting on the morainal dam are analyzed to assess the failure probability of morainal dam. FlO-2D was used to simulate the movement process of debris flow. The intensity of debris flow triggered by outburst of Jialong Lake were indicated with the maximum velocity and maximum depth of debris flow. The assessment results show that the outburst of Jialong Lake in 2002 was related to the high temperature in that year, and Jialong Lake still has a high probability of outburst in the future; the impulse waves caused by glacial landslide could climb over the top of the morainal dam, which cause rapid erosion and failure of the dam. The debris flow caused by the outburst of Jialong Lake would impact 54 buildings located along the river in Nyalam County. The model proposed in the paper realizes the quantitative hazard assessment of the debris flow caused by glacial lake outburst. The assessment results are of great significance for the risk management of debris flow in Nyalam County.
-
Key words:
- glacial lake /
- debris flow /
- hazard assessment /
- glacial landslide /
- environmental geology
-
图 3 喜马拉雅山地区1970年—2015年气温波动分析
a.年平均气温变化图(据王欣等,2016);b.10年尺度气温波动次数分布图;c.10年尺度气温波动次数随时间变化趋势
Fig. 3. Temperature fluctuation analysis in the Himalayas from 1970 to 2015
表 1 嘉龙湖基本情况
Table 1. Basic information of Jialong Lake
位置 规模 地层岩性 母冰川 冰碛坝 溃决机理 已有防治措施 聂拉木县城西北20.6 km,湖面海拔4 420 m 湖面面积0.67 km2,平均水深36 m 亚东岩群AnZj片麻岩 面积11.89 km2,坡度>30°,冰裂缝发育,不稳定 有溢流出水点和历史溃决迹象,稳定性差 气候突变,冰体坠落,冰湖涌浪造成溃坝 监测、虹吸管和拦挡坝 表 2 嘉龙湖溃决型泥石流危险性评价基础数据
Table 2. Data of hazard assessment of debris flow caused by outburst of Jialong Lake
基础数据 数据来源及时间 遥感影像 GF1、GF2、Google(2015-6;2017-12;2019-10) DEM 西藏测绘局 地质图 聂拉木幅1:25万区域地质调查报告(2002-12) 喜马拉雅山区气温、冰湖及溃决记录 王欣等(2016) 冰湖水深 阿如汉等(2018) 冰碛坝结构及变形 地面调查(2019-10) 松散堆积物分布 地面调查(2019-10) 表 3 嘉龙湖母冰川不同规模滑坡涌浪计算参数及结果
Table 3. Calculation parameters and results of impulse waves generated by glacier landslide with different scales above Jialong Lake
编号 滑坡参数(m) v(m/s) Hmax(m) Hp(m) T(s) c(m/s) L(m) PB1(kPa) H l w t 1 400 800 500 35 50.00 52.29 12.55 21.87 15.03 328.69 280.5 2 400 440 360 35 50.00 41.23 9.90 20.61 13.35 275.12 221.0 3 400 330 310 35 58.15 36.92 8.87 20.05 12.64 253.36 197.9 表 4 嘉龙湖终碛坝稳定性计算结果
Table 4. Stability analysis results of moraine dam in Jialong Lake
滑动面 天然 波压力1 波压力2 波压力3 S1 1.32 1.32 1.32 1.32 S2 1.47 1.41 1.42 1.43 S3 1.98 1.85 1.88 1.89 S4 4.68 4.08 4.19 4.23 表 5 嘉龙湖冰湖溃决泥石流运动FLO-2D模拟参数
Table 5. FlO-2D parameters for the movement simulation of debris flow caused by Jialong Lake outburst
参数 α1 β1 α2 β2 n Cv K Gs 取值 0.004 62 11.24 0.811 13.72 0.18~0.20 0.5~0.6 1 000~5 000 2.00~2.65 表 6 泥石流危险性等级划分标准
Table 6. Hazard classification of debris flow
危险性 泥深(m) 关系式 泥深与最大流速乘积 泥石流强度赋值 高 Hd≥2.5 OR VdHd≥2.5 1.0 中 0≤Hd<2.5 AND 0.5≤VdHd<2.5 0.7 低 0≤Hd<2.5 AND VdHd<0.5 0.3 -
[1] A, R.H., Tu, J.N., Liu, H.Y., et al., 2018.Numerical Simulation of the Glacier Lake Surge Based on Fluen:A Case Study of Jialong Co, Nyalam County, Tibet.Journal of Glaciology and Geocryology, 40(4):837-845(in Chinese with English abstract). [2] Aggarwal, A., Jain, S.K., Lohani, A.K., et al., 2016.Glacial Lake Outburst Flood Risk Assessment Using Combined Approaches of Remote Sensing, GIS and Dam Break Modelling.Geomatics, Natural Hazards and Risk, 7(1):18-36. https://doi.org/10.1080/19475705.2013.862573 [3] Allen, S.K., Zhang, G.Q., Wang, W.C., et al., 2019.Potentially Dangerous Glacial Lakes across the Tibetan Plateau Revealed Using a Large-Scale Automated Assessment Approach.Science Bulletin, 64(7):435-445. https://doi.org/10.1016/j.scib.2019.03.011 [4] Ashraf, A., Naz, R., Roohi, R., 2012.Glacial Lake Outburst Flood Hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan:Implications and Risk Analysis.Geomatics, Natural Hazards and Risk, 3(2):113-132. https://doi.org/10.1080/19475705.2011.615344 [5] Bartelt, P., Buser, O., Bühler, Y., 2014.Numerical Simulation of Snow Avalanches:Modelling Dilatative Processes with Cohesion in Rapid Granular Shear Flows.Numerical Methods in Geotechnical Engineering, Taylor & Francis Group, London, 327-332. [6] Chen, X.Q., Cui, P., Yang, Z., et al., 2006.Debris Flows of Chongdui Gully in Nyalam County, 2002:Cause and Control.Journal of Glaciology and Geocryology, 28(5):776-781(in Chinese with English abstract). [7] Clague, J.J., Mathews, W.H., 1992.The Sedimentary Record and Neoglacial History of Tide Lake, Northwestern British Columbia.Canadian Journal of Earth Sciences, 29:2383-2396. doi: 10.1139/e92-186 [8] Cui, P., Ma, D.T., Chen, N.S., et al., 2003.The Initiation, Motion and Mitigation of Debris Flow Caused by Glacial Lake Outburst.Quaternary Sciences, 23(6):621-628(in Chinese with English abstract). [9] Das, S., Kar, N.S., Bandyopadhyay, S., 2015.Glacial Lake Outburst Flood at Kedarnath, Indian Himalaya:A Study Using Digital Elevation Models and Satellite Images.Natural Hazards, 77(2):769-786. https://doi.org/10.1007/s11069-015-1629-6 [10] Dubey, S., Goyal, M.K., 2020.Glacial Lake Outburst Flood (GLOF) Hazard, Downstream Impact, and Risk over the Indian Himalayas.Water Resources Research, 56(4):e2019WR026533. https://doi.org/10.1029/2019wr026533 [11] Fiebiger, G., 1997.Hazard Mapping in Austria.Journal of Torrent, Avalanche, Landslide and Rockfall Engineering, 61(134):121-133 [12] Guo, G.H., Cheng, Z.L., Wu, G.X., et al., 2009.Risk Assessment of Glacial-Lake Outburst along the South Section of Sichuan-Tibet Highway.Research of Soil and Water Conservation, 16(2):50-55(in Chinese with English abstract). [13] Huang, B.L., 2014.Water Wave Dynamic Analysis Method Study on Landslide-Generated Impulse Wave Hazard in Reservoirs (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [14] Huber, A., Hager, W.H., 1997.Forecasting Impulse Waves in Reservoirs.Proc. of the 19th Congres Des Grands Barrages, Florence, Paris, 993-1005. [15] Jakob, M., Stein, D., Ulmi, M., 2012.Vulnerability of Buildings to Debris Flow Impact.Natural Hazards, 60(2):241-261. https://doi.org/10.1007/s11069-011-0007-2 [16] Jia, Y., Cui, P., 2020.The Extreme Climate Background for Glacial Lakes Outburst Flood Events in Tibet.Climate Change Research, 16(4):395-404(in Chinese with English abstract). [17] Li, L., Bian, B.C.R., Zhao, W., et al., 2019.Analysis of Change and Outburst Feature of Glacial Lake in the Middle Himalayas of Tibet:Take Sangwang Co and Shimo Co as Examples.Journal of Glaciology and Geocryology, 41(5):1036-1043(in Chinese with English abstract). [18] Liu, C.L., Tong, L.Q., Qi, S.W., et al., 2016.Remote Sensing Investigation and Influence Factor Analysis of Glacier Lake Outburst Potential in the Himalayas.Remote Sensing for Land & Resources, 28(3):110-115(in Chinese with English abstract). [19] Liu, J.J., Ma, C., Su, P.C., 2018.Early Warning Method of Glacial Lake Outburst Floods Based on Temperature and Rainfall.South-to-North Water Transfers and Water Science & Technology, 16(6):1-8(in Chinese with English abstract). [20] Liu, J.K., Zhang, J.J., Gao, B., et al., 2019.An Overview of Glacial Lake Outburst Flood in Tibet, China.Journal of Glaciology and Geocryology, 41(6):1335-1347(in Chinese with English abstract). [21] Liu, S.Y., Yao, X.J., Guo, W.Q., et al., 2015.The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory.Acta Geographica Sinica, 70(1):3-16(in Chinese with English abstract). [22] Liu, W., 2006.Preliminary Study on Debris Flow Induced by Glacier Lake Outburst in Tibet.Hydrogeology & Engineering Geology, 33(3):88-92(in Chinese with English abstract). [23] O'Brien, J.S., 2009.FLO-2D User's Manual.FLO-2D Software Inc., 15-22. [24] Pan, S.H., 1986.Wave, Ice and Ship Loads on Hydraulic Structures.Ocean Press, Beijing(in Chinese). [25] Strozzi, T., Wiesmann, A., Kääb, A., et al., 2012.Glacial Lake Mapping with Very High Resolution Satellite SAR Data.Natural Hazards and Earth System Sciences, 12(8): https://doi.org/10.5194/nhess-12-2487-2012 [26] Wang, X., Liu, S.Y., Ding, Y.J., 2016.Methods and Applications of Outburst Disaster Assessment for Moraine Lakes in the Himalayas of China.Science Press, Beijing(in Chinese). [27] Wang, Y., 2005.The Research on Speed of the Landslide and Its Surge Hazard in Reservoir (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [28] Wang, Z.F., Zhang, T.S., Wang, C.W., 2016.Prediction Model and Its Application for Glacial Lake Outburst in the Himalayas Area, Tibet.Journal of Glaciology and Geocryology, 38(2):388-394(in Chinese with English abstract). [29] Xie, R.Z., 1993.Hydraulics of Dam Break.Shandong Science and Technology Press, Jinan(in Chinese with English abstract). [30] Xu, D.M., Feng, Q.H., 1989.Dangerous Glacial Lake and Outburst Featuresin Xizang Himalayas.Acta Geographica Sinica, 44(3):343-352(in Chinese with English abstract). [31] Yin, K.L., Liu, Y.L., Wang, Y., et al., 2012.Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir.Earth Science, 37(5):1067-1074(in Chinese with English abstract). [32] 阿如汉, 涂杰楠, 刘红岩, 等, 2018.基于Fluent数值模拟的冰湖涌浪分析——以西藏聂拉木县嘉龙错为例.冰川冻土, 40(4):837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201804021.htm [33] 陈晓清, 崔鹏, 杨忠, 等, 2006.聂拉木县冲堆普2002年泥石流成因分析及防治对策.冰川冻土, 28(5):776-781. doi: 10.3969/j.issn.1000-0240.2006.05.023 [34] 崔鹏, 马东涛, 陈宁生, 等, 2003.冰湖溃决泥石流的形成、演化与减灾对策.第四纪研究, 23(6):621-628. doi: 10.3321/j.issn:1001-7410.2003.06.005 [35] 郭国和, 程尊兰, 吴国雄, 等, 2009.川藏公路南线典型冰湖及其溃决危险性评价.水土保持研究, 16(2):50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200902013.htm [36] 黄波林, 2014.水库滑坡涌浪灾害水波动力学分析方法研究(博士学位论文).武汉: 中国地质大学. [37] 贾洋, 崔鹏, 2020.西藏冰湖溃决灾害事件极端气候特征.气候变化研究进展, 16(4):395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202004001.htm [38] 李林, 边巴次仁, 赵炜, 等, 2019.西藏喜马拉雅山脉中段冰湖变化与溃决特征分析:以桑旺错和什磨错为例.冰川冻土, 41(5):1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201905003.htm [39] 刘春玲, 童立强, 祁生文, 等, 2016.喜马拉雅山地区冰川湖溃决灾害隐患遥感调查及影响因素分析.国土资源遥感, 28(3):110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201603018.htm [40] 刘建康, 张佳佳, 高波, 等, 2019.我国西藏地区冰湖溃决灾害综述.冰川冻土, 41(6):1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm [41] 刘晶晶, 马春, 苏鹏程, 2018.以气温和降雨量为指标的冰湖溃决预警方法.南水北调与水利科技, 16(6):1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806001.htm [42] 刘时银, 姚晓军, 郭万钦, 等, 2015.基于第二次冰川编目的中国冰川现状.地理学报, 70(1):3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm [43] 刘伟, 2006.西藏典型冰湖溃决型泥石流的初步研究.水文地质工程地质, 33(3):88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200603021.htm [44] 潘少华, 1986.波浪、冰凌和船舶对水工建筑物的荷载与作用.北京:海洋出版社. [45] 王欣, 刘时银, 丁永建, 2016.中国喜马拉雅山冰碛湖溃决灾害评价方法与应用研究.北京:科学出版社. [46] 汪洋, 2005.水库库岸滑坡速度及其涌浪灾害研究(博士学位论文).武汉: 中国地质大学. [47] 汪宙峰, 张廷山, 王成武, 2016.西藏喜马拉雅山地区冰湖溃决的预测模型及其应用研究.冰川冻土, 38(2):388-394. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201602011.htm [48] 谢任之, 1993.溃坝水力学.济南:山东科学技术出版社. [49] 徐道明, 冯清华, 1989.西藏喜马拉雅山区危险冰湖及其溃决特征.地理学报, 44(3):343-352. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198903009.htm [50] 殷坤龙, 刘艺梁, 汪洋, 等, 2012.三峡水库库岸滑坡涌浪物理模型试验.地球科学, 37(5):1067-1074. http://www.earth-science.net/article/id/2310